浅間山における人工地震探査: 車坂峠周辺における高密度 観測の概要

筒井智樹¹⁾*·森田裕一²⁾·中田節也²⁾·長田 昇²⁾·小山悦郎²⁾·佐藤正良¹⁾ ¹⁾秋田大学工学資源学部, ²⁾ 東京大学地震研究所

Active Source Seismic Experiment in Asama Volcano, Japan: The Outline of High Density Seismic Array Operation Across Kurumazaka Pass, West of Asama Volcano

Tomoki Tsutsui^{1)*}, Yuichi Morita²⁾, Setsuya Nakada²⁾, Noboru Osada²⁾, Etsuro Koyama²⁾ and Masayoshi Satoh¹⁾

1) Akita University, 2) Earthquake Research Institute, University of Tokyo

Abstract

High density seismic observation of controlled source seismic experiment is presented. Purposes of the operation are both evaluation of single channeled observation system and investigation of subsurface structure in the ground deformation source region. The experiment was carried on October 2006. 208 seismometers and recorders were spread with about 50 m interval across Kurumazaka Pass at 5 km west of the active crater of Asama Volcano. Instruments were installed at positions by six persons for three days. 206 stations recorded all five shots successfully. The new system provided more efficient operation than that with the conventional system. Obtained seismic records are of interest because different appearance in later phases is shown between the shot records in the north and the south sides. It is significant that particular later phases in 2 to 3s of travel times appear in 2 to 3 km north of the shot S3. LPF process enhances the northern later phase. It is expected that our observation may provide important constraints for understanding the structure of Asama Volcano.

Key words: Asama Volcano, Seismic exploration, Seismic array, National Project for Prediction of Volcanic Eruption

1. はじめに

火山噴火予知計画の一環としてマグマだまりの検出を中心課題とした火山体構造探査計画が 1994 年から継続して行われ、2006 年度までに日本国内の 108 の活火山(気象庁、2005) のうち、重要度が高いと考えられる 11 の活火山について構造探査を目的とする人工地震観測が行われてきている。これらの 11 活火山のうちわけを気象庁(2005) の分類にしたがって整理すると、A ランク6 火山(全11 火山中) および B ランク 5 火山(全36 火

山中) である.

これまでの構造探査計画では火山体内部および浅部地 殻構造を探査の目標のひとつとして3次元地震波速度構 造の解明を意識した測線展開を中心に観測が行われてき ている(たとえば鍵山・他, 1995; 松島・他, 1997; 須藤・他, 2003; 田中・他, 2002; 鬼澤・他, 2003; 井口・ 他, 2005). これらの探査の結果として, 活火山内部の3次元地震波速度構造の様子があきらかになり, 西(1997) や Tanaka et al., (2002) などによって指摘された, 火口

^{*}e-mail: tom@geophys.mine.akita-u.ac.jp (〒010-0852 秋田市手形学園町 1-1)

を中心とした高速度体の存在は、引き続き行われた他火山の調査を通じて活火山の普遍的な山体内部の地震波速度構造の特徴として認識されるようになった(筒井・他、2003; Yamawaki *et al.*, 2004 など).

このような火山体内部の地震波速度構造の特徴の解明 は火山性地震の震源決定精度の向上をもたらし、火山活動にともなうマグマあるいは火山性流体の動きの検出精 度の向上に大きく貢献している(田中・浜口, 2001; Yama-waki *et al.*, 2004; Onizawa *et al.*, 2007).

さらに、構造探査計画によるデータを用いて、火山活 動の本質であるマグマに関して、その貯留領域であるマ グマだまりあるいはその通路である供給岩脈などを地震 探査により直接検出する努力がなされてきた、三ヶ田 (1996) が構造探査データの反射法的処理により霧島火 山におけるマグマだまりを指摘し、 Tsutsui and Sudo (2003) が阿蘇火山中央火口丘直下の3次元地震波反射 断面を得て、火山深部構造の議論を行った、このほか、 筒井・他 (2007) が富士火山直下の深さ 13 km および 16 km にその周囲とは異なった明瞭な反射を検出してい る. このように人工地震を用いた火山体構造の解明. 特 にマグマだまりの検出において反射法的処理が有効であ ることが示されてきた。反射法的処理を適用する場合に は観測点の高密度配置が必要であることから、比較的狭 い領域を探査対象とした集約的観測を実施する必要があ る。しかしながら、火山体内部の総括的な構造が明らか にされる途上の段階にあったこれまでの探査計画では、 霧島火山群構造探査グループ (1997a, 1997b) および須 藤・他(2003)の例をのぞいては、必ずしも反射法解析 に最適な測線配置が計画されてきたわけではなかった。

本報告の観測研究は2006年に行われた浅間火山を対 象とする人工地震探査 (青木・他, 2008) に付随して行 われたものである。この人工地震探査では浅間火山およ びその周辺のより詳細な浅部地震学的構造を明らかにす ることを目的として、 浅間火山を中心として薬量 250~ 300 kg の 5 つの発破が行われた. 地震探査の対象となっ た浅間火山では2004年9月の噴火活動にともない、釜 山火口西方地下における地震活動が報告されている(た とえば山本・他、2005) ほか、浅間山周辺の地盤変動が 浅間山からその西方にかけての地域における地盤変動力 源モデルで説明できることが報告されている(青木・ 他, 2005; 村上, 2005; Murase et al., 2007). また, 人工 地震の前年に行われた MT 法電磁気探査では浅間山西 方の車坂峠付近(高峰高原)の地下に高比抵抗体が指摘 された(小川・他, 2006). このような背景のもとで本報 告の観測研究は浅間山西方の長野県南佐久郡御代田町と

群馬県吾妻郡嬬恋町を境する車坂峠を中心に測線計画を 行った.

本報告の観測研究は大きく分けて2つの目的がある. 一つは2006年に行われた浅間火山を対象とする人工地震実験によって、蔵下・他(2006)によって開発された新システムを火山探査の目的で使用した際の評価および最適な観測形態の検討を行うこと、もう一つは地盤変動圧力源が推定される浅間山西方地下の詳細な地震波反射構造を明らかにすることである。本報文では1つめの目的に焦点をしばって記述を行う。2つめの目的に関しては稿を改めて詳細な報告を行うことにする.

2. 観測

本観測では浅間火山西方の車坂峠を中心として南北合計約8.6kmにわたって208台のLS8200SDシステムをおよそ50m間隔で設置した(Fig. 1). 本観測で展開した観測網は村上(2005)が推定した地盤変動圧力源領域を横断するとともに、従来のシステムを用いた青木・他(2008)の観測網の一部と重複する。これ以降、地震波形データロガーLS8200SDを用いた測線およびその観測を「高密度観測」と呼び、従来の観測システムによる測線を「本測線」と区別して称することにする。

野外における観測点設置作業は10月10日~12日に かけて行われた。観測点の設置作業には2名1班を3組 投入し、6 名で 208 点の設置作業を行った。 設置作業に 用いた自動車は2つの班が排気量1,500 cc の商用バン, 1 つの班が排気量 660 cc の軽バンを用い、各車両には TOPCON 社製 GB500 型 GPS 受信機をアンテナととも に搭載して観測点設置作業とともに測位データが取得で きるようにした (Fig. 2, Fig. 3). また, ロガーの輸送に あたっては荷室スペースの制約から輸送用コンテナその ものを用いずに、 各口ガーを段ボール箱に詰め替えて1 車両あたり30台のロガーを積載した。このほか、各車両 には GPS アンテナ用木杭、ロガー保護用ビニール袋も 搭載した、測位の基準点は車載システムと同型の受信機 システムを発破点 S3 近傍に設置し、毎日始業時から最 後の班の作業終了時刻まで測位データを1秒サンプリン グで取得した. 各観測点の測位結果を Table 1 に示す.

