養老断層の P 波浅層反射法地震探査: 2004 年志津測線

石山達也¹⁾*・佐藤比呂志²⁾・戸田 茂³⁾・中西利典⁴⁾・松多信尚⁵⁾・杉戸信彦⁶⁾・堤 浩之⁷⁾・岡 田篤正⁸⁾・小池太郎⁹⁾・今村朋裕¹⁰⁾・服部泰久¹¹⁾・鈴木規眞¹²⁾・天野桂吾¹³⁾・加藤義人¹⁴⁾・河合 陽平¹⁵⁾・高木啓司¹⁶⁾

¹⁾ 産業技術総合研究所・活断層研究センター(現在:東北大学大学院理学研究科)・²⁾ 東京大学地震研究所 ・³⁾ 愛知教育大学・⁴⁾ 産業技術総合研究所・地質情報研究部門(現在:土木研究所技術推進本部)・⁵⁾ 東京 大学地震研究所(現在:台湾國立大学地質学部)・⁶⁾ 京都大学大学院理学研究科(現在:名古屋大学大学院 環境学研究科附属地震火山・防災研究センター)・⁷⁾ 京都大学大学院理学研究科・⁸⁾ 京都大学大学院理学 研究科(現在:立命館大学歴史都市防災研究センター)・⁹⁾(株) ジォシス・¹⁰⁾ 京都大学大学院理学研究科 (現在:京都府丹後土木事務所)・¹¹⁾ 京都大学大学院理学研究科(現在:(株) ジャパン・エナジー)・¹²⁾ 愛知 教育大学(現在・豊田市立若園中学校)・¹³⁾ 愛知教育大学(現在:三菱電機株式会社)・¹⁴⁾ 愛知教育大学(現 在:西尾市立西尾中学校)・¹⁵⁾ 愛知教育大学(現在:トヨタ車体株式会社)・¹⁶⁾ 愛知教育大学(現在:佐鳴予 備校)

High-Resolution P-wave Seismic Reflection Imaging of the Yoro Active Thrust: 2004 Shizu Profile

Tatsuya Ishiyama¹⁾*, Hiroshi Sato²⁾, Shigeru Toda³⁾, Toshimichi Nakanishi⁴⁾, Nobuhisa Matsuta⁵⁾, Nobuhiko Sugito⁶⁾, Hiroyuki Tsutsumi⁷⁾, Atsumasa Okada⁸⁾, Taro Koike⁹⁾, Tomohiro Imamura¹⁰⁾, Yasuhisa Hattori¹¹⁾, Norimasa Suzuki¹²⁾, Keigo Amano¹³⁾, Yoshito Kato¹⁴⁾, Yohei Kawai¹⁵⁾ and Keiji Takaki¹⁶⁾

¹⁾ Active Fault Research Center, National Institute of Advanced Industrial Science and Technology (Present Address: Graduate School of Science, Tohoku University), ²⁾ Earthquake Research Institute, the University of Tokyo, ³⁾ Aichi University of Education, ⁴⁾ Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (Present Address: Public Works Research Institute), ⁵⁾ Earthquake Research Institute, the University of Tokyo (Present Address: National Taiwan University), ⁶⁾ Graduate School of Science, Kyoto University (Present Address: Research Center for Seismology, Volcanology and Disaster Mitigation, Graduate School of Environmental Studies, Nagoya University), ⁷⁾ Graduate School of Science, Kyoto University, ⁸⁾ Graduate School of Science, Kyoto University (Present Address: Research Center for Disaster Mitigation of Urban Cultural Heritage, Ritsumeikan University), ⁹⁾ Geosys, Inc., ¹⁰⁾ Graduate School of Science, Kyoto University (Present Address: Tango Civil Engineering Office, Kyoto Prefecture), 11) Graduate School of Science, Kyoto University (Present Address: Japan Energy Co., Ltd.), ¹²⁾ Aichi University of Education (Present Address: Toyota Municipal Wakazono Junior High School), ¹³⁾ Aichi University of Education (Present Address: Mitsubishi Electric Co., Ltd.), 14) Aichi University of Education (Present Address: Nishio Municipal Nishio Junior High School), ¹⁵⁾ Aichi University of Education (Present Address: Toyota Auto Body Co., Ltd.), ¹⁶ Aichi University of Education (Present Address: Sanaru Co., Ltd.)