測位も含めた観測点の設置効率は次の通りであった. 設置作業初日には1班あたり平均25観測点、作業に習熟した2日目で1班あたり平均33観測点であった。また、設置作業期間を通して1日あたりの平均設置点数は21~26点の間であった。これに対してほぼ同様の日程で行われた本測線の実質平均設置効率は、自動車を用いた班で1日あたり10~14観測点、徒歩班で1日あたり6

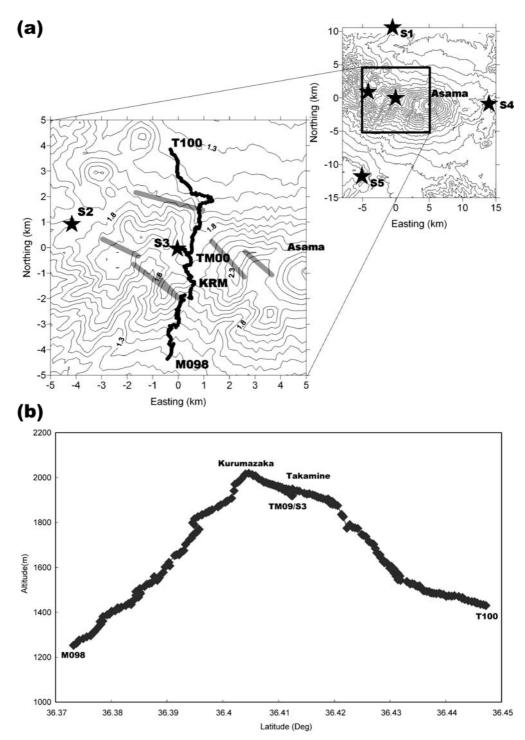


Fig. 1. The high density seismic array. (a) The array was deployed north-southward across Kurumazaka pass. The array included 208 portable seismic stations with the new system. The upper panel shows topography with 100 m interval contour and distribution of five shot points which are presented as star symbols. Heavy box in the upper panel indicates the range of lower panel. The stations in the array are described as solid circles in the lower panel. Significant landmarks are assigned in both maps. KRM presents Kurumazaka Pass. The origin of the local coordinate system is 36.41249 N, 138.4663 E (WGS84 system). Thick gray lines describe the tops of each dyke which presented by Murakami (2005). (b) A profile of the seismic array. Altitudes of the stations are plotted versus their latitudes.

Fig. 2. The reference station for the positioning during daily installations.

Fig. 3. An installation of the station. Light vehicle was preferable for deploying stations. GPS antenna was set on the roof of the vehicle and GPS receiver was running continuously during whole daily operations in the array.

観測点程度であった. したがって、高密度観測の設置効率は従来の形式のそれより高いと考えられる.

高密度測線における人工地震波形の記録には地震波形 データロガー LS8200SD (白山工業製) および受振器 GS11D (OYO GEOSPACE 社製 固有周波数 4.5 Hz) を組み合わせて用いた. 以下ではこれを新システムと称する. 地震波形データロガー LS8200SD システムの詳細は蔵下・他(2006)によって報告されている. 新システムは従来火山体構造探査で用いられてきた LS8000SH (森田・浜口, 1996)に比較して、小型・軽量で設置作業時の取り扱いが容易であるうえ、A/D 変換分解能 24 bit の記録が得られることが最大の特徴である (Table 2).

さらに新システムの最大の特徴は複数台の収録装置の 設定およびデータ回収が一斉にできることである。 すな わち観測基地におけるロガーコントロールシステムはマ スター PC およびスレープ PC の複数の PC から構成さ れ, 各 PC 間は 100BASE もしくは 10BASE のイーサー ネットで接続される (Fig. 4). マスター PC ではロガー 動作設定用スケジュールを管理するとともに、最終的な 回収データを集約保存する。また、スレープPC には USB を介して複数台のロガーを収納した輸送用コンテ ナが接続される。個々のロガーは PC 側から USB 大容 量ストレージクラスとして認識され、 スレープ PC から リムーパブルディスクの一つとして扱われる. ロガー動 作設定ファイルはマスター PC からスレープ PC にコ ピーされ、各スレーブ PC から一斉におのおののロガー に転送される. 現地ではマスター PC を 1 台とスレーブ PC を 2 台用いて、 10 台ずつの単位でロガーの動作設定 およびデータ回収作業を行った。

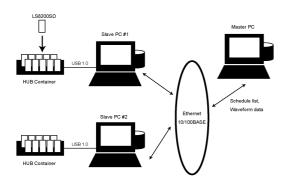
観測基地では2名1組となって設定作業にあたった.すなわち1名がPCによる接続および設定送り込み作業にあたり、もう1名はもっぱらロガー移動、ロガーふたとりはずし、電池装着にあたった。本システムではロガー輸送箱のUSBケーブルを接続してからPC側が各ロガーを認識するまでに若干の時間を要していたので、その間にPC担当の1名もロガー移動、ロガーふたとりはずし、電池装着を補助することができた。本観測では10月9日に210台の設定作業を行い、3名で8時間を要した。

発破作業終了当日(10月13日)にロガー回収およびデータ回収作業を行った。設置を担当した班がロガー回収も担当し、各班の担当地域に設置されたロガーを GPSアンテナ杭とともに 10月13日中にすべて回収した。ロガー回収翌日(10月14日)に観測基地で3名がデータ回収にあたった。データ回収作業ではデータ回収およびバッテリー取り外し・清掃を一連の作業として行った。上記作業を含むデータ回収作業には約5時間を要し、得られた記録は206点分であった。データ回収がなされなかったロガーのうち1台は起動失敗による無記録で、もう1台は動作不良によるデータ回収不能であった。

Table 1. Location of the stations. Coordinate system is WGS84.

		Table 1	. Bocation	or the stations.					
Station	logger	longitude(deg)	latitude(deg)	Altitude(m)	Station	logger	longitude(deg)	latitude(deg)	Altitude(m)
T100	4032	138.46281	36.44718	1430	T032	1002	138.47518	36.42163	1826
T099	1102	138.46313	36.44675	1434	T031	1156	138.47580	36.42131	1836
T098	1101	138.46334	36.44621	1436	T030	1171	138.47574	36.42060	1875
T097	1099	138.46345	36.44566	1441	T029	1172	138.47549	36.42020	1879
T096	1100	138.46402	36.44539	1443	T028	1166	138.47544	36.41970	1880
T095	1024	138.46458	36.44512	1447	T027	1167	138.47516	36.41929	1884
T094	1025	138.46497	36.44466	1448	T026	1168	138.47455	36.41941	1893
T093	1022	138.46542	36.44401	1452	T025	1173	138.47404	36.41968	1893
T092	1023	138.46578	36.44340	1457	T024	1169	138.47357	36.41931	1896
T091	1029	138.46595	36.44291	1462	T023	1149	138.47342	36.41890	1905
T090	1028	138.46612	36.44298	1466	T022	1153	138.47359	36.41848	1902
T089	1027	138.46601	36.44231	1470	T021	1148	138.47356	36.41798	1906
T088	1026	138.46593	36.44154	1474	T020	1152	138.47323	36.41756	1910
T087 T086	1030 1031	138.46582	36.44104	1472	T019 T018	1146 1155	138.47289	36.41716 36.41688	1912 1915
T085	1031	138.46580	36.44055 36.44008	$1474 \\ 1471$	T018		138.47274	36.41650	1915
T083	1090	138.46581 138.46575	36.43958	1480	T016	1062 2028	138.47240 138.47215	36.41610	1920
T084	1097	138.46575	36.43911	1481	T015	1059	138.47243	36.41553	1923
T083	1095	138.46599	36.43883	1485	T013	1060	138.47249	36.41507	1926
T082	1094	138.46601	36.43829	1483	T014	1061	138.47224	36.41460	1930
T081	1093	138.46595	36.43786	1485	T013	2029	138.47203	36.41373	1940
T079	1041	138.46615	36.43749	1486	T011	1058	138.47206	36.41328	1941
T078	1040	138.46675	36.43721	1488	T009	1054	138.47204	36.41283	1942
T077	1039	138.46726	36.43703	1492	T008	1056	138.47213	36.41248	1949
T076	1038	138.46758	36.43663	1493	T007	1130	138.47219	36.41184	1948
T075	1037	138.46752	36.43617	1496	T006	1131	138.47207	36.41137	1950
T074	1036	138.46787	36.43594	1497	T005	1134	138.47199	36.41108	1949
T073	1035	138.46846	36.43583	1503	T004	1124	138.47179	36.41067	1952
T072	1034	138.46900	36.43557	1508	T003	1132	138.47122	36.41064	1954
T071	1033	138.46936	36.43527	1518	T002	1123	138.47082	36.41064	1956
T070	3020	138.46996	36.43495	1515	T001	1128	138.47062	36.41032	1958
T069	3018	138.47017	36.43460	1519	TM09	1170	138.46626	36.41242	1919
T068	3019	138.47058	36.43436	1525	TM08	1079	138.46626	36.41249	1919
T067	3015		36.43397	1528	TM07	1080	138.46729	36.41217	1922
T066	3017	138.47134	36.43360	1526	TM06	1082	138.46793	36.41203	1927
T065	3014	138.47167	36.43301	1537	TM05	1081	138.46849	36.41207	1930
T063	3016	138.47194	36.43188	1542	TM04	1151	138.46917	36.41177	1936
T062	3013	138.47227	36.43142	1545	TM03	1154	138.46911	36.41121	1939
T061	3012		36.43145	1554	TM02	1147	138.46982	36.41068	1948
T060	1032	138.47380	36.43177	1561	TM01	1150	138.46990	36.41005	1954
T059	1190	138.47440	36.43108	1561	TM00	1133	138.47063	36.40990	1962
T058	1195	138.47534	36.43141	1573	M001	1127	138.47084	36.40947	1963
T057	1194	138.47645	36.43098	1572	M002	1125	138.47123	36.40913	1967
T056	1186	138.47759	36.43072	1575	M003	1008	138.47153	36.40885	1969
T055	1192	138.47900	36.43068 36.42995	1594	M004	1015	138.47165	36.40850 36.40811	1971
T054 T053	1193 1187	138.47927 138.47976	36.42995 36.43026	1597 1605	M005 M006	1021 1005	138.47170 138.47175	36.40811	1974 1978
T053	1187		36.43026	1605 1604	M006 M007	1005	138.47179	36.40737	1978
T052	1183		36.43026	1620	M007 M008	1001	138.47179	36.40731	1980 1987
T051 T050	1191	138.48107	36.42899	1621	M008 M009	1004	138.47148	36.40645	1987
T049	1189		36.42877	1626	M010	1003	138.47072	36.40631	1994
T049	1181	138.47911	36.42863	1636	M010	1007	138.47012	36.40628	1999
T043	1184		36.42827	1645	M011	1000	138.46968	36.40616	2001
T046	1182	138.47677	36.42820	1656	M013	1003	138.46885	36.40586	2001
T045	1176	138.47560	36.42764	1665	M014	1083	138.46905	36.40549	2008
T043	1179		36.42736	1684	M015	1084	138.46961	36.40528	2013
T043	1178	138.47585	36.42706	1703	M016	1085	138.46958	36.40467	2019
T042	1180		36.42682	1705	M017	1086	138.46962	36.40407	2016
T041	1177	138.47491	36.42623	1715	M018	1091	138.47031	36.40387	2010
T040	1162		36.42568	1737	M019	1088	138.47044	36.40338	1995
T039	1161	138.47531	36.42520	1743	M020	1087	138.47079	36.40295	1984
T038	1163	138.47515	36.42491	1747	M021	1092	138.47138	36.40263	1978
T037	1160		36.42420	1773	M022	1089	138.47199	36.40216	1970
T036	1157	138.47565	36.42370	1776	M023	4009	138.47105	36.40203	1941
T035	1164		36.42327	1779	M024	4013	138.47066	36.40158	1908
T034	1165		36.42277	1791	M025	4008	138.47169	36.40080	1896
T033	1159	138.47527	36.42227	1775	M026	4010	138.47242	36.40050	1891
		_							

Table 1. (Continue)