Abstract

We present new, high-resolution seismic reflection data (2004 Shizu profile) acquired across the forelimb of the Yoro basement-involved fold to further image its subsurface geometry. A seismic source (mini-vibrator) and 180-channel digital telemetry recording system were used in an off-end configuration with the nearest receiver adjacent to the source to record seismic waves from deeper

^{*}e-mail: t-ishiyama@mail.tains.tohoku.ac.jp (〒980-8578 仙台市青葉区荒巻字青葉 6-3)

石山達也 他

reflection points. A 10-m source and geophone spacing give a 5-m CMP (common midpoint) spacing on the final section. The nominal CMP stacking fold had 90 traces. We also suppressed coherent noise by repeating source points 7-10 times. After data processing including surface-consistent statics, velocity analysis, normal moveout (NMO) correction, residual statics, CMP stack, and migration, the section was finally depth-converted using of stacking velocities. Reflectors imaged on the seismic profile illuminate growth strata on the forelimb of the Yoro basement-involved fold, providing insights into the kinematic solution of the underlying active thrust.

Key words: active fault, Yoro fault, seismic reflection profile, subsurface structure, central Japan

1. はじめに

養老断層は、後期新生代を通じて逆断層帯による東西 短縮変形が著しい近畿地域の東縁部を画する、濃尾-伊 勢断層帯(全長約110km)の中心をなす大規模逆断層で ある(活断層研究会, 1991; 鈴木ほか, 1996; 池田ほか, 2002; 中田・今泉, 2002; Fig. 1). 養老断層に沿っては上 部完新統を変位させる撓曲崖地形が発達し(東郷, 2000), これらは 1586 年天正地震(宇佐美, 2001)の際 に形成されたと考えられる (須貝ほか, 1999; 東郷, 2000; 石山ほか、2002). したがって、養老断層は地表変形と逆 断層の構造およびその地震時の成長を考察する上で重要 な構造である.養老断層においては,須貝・杉山(1998) および愛知県(1999)が P 波震源による反射法地震探査 を実施し、養老山地を構成する中古生界が濃尾平野を埋 積する鮮新・更新統に衝上する大局的な構造を得ること に成功している.しかし、これらの探査測線では、完新 世の撓曲崖地形基部を流下する揖斐川・津屋川が幅 500 m程度にわたり測線を横断しており、この区間では重合 数が減少している.その結果,1586年天正地震時の撓曲 崖と対応づけるに足る、詳細な変形構造のイメージを取 得するには至っていない. そこで, 養老断層による鮮新-更新統の詳細な変形構造のイメージングを主たる目的と して、河川による発震・受振の中断が最小限にとどめら れる測線(2004年志津測線)を設定し、マルチチャネル 陸上反射法地震探査システムを利用したP波浅層反射 法地震探査を実施した.本稿では、測線位置・観測パラ メータを主とする探査の概要と,解析結果について報告 する. なお、本探査により得られた断面に基づく養老断 層の地下構造に関する地質学的解釈は Ishiyama et al. (2007) で詳しく議論されているので、本稿では省略し、 探査について論ずるにとどめる.

養老断層のP波反射法地震探査・2004 年志津測線 のデータ取得

2.1 志津測線の概要

測線は岐阜県養老町瑞穂を起点とし、同南濃町(現・ 海津市)志津北谷を終点とする全長約 5.4 km の区間で ある (Fig. 2). 測線は養老断層の変形フロントと考えら れる養老山地東麓部の完新世撓曲崖(東郷, 2000;石山 ほか、2002)をほぼ東西に横断するように設定した。測 線の起点は厚い鮮新・更新・完新統が伏在する濃尾平野 に位置し、終点は中古生界から構成される養老山地東麓 を開析する志津北谷に沿う林道終点である.本測線上で は, 撓曲崖基部を津屋川最上流部が横断するが, その幅 は約30mであり,発震・受振点の欠落は2点にとど まった. 観測は2004年8月5日から同17日までの13 日間で行った.測線は、主に国道258号線と県道南濃 関ヶ原線を結ぶ町道上に位置する.桑名市・四日市市な どの都市と名神高速道路のインターチェンジを結ぶ国道 258 号線は、概して交通量が多い. これらの一部車両は 県道に抜けるべく町道に流入するため、測線上の交通ノ イズのレベルは決して低くない.また、測線上にはゴミ 処理施設などいくつかの固定ノイズ源もある.そこで, 可能な限り町道の側道や農道を利用し、ノイズ源からの 距離をとるようにした.県道南濃関ヶ原線を横断する区 間では、測線を志津北谷河川敷に敷設した. 天候は観測 期間を通じて概ね晴天であり、降雨・河川の流水による ノイズが最小限の条件下で観測を行った.ただし,濃尾 平野における観測時には山地から吹き下ろす風に伴うノ イズがしばしば発生した.