Station	logger	longitude(deg)	latitude(deg).	Altitudo(m)
M027	4004	138.47316	36.40043	1890
M028	4004	138.47321	36.39964	1879
M029	4011	138.47257	36.39915	1871
M030	4005		36.39915	1869
	4005	138.47257	36.39808	
M031		138.47187		1857
M032	4007	138.47166	36.39762	1851
M033	3002	138.47158	36.39740	1848
M034	3001	138.47146	36.39700	1843
M035	1051	138.47150	36.39633	1835
M036	3003	138.47150	36.39621	1834
M037	3006	138.47147	36.39554	1826
M038	3005	138.47193	36.39491	1816
M039	3009	138.47196	36.39459	1799
M040	3004	138.47099	36.39486	1791
M041	3007	138.46906	36.39574	1770
M042	3008	138.46828	36.39545	1763
M043	1049	138.46745	36.39530	1756
M044	1045	138.46737	36.39465	1744
M045	1046	138.46797	36.39442	1731
M046	1044	138.46866	36.39401	1723
M047	1043	138.46756	36.39331	1702
M048	1042	138.46714	36.39301	1675
M049	1047	138.46704	36.39249	1669
M050	1048	138.46688	36.39216	1656
M051	1052	138.46665	36.39173	1657
M052	1052	138.46650	36.39135	1653
M052	1139	138.46645	36.39034	1622
M054	1135	138.46553	36.39049	1607
M054 M055	1140	138.46626	36.38967	1602
	1145	138.46546	36.38931	1578
M056 M057	1136	138.46620	36.38868	1562
M057	1144	138.46526	36.38862	1554
				1534 1542
M059 M060	1141	138.46575 138.46540	36.38824 36.38770	1542
M061	1143 1137	138.46635	36.38771	1545 1559
M062	1138	138.46653	36.38724	1539
			36.38683	1528
M063	1070 1069	138.46647	36.38639	1525
M064		138.46643		
M065	1078	138.46637	36.38597	1515
M066	1065 1066	138.46605 138.46521	36.38511 36.38440	1506
M067			36.38511	1492
M068	1072	138.46521		1490
M069	1063	138.46410	36.38522	1483
M070	1067	138.46253	36.38487	1467
M071	1071	138.46291	36.38441	1475
M072	1064	138.46332	36.38402	1454
M073	1110	138.46273	36.38351	1444
M074	1112	138.46207	36.38356	1435
M075	1111	138.46206	36.38310	1439
M076	1107	138.46197	36.38260	1430
M077	2027	138.46190	36.38179	1423
M078	1108	138.46222	36.38139	1416
M079	1106	138.46254	36.38114	1420
M080	1105	138.46291	36.38068	1406
M081	1104	138.46310	36.38007	1405
M082	1103	138.46296	36.37965	1391
M083	1113	138.46259	36.37925	1389
M084	1118	138.46226	36.37851	1381
M085	1114	138.46256	36.37825	1364
M086	1120	138.46292	36.37797	1358
M087	1122	138.46413	36.37849	1361
M088	1116	138.46395	36.37812	1347
M089	1115	138.46376	36.37775	1336
M090	1121	138.46357	36.37738	1325

Station	logger	longitude(deg)	latitude(deg)	Altitude(m)
M091	1119	138.46339	36.37701	1314
M092	1117	138.46337	36.37670	1308
M093	1076	138.46324	36.37632	1296
M094	1075	138.46331	36.37560	1291
M095	1074	138.46305	36.37497	1283
M096	1073	138.46251	36.37423	1276
M097	3011	138.46207	36.37376	1262
M098	1077	138.46152	36.37322	1253

Table 2. Comparison of the new system LS 8200SD with the conventional system LS8000 SH (After Kurashimo *et al.*, 2006; Morita and Hamaguchi, 1996).

	LS8200SD	LS8000SH
A/D Resolution (bits)	24	16
Capacity (bytes)	128M	20M
Sampling frequencies (Hz)	125, 250, 500, 1000	1, 2, 5, 10, 20, 25, 40, 50, 100,
		200,250,500,1000
Maximum channels	1	4
Recommended sensors	GS11D (fo=4.5Hz)	None
Power supply	4 X UM·1 drycells	4 X UM-2 drycells
Weight (kg)	1.5kg (All included)	0.95kg+more

(a) LS8200SD system

(b) LS8000SH system

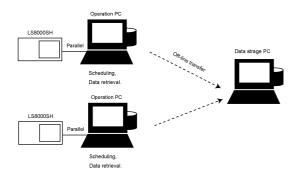


Fig. 4. A schematic illustration of preparation and programming operation upon the loggers. (a) A new system, LS8200SD (After Kurashimo *et al.*, 2006). Simultaneous operations upon multiple loggers are available. (b) A conventional system, LS 8000SH. Only single operations are available upon a logger.

3. 波形記録

各ショットに対して高密度測線上で得られた波形を,ショットS1 から順番に $Fig.5(a)\sim(e)$ として示す。各図において観測波形は高密度測線の北端に位置する観測点T100 からの距離の順に配列されている。 高密度測線上ではおおむね良好なS/N 比の観測記録が得られた。

Fig. 6 には高密度測線の中央に位置する発破 S3 から 得られた波形を、発破点 S3 を起点とした距離の順番に配列したものを示す。Fig. 6 (a) は測線北部を、Fig. 6 (b) は測線南部を示す。さらに、反射法解析に用いることを目的として Fig. 6 の記録の初動到来時刻を読み取った結果を Table 3 にその極性とともに示す。 Table 3 の u/d の欄は極性を示し、 u は上向き、 d は下向きの極性をあらわす。さらに Table 3 に示される初動到来時刻は±20ms 以内の精度のものを示し、厳密なランク分けを行わなかった。これは本観測の本来の目的である反射法解析では屈折初動の除去および静補正値の推定に初動到来時刻を用いるのみであるので、厳密なランク分けの必要がないからである。

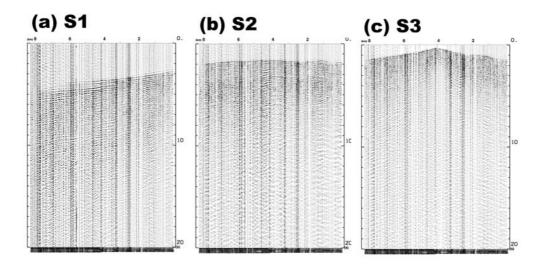

Table 3 のうち S3 に対する初動走時曲線を Fig. 7 に示す。Fig. 7 に示される初動走時曲線は発破点から 0.93 km 付近までは 1.96 km/s の見かけ速度を示し、さらに 2.18 km 地点までは 3.34 km/s, それ以遠では 3.77 km/s の見かけ速度を示している。また、 2.18 km 地点以遠では読み取り値の見かけ速度はほぼ同じであるが約 0.12 s の差を示す 2 つの群れに分裂していることが示されている。下側の早い走時を示す群れは高密度測線北部の観測点群に、遅い走時を示す群れは高密度測線南部の観測点群に相当する。

Fig. 8 (a), (b) はS3 に対する高密度測線全体のショットレコードにそれぞれ異なったフィルター処理を施したものを示している。 距離軸の原点は測線北端の T 100 観測点で、ショットポイント S3 は $4 \,\mathrm{km}$ 地点付近に相当する。 いずれの処理結果でも矢印で示されるように、 $1 \,\mathrm{km} \sim 3 \,\mathrm{km}$ の区間の 2.5 秒付近の走時に見かけ速度の大きい後続相が現れている。 これに対して測線南部の同じ震源距離領域に相当する $5 \sim 7 \,\mathrm{km}$ の区間では同様な特徴をともなう後続相を認めることができない。 これらのことから、高密度測線の北側と南側では異なった構造が期待され、(a) のように $2 \,\mathrm{Hz}$ LPF を施した方がより明瞭な後続相を得られる傾向があることがわかった。 このことから、火山構造探査の目的で用いる場合にはより低いほうに帯域をのばして取り扱う方が後続相の検出がしやすくなると考えられる。

これらのことから、今回行われた高密度観測は浅間火 山西方の地盤変動力源域の地下構造の解明に大いに役立 つと考えられる。

4 ≢とめ

・浅間火山西側で新しい観測システムを用いて人工地震 の高密度観測を行った。

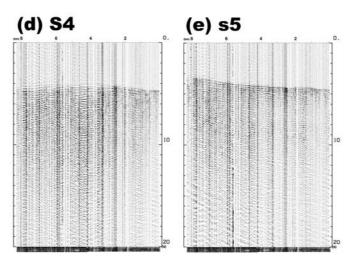


Fig. 5. Shot records with 20s length. (a) S1, (b) S2, (c) S3, (d) S4, (e) S5. Each traces are normalized with its maximum and variable area display is applied. Horizontal axis denotes distance from the northmost station, T100, in kilometers and vertical axis denotes travel time in seconds.

- ・高峰高原の北側と南側で後続相の様相が異なることが 50m 間隔の高密度データ取得で明らかになった。
- ・車坂峠北側 $1\sim3\,\mathrm{km}$ 地点の区間の往復走時 2 秒 ~3 秒 に見かけ速度の高い後続相が現れている.
- ・新しいシステムは準備・展開・回収の省力化に有効である.
- ・火山探査の目的で使用するのであれば、周波数特性を 低い側に伸ばすことが望ましい。

謝 辞

本研究観測にあたり平田 直教授(東京大学地震研究 所)にはLS8200SD システム 210 台ほかオペレーション に必要な機材の貸与をいただいた。観測前のデータロ ガー設定作業、およびその他全般にわたって浅間火山構 造探査(人工地震)グループの諸氏にはご協力をいただいた。ここに記して感謝の意を表します。また、本研究の費用の一部は東京大学地震研究所客員教員研究費を用いた。

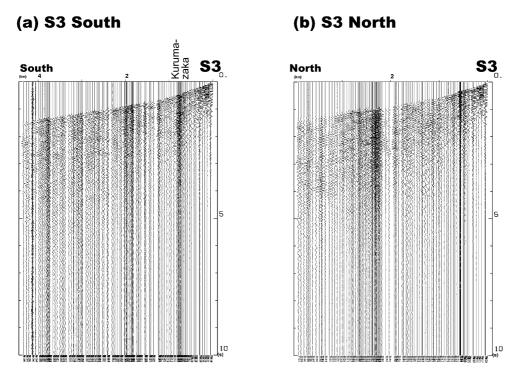


Fig. 6. Detailed shot records for the shot S3. (a) Southern portion, (b) Northern portion. Horizontal axis is shot distance in kilometer. Vertical axis is travel time in seconds.

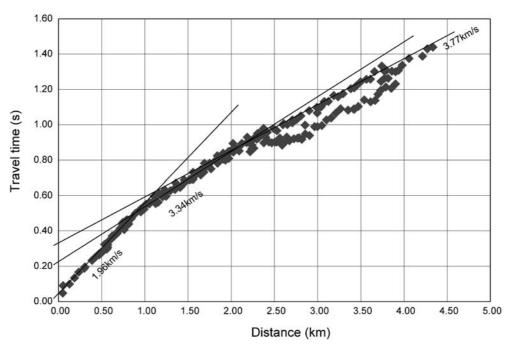


Fig. 7. Travel time curve of the first arrival for the shot S3 in Table 3. Horizontal axis is shot distance. Vertical axis is travel time in seconds. Trends are separated away in the farther part than the point 2.5 km.

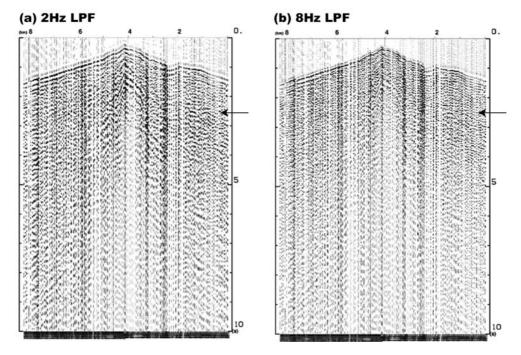


Fig. 8. Filtered shot records. (a) 2 Hz LPF, (b) 8 Hz LPF. (a) is preferable to detect later phases. Vertical axis is travel time in seconds. Horizontal axis denotes distance from the north-most station, T100, in kilometers. The shot records contain certain information of the seismic reflection structure in the pressure source region.

Table 3. First arrival times. All shots were carried on 13 Oct. 2006.

Ctation	S1 (s)	/ 1	S2 (s)	/1	S3 (s)	/1	S4 (s)	/ 1	S5 (s)	/1
Station	02:02	u/d	02:07	u/d	02:12	u/d	02:17	u/d	02:22	u/d
T 100	2.328	u	1.946	u	1.857	u	4.523	u	5.094	u
Т 099	2.364	u	1.953	u	1.832	u	4.512	u	5.034	u
T 098	2.409	u	1.947	u	1.840	u	4.383	u	5.044	u
Т 097	2.409	u	1.929	u	1.820	u	4.501	u	4.999	u
Т 096	2.364	u	1.943	u	1.798	u	4.462	u	5.019	u
Т 095	2.458	u	1.938	u	1.764	u	4.387	u	5.003	u
Т 094	2.456	u	1.922	u	1.756	u	4.456	u	4.994	u
Т 093	2.643	u	1.954	u	1.767	u	4.408	u	4.954	u
Т 092	2.550	u	1.940	u	1.730	u	4.427	u	4.973	u
Т 091	2.679	u	1.954	u	1.715	u	4.502	u	4.999	u
Т 090	2.693	u	1.895	u	1.715	u	4.498	u	4.982	u
Т 089	2.621	u	1.907	u	1.709	u	4.498	u	4.928	u
T 088	2.717	u	1.900	u	1.717	u	4.435	u	4.902	u
Т 087	2.727	u	1.897	u	1.692	u	4.475	u	4.924	u
Т 086	2.750	u	1.857	u	1.664	u	4.323	u	4.924	u
T 085	2.637	u	1.836	u	1.653	u	4.345	u	4.916	u
T 084	2.629	u	1.842	u	1.622	u	4.322	u	4.888	u
Т 083	2.596	u	1.823	u	1.615	u	4.344	u	4.851	u
T 082	2.786	u	1.826	u	1.615	u	4.253	u	4.821	u
T 081	2.814	u	1.816	u	1.565	u	4.281	u	4.810	u
T 080	2.811	u	1.803	u	1.574	u	4.172	u	4.807	u
Т 079	2.731	u	1.803	u	1.543	u	4.203	u	4.804	u
T 078	2.673	u	1.798	u	1.552	u	4.223	u	4.841	u
T 077	2.676	u	1.803	u	1.550	u	4.221	u	4.838	u
T 076	2.675	u	1.794	u	1.547	u	4.177	u	4.832	u
T 075	2.767	u	1.784	u	1.536	u	4.252	u	4.812	u
T 074	2.758	u	1.812	u	1.545	u	4.210	u	4.797	u
Т 073	2.739	u	1.779	u	1.556	u	4.216	u	4.819	u
T 072	2.923	u	1.805	u	1.526	u	4.179	u	4.831	u
T 071	2.679	u	1.899	u	1.510	u	4.197	u	4.752	u
T 070	2.811	u	1.826	u	1.551	u	4.216	u	4.866	u
Т 069	2.972	u	1.802	u	1.528	u	4.191	u	4.849	u
T 068	2.778	u	1.786	u	1.528	u	4.118	u	4.854	u
Т 067	2.988	u	1.843	u	1.524	u	4.180	u	4.861	u
T 066	2.995	u	1.797	u	1.529	u	4.113	u	4.865	u
Т 065	3.024	u	1.834	u	1.524	u	4.372	u	4.847	u
T 064	_	X	_	X	_	X	_	X	_	X
T 063	3.029	u	1.831	u	1.493	u	4.110	u	4.851	u
T 062	3.058	u	1.808	u	1.473	u	4.391	u	4.828	u
T 061	3.054	u	1.848	u	1.491	u	4.402	u	4.833	u
Т 060	3.083	u	1.911	u	1.544	u	4.302	u	4.817	u
T 059	3.114	u	1.886	u	1.511	u	4.211	u	4.911	u
T 058	3.085	u	1.947	u	1.551	u	4.408	u	4.900	u
T 057	3.116	u	1.956	u	1.563	u	4.196	u	4.919	u
T 056	3.136	u	1.975	u	1.568	u	4.052	u	4.907	u
T 055	3.157	u	2.012	u	1.605	u	4.035	u	4.954	u
T 054	3.090	u	2.010	u	1.552	u	4.007	u	4.932	u
T 053	3.098	u	2.023	u	1.584	u	3.932	u	4.914	u
T 052	3.164	u	2.016	u	1.577	u	4.005	u	4.907	u
T 051	3.211	u	2.037	u	1.576	u	3.986	u	4.916	u
T 050	3.022	u	2.060	u	1.578	u	3.943	u	4.933	u
T 049	3.066	u	2.042	u	1.550	u	3.997	u	4.883	u
T 048	3.239	u	2.010	u	1.555	u	4.139	u	4.913	u
1 010	0.200	ч	2.010	и	1.000	u	1.100	ч	1.010	u