2.2 観測パラメータ

本探査の主なデータ取得パラメータを Table 1 に示 す.本探査は地下 1-2 km 程度までの高分解能断面を取 得することを目的とするため,東京大学地震研究所所有 のデジタルテレメトリーシステム GDaps-4((株)地球科 学総合研究所製)および小型バイブレーター震源 T-15000 (IVI 社製)(佐藤, 1996)を用いた.チャネル数は

Fig. 1. (a) Shaded relief map based on 250 m digital elevation model (DEM) (Kishimoto *et al.*, 2000) showing the topography and distribution of active faults within the Kinki region, central Japan. Locations of active faults are from Nakata and Imaizumi (2002). Red, orange, and gray lines mark active faults that are precisely located, approximately located, and inferred, respectively. Barbs denote hangingwalls of active thrusts. Arrows indicate slip directions of strike-slip faults. Abbreviations for metropolitan areas are: KB: Kobe, OK: Osaka, KT: Kyoto, NG: Nagoya. (b) Regional Geologic Map of the Nobi-Ise fault zone including Yoro fault (modified from Ishiyama *et al.*, 2007). Geologic units are modified from Miyamura *et al.* (1976), Takada *et al.* (1979), Yoshida (1984; 1988), Harayama *et al.* (1989), and Yoshida *et al.* (1991). Red line with solid circles indicates location of the seismic line in this study.

180,使用した地震計の固有周波数は10Hzであり,9個 一組で使用した.高分解能の断面を得るため,受振点お よび発震点間隔は10mとした.さらに,撓曲崖の周辺 約1.3kmの区間では,重合数を増やすために各受振点 の中点において発震を行った.発震のスイープ長は15 sec,周波数は10-120Hzの線形アップスイープである. 垂直重合数は,上記のノイズレベルの決して低くない測 線状況を考慮し,標準で10回とした.ただし,測線西部 においては交通ノイズが少ないため垂直重合数を7回と した.平均水平重合数は90である.また,既往の反射記 録から,養老山地を構成する中古生界が鮮新-更新統に 衝上していることが予想された(愛知県,1999;須貝・ 石山達也 他

Fig. 2. Detailed topographic map showing locations of survey line with receiver points and stack line with CMP (common midpoint) numbers. Locations of active fold scarps along the Yoro fault is redrawn from Ikeda *et al.* (2002).

杉山, 1998). このような深部の低速度層を通過する波線 をより多く捉えるために,測線終端部の180ショットを 除き基本的には各展開の最下部で発震を行い,ロールア ロング方式で展開を測線上部に移動しつつ計測した. し たがって最大オフセットは1,800 m である. 受振点・発 震点の位置はトータルステーションを用いた光波測量に より決定した.

得られた走時記録は明瞭な反射波群を捉えている. Fig. 3 に発震点番号 1069(断層下盤側),同 1186(断層 を横断)および同 1136(断層上盤側)におけるショット 記録を示す.断層下盤側の濃尾平野では複数の反射波が 往復走時約1.5 sec まで明瞭に確認できる.一方,断層上 盤側では往復走時約1 sec まで不明瞭ながら反射波を確 認することができる.特に深部の反射波は測線最上部の 発震記録でも認められる.また,ノイズの大きい断層下 盤側ではオフセットの大きい区間で屈折初動が不明瞭に なるが,それ以外では全展開長にわたり明瞭な屈折初動 を見いだすことができる.

3. 養老断層の P 波反射法地震探査・岐阜県南濃町志 津測線のデータ解析

本探査で得た走時記録を用いて,反射断面を作成する

ための反射法処理を行った.データ解析に際しては対話 型反射法データ処理ソフトウェア ProMAXTM(Landmark 社製)を用いた.反射法の処理は共通中間点重合

Table 1.	Recording	parameters	for	the	2004	Shizu
seismic	reflection p	orofile.				