Table 3. (Continue)

CL	S1 (s)	/1	S2 (s)	/1	S3 (s)	/1	S4 (s)	/1	S5 (s)	/1
Station	02:02	u/d	02:07	u/d	02:12	u/d	02:17	u/d	02:22	u/d
T 047	3.232	u	1.994	u	1.507	u	4.039	u	4.907	u
T 046	3.224	u	1.950	u	1.497	u	4.022	u	4.899	u
T 045	3.217	u	1.923	u	1.425	u	4.090	u	4.878	u
T 044	3.219	u	1.908	u	1.431	u	4.031	u	4.877	u
T 043	3.327	u	1.938	u	1.433	u	3.964	u	4.893	u
T 042	3.237	u	1.892	u	1.408	u	4.045	u	4.870	u
T 041	3.252	u	1.901	u	1.376	u	3.989	u	4.843	u
T 040	3.332	u	1.891	u	1.396	u	4.038	u	4.787	u
T 039	3.337	u	1.868	u	1.358	u	4.033	u	4.794	u
T 038	3.281	u	1.868	u	1.341	u	3.990	u	4.812	u
T 037	3.356	u	1.884	u	1.349	u	3.997	u	4.813	u
T 036	3.299	u	1.881	u	1.317	u	3.975	u	4.689	u
T 035	3.358	u	1.899	u	1.315	u	3.981	u	4.821	u
T 034	3.388	u	1.877	u	1.314	u	3.961	u	4.822	u
T 033	3.336	u	1.885	u	1.273	u	3.975	u	4.809	u
T 032	3.365	u	1.902	u	1.261	u	3.981	u	4.794	u
T 031	3.383	u	1.890	u	1.274	u	3.950	u	4.616	u
T 030	3.410	u	1.887	u	1.254	u	3.904	u	4.807	u
T 029	3.398	u	1.845	u	1.223	u	3.954	u	4.777	u
T 028	3.420	u	1.785	u	1.219	u	4.106	u	4.794	u
T 027	3.412	u	1.863	u	1.189	u	3.964	u	4.756	u
T 026	3.396	u	1.850	u	1.181	u	3.983	u	4.778	u
T 025	3.393	u	1.873	u	1.203	u	3.948	u	4.777	u
T 023	3.405	u	1.845	u	1.185	u	4.016	u	4.771	u
T 024	3.436	u	1.880	u	1.177	u	3.946	u	4.702	u
T 023	3.412	u	1.839	u	1.149	u	4.112	u	4.711	u
T 022	3.430	u	1.859	u	1.143	u	3.942	u	4.674	u
T 021	3.414	u	1.829	u	-	X	4.227	u	-	
T 019	3.414		1.812	u U	1.097	u	3.942	u u	4.630	X
T 019	3.413	u	1.784		1.066		$\frac{3.942}{4.254}$		-	u
T 013	3.413 3.406	u	1.784	u	1.034	u	4.234	u	4.615	X
T 017	3.423	u	1.792	u	1.034 1.041	u	4.096	u	4.613	u
T 016	3.423 3.447	u	1.792	u	1.041	u	4.096 4.058	u	4.098 4.591	u
T 013	3.431	u		u	1.028	u	4.038 4.067	u		u
		u	1.781	u		u		u	4.570	u
T 013	3.445 -	u	1.790 -	u	0.992	u	4.067 -	u	4.643	u
T 012 T 011	3.465	X		X		X		X		X
		u	1.785	u	0.970	u	4.060	u	4.659	u
T 010	3.463	u	1.781	u	0.949	u	4.058	u	4.521	u
T 009	3.472	u	1.782	u	0.948	u	4.141	u	4.559	u
T 008	3.475	u	1.793	u	0.943	u	4.144	u	4.554	u
T 007	3.488	u	1.794	u	0.934	u	4.168	u	4.626	u
T 006	3.486	u	1.784	u	0.925	u	4.163	u	4.621	u
T 005	3.497	u	1.792	u	0.926	u	4.145	u	4.620	u
T 004	3.479	u	1.782	u	0.924	u	4.115	u	4.492	u
T 003	3.501	u	1.802	u	0.906	u	4.163	u	4.605	u
T 002	3.429	u	1.799	u	0.891	u	4.087	u	4.593	u
T 001	3.530	u	1.789	u	0.897	u	4.277	u	4.610	u
TM 09	3.416	u	1.627	u	0.674	u	4.259	u	4.536	u
TM 08	3.427	u	1.664	u	0.717	u	4.199	u	4.304	u
TM 07	3.449	u	1.680	u	0.725	u	4.296	u	4.261	u
TM 06	3.461	u	1.716	u	0.760	u	4.281	u	4.275	u
TM 05	3.458	u	1.725	u	0.793	u	4.023	u	4.324	u
TM 04	3.473	u	1.741	u	0.815	u	4.177	u	4.576	u

Table 3. (Continue)

Cuattan	S1 (s)	/ 1	S2 (s)	/ 1	S3 (s)	/ 1	S4 (s)	/1	S5 (s)	/ 1
Station	02:02	u/d	02:07	u/d	02:12	u/d	02:17	u/d	02:22	u/d
TM 03	3.491	u	1.747	u	0.822	u	4.273	u	4.732	u
TM 02	3.497	u	1.761	u	0.859	u	4.219	u	4.506	u
TM 01	3.520	u	1.773	u	0.877	u	4.244	u	4.593	u
TM 00	3.526	u	1.779	u	0.905	u	4.157	u	4.586	u
M 001	3.547	u	1.784	u	0.950	u	4.275	u	4.608	u
M 002	3.535	u	1.798	u	0.968	u	4.176	u	4.611	u
M 003	3.549	u	1.831	u	0.998	u	3.805	u	4.278	u
M 004	3.562	u	1.819	u	1.006	u	3.800	u	4.351	u
M 005	3.578	u	1.819	u	1.022	u	3.800	u	4.419	u
M 006	3.541	u	1.825	u	1.036	u	3.819	u	4.347	u
M 007	3.534	u	1.844	u	1.075	u	3.807	u	4.465	u
M 008	3.560	u	1.820	u	1.051	u	3.831	u	4.311	u
M 009	3.551	u	1.826	u	1.088	u	3.986	u	4.459	u
M 010	3.546	u	1.789	u	1.081	u	3.816	u	4.297	u
M 011	3.541	u	1.777	u	1.065	u	3.819	u	4.299	u
M 012	3.551	u	1.772	u	1.063	u	3.819	u	4.343	u
M 013	3.425	u	1.769	u	1.069	u	4.000	u	4.386	u
M 014	3.243	u	1.768	u	1.088	u	3.927	u	4.222	u
M 015	3.524	u	1.811	u	1.091	u	3.918	u	4.269	u
M 016	3.524	u	1.794	u	1.125	u	4.117	u	4.204	u
M 017	3.567	u	1.796	u	1.134	u	4.269	u	4.436	u
M 018	3.476	u	1.816	u	1.170	u	4.012	u	4.372	u
M 019	3.501	u	1.804	u	1.179	u	3.992	u	4.353	u
M 020	3.579	u	1.836	u	1.223	u	3.982	u	4.510	u
M 021	3.592	u	1.842	u	1.237	u	4.004	u	4.512	u
M 022	3.411	u	1.876	u	1.257	u	3.974	u	4.521	u
M 023	3.554	u	1.837	u	1.248	u	3.933	u	4.454	u
M 024	3.548	u	1.826	u	1.243	u	3.938	u	4.418	u
M 025	3.585	u	1.834	u	1.296	u	3.953	u	4.434	u
M 026	3.568	u	1.839	u	1.277	u	3.939	u	4.412	u
M 027	3.577	u	1.860	u	1.297	u	3.904	u	4.379	u
M 028	3.588	u	1.866	u	1.319	u	3.877	u	4.374	u
M 029	3.611	u	1.882	u	1.326	u	3.965	u	4.407	u
M 030	3.641	u	1.879	u	1.357	u	4.077	u	4.408	u
M 031	3.627	u	1.881	u	1.372	u	4.077	u	4.377	u
M 031	-	X	1.943	u	1.408	u	_	X	4.428	u
M 033	3.577	u	1.883	u	1.387	u	3.966	u	4.388	u
M 034	3.503	u	1.898	u	1.408	u	3.988	u	4.299	u
M 035	3.674	u	1.925	u	1.425	u	4.113	u	4.187	u
M 036	3.645	u	1.898	u	1.429	u	3.992	u	4.318	u
M 037	3.647	u	1.928	u	1.465	u	3.939	u	4.298	u
M 038	3.677	u	1.919	u	1.475	u	4.015	u	4.286	u
M 039	3.693	u	1.982	u	1.520	u	4.036	u	4.342	u
M 040	3.675		1.940		1.475		4.023		4.232	
M 040 M 041	3.750	u	1.888	u	1.475 1.451	u	$\frac{4.023}{4.084}$	u u	4.232	u
M 041 M 042	3.783	u	1.872	u	1.431 1.442	u	4.034		4.228	u
M 042 M 043	3.753	u	1.854	u	1.442	u u	4.079	u	4.226	u
M 043 M 044	3.688	u	1.854 1.857	u	1.433 1.460		4.079	u	4.216	u
M 044 M 045	3.758	u	1.837	u	1.480 1.435	u	3.987	u		u
		u	1.897	u		u		u	4.158	u
M 046	3.641	u		u	1.471	u	4.039	u	4.157	u
M 047	3.762	u	1.849	u	1.478	u	3.988	u	4.041	u
M 048	3.726	u	1.883	u	1.520	u	4.043	u	4.114	u
M 049	3.668	u	1.878	u	1.525	u	4.037	u	4.224	u

Table 3. (Continue)

					`					
G:	S1 (s)	/ 1	S2 (s)	/ 1	S3 (s)	/ 1	S4 (s)	/ 1	S5 (s)	/ 1
Station	02:02	u/d	02:07	u/d	02:12	u/d	02:17	u/d	02:22	u/d
M 050	3.769	u	1.892	u	1.520	u	4.049	u	4.224	u
M 051	3.823	u	1.886	u	1.546	u	4.122	u	4.180	u
M 052	3.795	u	1.902	u	1.576	u	4.115	u	4.156	u
M 053	3.433	u	1.907	u	1.584	u	4.059	u	3.986	u
M 054	3.787	u	1.883	u	1.554	u	4.114	u	3.963	u
M 055	3.619	u	1.922	u	1.604	u	4.065	u	3.956	u
M 056	3.820	u	1.886	u	1.592	u	4.094	u	4.039	u
M 057	3.777	u	1.861	u	1.626	u	4.106	u	3.960	u
M 058	3.787	u	1.898	u	1.633	u	4.124	u	3.933	u
M 059	3.782	u	1.920	u	1.627	u	4.084	u	3.954	u
M 060	3.702 3.724	u	1.932	u	1.653	u U	4.114	u	3.960	
M 060 M 061	3.650		1.932		1.637		4.104		3.947	u
M 061 M 062	3.588	u	$\frac{1.932}{1.927}$	u	1.657	u	4.104	u	3.955	u
M 062 M 063	3.864	u	1.962	u	1.676	u		u	3.902	u
		u		u		u	4.162	u		u
M 064	4.164	u	1.911	u	1.624	u	4.122	u	3.866	u
M 065	3.184	u	1.979	u	1.706	u	4.063	u	3.775	u
M 066	3.916	u	1.982	u	1.693	u	3.999	u	3.969	u
M 067	4.405	u	2.012	u	1.757	u	4.024	u	3.978	u
M 068	4.077	u	1.970	u	1.721	u	3.982	u	3.962	u
M 069	3.886	u	1.952	u	1.724	u	4.065	u	3.945	u
M 070	4.172	u	1.917	u	1.727	u	4.103	u	3.916	u
M 071	4.076	u	1.922	u	1.755	u	4.086	u	3.897	u
M 072	4.012	u	1.959	u	1.758	u	3.959	u	3.789	u
M 073	3.961	u	1.928	u	1.792	u	4.245	u	3.791	u
M 074	3.949	u	1.946	u	1.791	u	4.231	u	3.886	u
M 075	3.896	u	1.951	u	1.784	u	4.228	u	3.742	u
M 076	4.137	u	1.943	u	1.802	u	4.185	u	3.825	u
M 077	4.132	u	1.949	u	1.830	u	4.120	u	3.687	u
M 078	4.147	u	1.957	u	1.835	u	4.250	u	3.830	u
M 079	3.990	u	1.964	u	1.847	u	4.187	u	3.823	u
M 080	4.378	u	1.985	u	1.869	u	4.226	u	3.824	u
M 081	4.036	u	2.022	u	1.883	u	4.212	u	3.788	u
M 082	4.222	u	2.021	u	1.885	u	4.015	u	3.759	u
M 083	4.077	u	1.964	u	1.927	u	4.293	u	3.754	u
M 084	4.113	u	1.929	u	1.959	u	4.248	u	3.745	u
M 085	4.345	u	1.977	u	1.931	u	4.181	u	3.729	u
M 086	4.285	u	2.005	u	1.935	u	4.028	u	3.719	u
M 087	4.349	u	2.084	u	1.872	u	4.199	u	3.721	u
M 088	4.374	u	2.131	u	1.890	u	4.175	u	3.702	u
M 089	4.212	u	2.088	u	1.889	u	4.214	u	3.676	u
M 090	-		2.150	u	1.929		-	u	3.666	
M 090 M 091	4.073	x u	2.130 2.115	u u	1.929	u u	4.138	u U	3.674	u u
M 091 M 092	4.073		2.113		1.920		4.138		3.686	
M 092 M 093	_	X	2.113 2.097	u	1.963	u	4.246	u	3.663	u
M 093 M 094	_	X		u	2.001	u	4.4 32	u		u
		X	2.277	u		u	_	X	3.663	u
M 095	- 4 166	X	2 200	X	- 9.014	X	- 4 220	X	3.701	u
M 096	4.166	u	2.308	u	2.014	u	4.338	u	3.612	u
M 097	4.484	u	2.150	u	2.056	u	4.354	u	3.595	u
M 098	4.481	u	2.284	u	2.066	u	4.218	u	3.557	u