Date	04/8/5-17 (13 days)	
Source Parameters		
Source	Mini-vibrator@IVI	
	T - 15000 (ERI)	
Sweep frequency	10 - 120 Hz	
Sweep length	15 s	
Shots/record	7-10	
Shot intervals	10 m	
Receiver Info		
Resonant frequency	10 Hz	
Geophones/channel	9	
Channels	180	
Receiver intervals	10 m	
Survey length	5.4 km	
Recording Parameters		
Observation system	GDaps-4@JGI (ERI)	
Record length	4 sec	
Sampling rate	2 ms	
Standard CDP fold	90	
Max. offset	1800 m	

法に基づき, Yilmaz (1987) に代表される通常の反射波 走時記録の処理方法を採用した.以下に主要な処理の内 容について述べる.なお,処理のフローチャートを Fig. 4 に,各処理の主要パラメータを Table 2 に示す.

(1) ジオメトリの設定と適用

受振点・発震点の座標値に基づき測線のジオメトリを 求めると共に,これを使って共通中間点分布・重合数を 算出した上で重合測線を設定した(Fig. 2).また,重合 測線に基づいて共通中間点の座標を決定し,ショット記 録のヘッダーに書き込み,CMP 編集を行った.

(2) バンドパス・フィルター

表面波などの低周波ノイズや高周波のランダムノイズ を抑制するためにバンドパス・フィルターを適用した. 適用した範囲は,震源のスイープ周波数を目安にし,テ ストの結果を比較して決定した.また,測線を横断する 送電線に起因する電気信号ノイズを除去すべく,60 Hz のノッチ・フィルターを適用した.

(3) デコンボリューション・フィルター

観測波形(基本波形)に含まれる観測系の特性や短周 期多重反射・地層の非弾性的効果を除去し,理想的なイ ンパルス応答を復元すべく,デコンボリューション・ フィルターを設計し,記録波形に適用した.オペレー ター長・予測距離はそれぞれ波形の自己相関を作成し, その結果を比較検討することで試行錯誤的に求めた.

(4) 表層静補正

表層付近の低速度層の分布を推定し、その走時に対す る影響を除去するために、表層静補正を適用した. CMP

Fig. 3. Shot gathers obtained at shot points 1069, 1186, and 1316.

Loading Geometry, Binning, CMP Sort

Depth Conversion → Poststack Filter → Migrated Depth Section Fig. 4. Flowchart of data processing.

編集した記録波形に標高補正を施した波形から屈折波の 初動走時を読み取り,屈折法解析により各発震点・受振 点における表層部の伝播時間を求め,その値で補正を施 す処理(屈折静補正)を行った.

得られた風化層および第1・2層基底の速度をFig.5 (a)に、最終基準面(final datum)に対する静補正値を Fig.5(b)に示す.標高0m前後の海岸沖積平野である 濃尾平野に位置する受振点では、第1層基底の速度が 1,000 m/sec 前後と非常に遅い.また、上盤側の東端部も 低速度域に含まれ、これは完新統が変形帯に参加するこ とと整合的である.また、西に向って養老山地を構成す る基盤岩類の分布深度が浅くなるのに対応して、第1・2 層基底の速度は増大する.このように、地表付近の地層 の分布と屈折波による表層静補正の結果は概ね整合的で ある.また、得られた速度構造はこれまで知られる養老 断層の大局的な速度構造と整合的である(愛知県,1999;

Shizu seisinic reliection profile.					
CMP sort					
CMP interval	5 m				
Bandpass filter	10-110 Hz				
Deconvolution					
Operator length	200 msec				
Prediction distance	5 msec				
Refraction Statics					
Offset distance	0-200 m				
Replacement velocity	1550m/sec				
Residual Statics					
Maximum static shift	6 msec				
Time window	1500 msec				
Gate length	11 traces				
F-K migration					
Stretch factor	0.6				
Velocity scale factor	80 %				
F-X deconvolution					
Horizontal window	50 traces				
Operator length	5				
Time window	500 msec				

Table 2. Processing parameters for the 2004

須貝・杉山, 1998).

(5) 速度解析と NMO 補正

速度スペクトル法と定速度重合法により平均重合速度 を求めた.速度解析は、濃尾平野の比較的緩やかな構造 の範囲では CMP 100 点おきに、養老断層の撓曲崖付近 および変形帯では CMP25 点おきに行った.得られた速 度構造を Fig.6 に示す.さらに、得られた平均重合速度 を用いてノーマルムーブアウト (NMO) 補正を行い、ゼ ロオフセットの CMP アンサンブルに変換した.NMO 補正に際してはオフセットの大きい部分をストレッチ ミュートにより削除するとともに、NMO 後にミュート を行った.

速度解析の結果得られた速度構造を Fig. 6 に示す.濃 尾平野では表層静補正の適用後にも関わらず,往復走時 200 msec まで 1,500 m/sec 以下と非常に遅い平均重合 速度であるが,これは須貝・杉山(1998)の速度解析結 果と整合的である.また,断層上盤側では平均重合速度 が 3,000 m/sec と急激に大きくなる.これは,濃尾平野

Fig. 5. (a) Near-surface velocity structure based on refraction statics calculation. Dark gray, light gray and dashed lines indicate velocity of the bottoms of weathered and underlying two layers, respectively. (b) Receiver (open squares) and source (solid circles) statics to final datum based on refraction statics calculation.

を埋積する盆地堆積物である鮮新・更新統に養老山地を 構成する中古生界の基盤岩類が衝上し,重合速度が水平 方向に急激に変化するためであると考えられる.

(6) 残差静補正

表層静補正で補正しきれない,短い波長の表層の速度 変化に起因する走時のずれの残差を補正し,重合効果を 高める目的で,残差静補正を適用した.

(7) 共通中間点重合

NMO 補正後, CMP アンサンブルのトレースを重合 した. この処理により, 平均重合速度と異なる速度を持 つ波やランダムノイズの振幅は相対的に抑制され, S/N 比は向上する. 得られた重合記録断面を Fig. 7 (a) に示 す. (8) 重合後処理

重合後の処理として、空間的なコヒーレンシーのない ランダムノイズを抑制し、反射波の連続性を高める目的 で予測フィルターの一種である F-X デコンボリュー ションを適用した.

(9) マイグレーション

傾斜する反射面を真の位置に復元するために, F-k マ イグレーションを適用した.マイグレーションの結果を Fig. 7 (b) に示す. 重合記録断面 (Fig. 7 (a)) に比べて, 断層上盤側の傾斜する反射面の連続性が良くなったこと がわかる.

深度変換
速度解析の結果得られた速度構造から区間速度を求

石山達也 他

Fig. 6. Stacking RMS velocity structure based on velocity analysis.

め,これを用いて深度変換を行った.深度断面を Fig. 8 に示す.

4. 反射断面の解釈

上記の処理の結果、養老断層の地下2km までの高精 度地下構造が明らかになった(Fig. 8).特に,養老断層 上盤側を構成する中古生界が、濃尾平野を埋積する鮮 新・更新統の東海層群に衝上する西傾斜の断層構造が明 確になった.特に、養老山地東麓部の直下にコヒーレン トな反射面が存在し、これらの区間速度が 3,000 m/sec 程度であることから、これらは養老山地の地下に伏在す る断層下盤側の堆積層であると考えられる.また、養老 山地東麓部の中古生界の上位には、東向きに撓曲変形す るとともに隆起側に向って薄化する growth strata が 認められ、断層活動に伴う褶曲構造の成長を示している (Ishiyama et al., 2007). 本測線は 1586 年天正地震(宇 佐美,2001)時に形成されたと考えられる撓曲崖地形を 横断している.桑名断層と同様に,養老断層の撓曲崖地 形の基部は growth strata 基部の向斜軸に一致してい る. このことは、1586年天正地震時に形成された養老断 層および桑名断層の撓曲崖地形が、いずれも中古生界が 核をなすウェッジスラストの先端部に形成されたことを 示している (Ishiyama et al., 2004; Ishiyama et al., 2007).

5. まとめ

2004 年 8 月 5 日から同 17 日にかけて, 岐阜県養老町 瑞穂から同南濃町(現・海津市)志津北谷に至る全長約 5.4 km の測線で,東京大学地震研所有の反射法地震探査 システムを利用した高精度浅層反射法地震探査を実施し た.さらに,観測データを用いて対話型反射法データ処 理ソフトウェアにより反射断面を作成した.その結果, 養老山地下に伏在する西傾斜の養老断層が,濃尾平野を 埋積する鮮新・更新統に衝上する構造が明確になった. また,断層上盤側に発達する growth strata の構造が明 確になった.

謝 辞

観測に際しては,(株)ジオシスの佐藤 良氏にご協力 を賜った.また,観測データの取得全般については, (株)ジオシスの井川 猛氏および橋田 功氏からご助言 を頂いた.また,本稿の内容は査読者である今泉俊文氏 のご指摘により改善された.南濃町(現・海津市)役 場・養老町役場および岐阜県警察養老警察署の関係各位 には用地使用手続き全般に関して全面的にご協力頂い た.さらに,養老町有尾区長(当時)の田中正行氏をは じめとする地域住民の方々は探査目的をご理解頂き,調 査実行に際し様々な便宜を図って頂いた.以上の方々に 対して,ここに謝意を表す.なお,本探査に際しては, 平成16-17 年度文部省科学研究費補助金 基盤研究 (A)課題番号16200050(研究代表者:岡田篤正)を使用 した.