参考文献

- 青木陽介・渡辺秀文・小山悦郎・及川 純・森田裕一, 2005, 2004-2005 年浅間山火山活動にともなう地殻変動, 火山, 50. 575-584.
- 青木陽介・他 58 名, 2008, 浅間山における人工地震探査: 探査 の概要と初動の走時について, 地震研究所彙報, 83, 1-26.
- 井口正人・他 40 名, 2005, 口永良部島における人工地震探査― 探査の概要と初勤の走時について―, 地震研究所彙報, 80, 11-40.
- 鍵山恒臣・他69名,1995,霧島火山群における人工地震探査— 観測および初動の読みとり、地震研究所彙報、70,33-60.
- 霧島火山群人工地震研究グループ, 1997, 1996 年霧島火山群弾性波反射法探査, 地球惑星関連学会 1997 年合同大会 (名古屋大学) 講演予稿集, F21-12.
- 霧島火山群人工地震研究グループ, 1997, 霧島 1996 火山人工地 震探査 (その1実験の概要), 地球惑星関連学会 1997 年合 同大会 (名古屋大学) 講演予稿集, I31-P43s.
- 気象庁、2005、日本活火山総覧(第3版)、気象庁編、635pp. 蔵下英司・平田 直・森田裕一・結城 昇、2006、高機能小型 オフラインデータロガーを用いた高密度地震観測システム、地震、59、107-116.
- 松島 健・他82名,1997,雲仙火山における人工地震探査―観 測および初動の読みとり―、地震研究所彙報、72,167-183. 三ヶ田均、1996、霧島火山群構造探査データの反射法処理、火 山、41,159-170.
- 森田裕一・浜口博之, 1996, 火山体構造探査のための高精度小型データロガーの開発, 火山, 41, 127-139.
- 村上 亮, 2005, GPS 連続観測結果が示唆する浅間火山のマグマ供給系、火山, 50, 347-362.
- Murase, M., Ono, K., Ito, T., Miyajima, R., Mori, H., Aoyama, H., Oshima, H., Yoshida, Y., Terada, A., Koyama, E., Takeda, T., Watanabe, H., Kimata, F. and Fujii, N., 2007, Time-dependent model for volume changes in pressure sources at Asama volcano, central Japan due to vertical deformations detected by precise leveling during 1902–2005, *J. Volcanol. Geotherm. Res.*, 164, 54–75.
- 西 潔, 1997, 構造探査データを用いた霧島火山体浅部の 3D 速度構造,火山,42,165-170.
- 小川康雄・浅間山電磁気構造探査グループ、2006、浅間火山の ダイク 貫入 域 における MT 観 測、CONDUCTIVITY ANOMALY 研究会 2006 年論文集、81-84.
- Onizawa, S., Oshima, H., Aoyama, H., Mori, Y., H., Maekawa, T., Suzuki, A., Tsutsui, T., Matsuwo, N., Oikawa, J., Ohminato, T., Yamamoto, K., Mori, T., Taira, T., Miya-

- machi, H. and Okada., H., 2007, P-wave velocity structure of Usu volcano: Implication of structural controls on magma movements and eruption locations, *J. Volcanol. Geotherm. Res.*, **160**, 175–194.
- 鬼澤真也・他 57 名, 2003, 有珠火山における人工地震探査 ― 観測および初動の読み取り―, 地震研究所彙報, 78, 121-143.
- 須藤靖明・他89名,2003,阿蘇火山における人工地震探査―観 測及び初動の読みとり―,地震研究所彙報、77,303-336.
- 田中 聡・他 69 名, 2002, 岩手山における人工地震探査 観測 および初動の読み取り、地震研究所彙報、77, 1-25.
- Tanaka, S., Hamaguchi, H., Nishimura, T., Yamawaki, T., Ueki, S., Nakamichi, H., Tsutsui, T., Miyamachi, H., Matsuwo, N., Oikawa, J., Ohminato, T., Miyaoka, K., Onizawa, S., Mori, T. and Aizawa, K, 2002, Threedimensional P-wave velocity structure of Iwate volcano, Japan from active seismic survey, *Geophys. Res.* Lett., 29 (10), 10.1029/2002GL014983.
- 田中 聡・浜口博之, 2001, 岩手山構造探査から得られた3次 元速度構造による震源再決定, 日本火山学会講演予稿集, 2001年度秋季大会, B33.
- 筒井智樹・須藤靖明・森 健彦・勝俣 啓・田中 聡・及川 純・戸松稔貴・松尾のり道・松島 健・宮町宏樹・西 潔・藤原善明・平松秀行, 2003, 阿蘇火山中央火口丘山体 の三次元地震波速度構造,火山,48,293-307.
- Tsutsui, T. and Sudo, Y., 2004, Seismic reflectors beneath the central cones of Aso Volcano, Kyushu, Japan, *J. Volcanol. Geotherm. Res.*, 131, 33–58.
- 筒井智樹・及川 純・鍵山恒臣・富士火山人工地震構造探査グループ、2007、人工地震で見た富士火山の内部構造、物理探査、60、131-144.
- Yamawaki, T., Tanaka, S., Ueki, S., Hamaguchi, H., Nakamichi, H., Nishimura, T., Oikawa, J., Tsutsui, T., Nishi, K., Shimizu, H., *et al.*, 2004, Three-dimensional P-wave velocity structure of Bandai volcano in northeastern Japan inferred from active seismic survey, *J. Volcanol. Geotherm. Res.*, 138, 267–282.
- 山本眞紀・武尾 実・大湊隆雄・及川 純・青木陽介・植田寛子・中村 祥・辻 浩・小山悦郎・長田 昇・卜部卓,2005,2004年浅間山噴火に先行する特異な長周期地震活動,火山,50,393-400.

(Received January 7, 2008) (Accepted March 17, 2008)