Fig. 7. (a) Filtered stack section and (b) migrated time section based on data processing.

石山達也 他

Fig. 8. Depth, migrated section based on data processing (Modified from Ishiyama et al., 2007).

文 献

- 愛知県, 1999, 平成 11 年度 濃尾平野の地下構造調査, http: //www.hp1039.jishin.go.jp/kozo/Aichi6Cfrm.htm.
- 原山 智・宮村 学・吉田史郎・三村弘二・栗本史雄, 1989, 御在所山地域の地質, 地域地質研究報告(5万分の1地質 図幅), 地質調査所, 145 p.
- 池田安隆・今泉俊文・東郷正美・平川一臣・宮内崇裕・佐藤比 呂志編,2002,第四紀逆断層アトラス,東京大学出版会, 254 p.
- 石山達也・東郷正美・今泉俊文・佐藤比呂志・中田 高・野原 壯・原口 強(2002): 養老断層の極新期断層変位地形の形 成過程一岐阜県海津郡南濃町志津菖蒲原地区における養老 断層の地層抜き取り調査一,活断層研究, 22, 115-126.
- Ishiyama T., K. Mueller, M. Togo, A. Okada, K. Takemura, 2004, Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan, J. Geophys. Res., 109, B12408, doi: 10.1029/2003JB002547.
- Ishiyama, T., K. Mueller, H. Sato, and M. Togo, 2007, Coseismic fault-related fold model, growth structure, and the historic multisegment blind thrust earthquake on the basement-involved Yoro thrust, central Japan, J. Geophys. Res., doi: 10.1029/2006JB004377.
- 活断層研究会,1991,『新編 日本の活断層一分布図と資料』, 東京大学出版会,437 p.
- 岸本清行, 2000, 海陸を合わせた日本周辺のメッシュ地形デー タの作成: Japan 250m.grd, 地質調査所研究資料集 (CD-ROM), **353**, 1 CD-ROM, 地質調査所.
- 宮村 学・三村弘二・横山卓雄, 1976, 彦根東部地域の地質,

地域地質研究報告(5万分の1地質図幅),地質調査所,49p. 中田 高・今泉俊文編,2002,活断層詳細デジタルマップ,東

- 京大学出版会,60 p. 佐藤比呂志,1996,東京大学地震研究所に導入された反射法地 震探査システム,活断層研究,**15**,100-105.
- 須貝俊彦・杉山雄一,1998,大深度反射法地震探査による濃尾 平野の活構造調査,地質調査所速報,no.EQ/98/1(平成9 年度活断層・古地震研究調査概要報告書),55-65.
- 須貝俊彦・伏島祐一郎・粟田泰夫・吾妻 崇・苅谷愛彦・鈴木 康弘, 1999, 養老断層の完新世後期の活動履歴—1596年天 正地震・745年天平地震震源断層の可能性. 地質調査所速 報, no. EQ/99/3, 89-102.
- 鈴木康弘・千田 昇・渡辺満久, 1996, 1: 25,000 都市圏活断層 図「津島」,国土地理院技術資料 D. 1-333.
- 高田康秀・近藤善教・宮村 学. 1979, 津島地域の地質, 地域 地質研究報告(5万分の1地質図幅), 地質調査所, 56 p.
- 東郷正美,2000,微小地形による活断層判読,古今書院,206 p.
- 宇佐美龍夫, 2003, 日本被害地震総覧: [416]-2001, 東京大学出版会, 605 p.
- Yilmaz, O., 1987, Seismic Data Processing, Soc. Exploration Geophys., Tulsa, Oklahoma, 526 p.
- 吉田史郎, 1984,四日市地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所,81p.
- 吉田史郎, 1988, 鈴鹿・養老両山系間の鮮新・更新統東海層群 --東海湖終息期の堆積物一, 地球科学, **42**, 1-16.
- 吉田史郎・栗本史雄・宮村 学, 1991, 桑名地域の地質, 地域 地質研究報告(5万分の1地質図幅),地質調査所, 154 p.

(Received March 15, 2007) (Accepted May 9, 2007)