定常観測網から得られた首都直下の三次元地震波速度構造

松原 誠*・小原一成 (独)防災科学技術研究所

Three-dimensional Seismic Velocity Structure Beneath the Tokyo Metropolitan Area Obtained by a Routine Seismic Observation Network

Makoto Matsubara* and Kazushige Obara

National Research Institute for Earth Science and Disaster Prevention

Abstract

Many researchers have studied the three-dimensinal seismic velocity structure beneath the Kanto region, central Japan using seismic tomography, because the structure is very complicated due to subducting of the Pacific and the Philippine Sea plates beneath the Eurasian plate. The Tokyo metropolitan area is located in the Kanto region. Initially, the subducting Pacific and Philippine Sea plates are imaged with high-velocity zones. With many data, the oceanic crust at the uppermost part of the subducting Philippine Sea plate was imaged clearly. After construction of the NIED Hi-net, the oceanic ocrust of the Pacific plate subducting to depths over 100 km was also imaged. A large low-velocity region at depths of 30-50 km beneath the central Kanto region in the east-west direction was found by many researchers. The reason for the low-velocity is considered to be the existence of a serpentinied mantle wedge, curling Eurasian crust, and thick oceanic crust of the Philippine Sea plate. A low-velocity zone at depths of 40-70 km beneath the eastern Kanto region with north-south direction was also found. The reason for this low-velocity is considered to be the existence of serpentinied mantle wedge and curling Philippine Sea plate. A high-density seismograph network, called MeSO-net, is under construction in this metropolitan region. The results with these data are expected to reveal a more detailed structure beneath the metropolitan area. We review former studies on the velocity structures beneath the Kanto region and note some characteristic structures beneath the Kanto region with results along arrays of MeSO-net.

Key words: seismic tomography, low-velocity oceanic crust, serpentinized mantle wedge, NIED Hi-net, MeSO-net

1. はじめに

関東地域の下では、ユーラシアプレートの下に東から 太平洋プレートが、南からフィリピン海プレートが沈み 込んでいる.これらのプレート境界や、プレート内部な どにおいて、首都圏周辺では多くの被害地震が発生して いる(例えば、地震調査研究推進本部地震調査委員会、 2004).このような複雑な地下構造を推定し、地震発生場 の全体像を把握するため、2007年度から、首都圏地震観 測網(以下, MeSO-net)の構築が進められている(例え ば,平田・他, 2009;笠原・他, 2009).防災科学技術研 究所(以下,防災科研)は, 1979年から関東東海観測網 (以下, KT-net)を構築し,微小地震観測網を運用して きた(例えば,浜田・他, 1982; Okada *et al.*, 2004).ま た,兵庫県南部地震以降,高感度地震観測網(以下, Hinet)を構築し,日本全国において地動の連続観測を行っ ている(例えば, Obara *et al.*, 2005; 汐見・他, 2009).

^{*}e-mail: mkmatsu@bosai.go.jp (〒305-0006 茨城県つくば市天王台 3-1)

Hi-net のデータは即時に気象庁にも伝送され,緊急地震 速報などにも活用されているほか,気象庁一元化震源を 決める際にも用いられている.これらのデータを用いて, 数多くの研究者により,地震トモグラフィー解析が行わ れ,関東地域の下の三次元地震波速度構造モデルが提唱 されてきた.MeSO-netでは,さらに 400 点の観測点が 設置され,さらに詳細な速度構造が得られると期待され ている.本小論では,これまでの関東地域の地震波速度 構造の研究成果についてのレビューを行い,MeSO-net のアレイの鉛直断面 (Fig. 1) について Matsubara *et al.* (2005)により得られた結果を述べる.

2. 関東地域の特徴的な速度構造

関東地域の三次元地震波速度構造の推定は、様々な研

究者により行われている(例えば, Ishida, 1992; Matsubara *et al.*, 2005). 各研究結果における分解能やデータ数などを Table 1 に示す. 2001 年までは,防災科研 KTnet のデータを用いて解析が行われてきた(Ishida, 1992; Ohmi and Hurukawa, 1996; Kamiya and Kobayashi, 2000; Sekiguchi, 2001; Kamiya and Kobayashi, 2007). その後は,防災科研 Hi-net による検測値(Matsubara *et al.*, 2005) や気象庁一元化震源カタログの検測値(Wu *et al.*, 2007; 弘瀬・他, 2008) や東北大学における検測値(Nakajima *et al.*, 2009) などを用いた解析も行われている. Ishida (1992) により, 沈み込むフィリピン海プレートや太平洋プレートが高速度領域としてイメージングされ, プレート上面境界が推定された. また, 伊豆弧付近の下に火山フロントに沿って伸びる低速度領域も見出さ

Fig. 1. Distribution of seismic stations. Crosses, triangles, and circles denote the stations of MeSO-net, NIED Hi-net, and the other organizations, respectively. Grey lines show the location of the cross sections in Figs. 2-4.

れている.その後,Ohmi and Hurukawa (1996)によ り関東中部に東西に伸びる低速度領域や関東東部に南北 に伸びる低速度領域が見出され,その後の研究において もいろいろな解釈がなされている.これらの点について の各研究における解釈を下記に述べる.

2.1 沈み込む太平洋・フィリピン海プレート

Ishida (1992) による防災科研 KT-net のデータを用 いた P 波速度構造の解析により, 沈み込む太平洋プレー トとフィリピン海プレートが高速度領域として推定され, それぞれのプレート上面境界が推定された. 深さ方向の 分解能は約 30 km である (Table 1). 太平洋プレートは 北緯 36 度付近で緩やかに凸に湾曲している構造が推定 され, フィリピン海プレートは相模トラフ側では北東傾 斜で沈み込んでいるが, 沈み込んだ先では凹の形状にな り太平洋プレートの上に載る状態になり, 関東北東部に おいては北两傾斜で沈み込んでいる形状が推定された.

Ohmi and Hurukawa (1996) は, 同様に防災科研 KT-net のデータを用いて P 波速度構造について高分解 能な解析を行い (Table 1), 沈み込む太平洋プレートや フィリピン海プレートの最上部に低速度領域を見出し, 低速度海洋性地殻と解釈した (2.2, 2.3 参照).

Sekiguchi (2001) は防災科研 KT-net のデータを用 いて、 P 波・S 波速度構造についてさらに高分解能な構 造を得た (Table 1). 沈み込むフィリピン海プレートが 高速度領域としてイメージされ、高速度領域の上側に厚 さ10 km 程度の低速度領域が深さ80 km 程度まで存在 することを見出し、この低速度層は沈み込むプレート最 上部の海洋性地殻と解釈した.水平断面図では,伊豆半 島北西部に存在する低速度領域のためフィリピン海プ レートの沈み込みが明瞭ではないが、鉛直断面では高速 度領域が深さ70~80 km まで連続的に存在することか ら、フィリピン海プレートは火山フロントを越えて非地 震性スラブとして東海地域へ連続的に存在していると結 論付けた.一方,太平洋プレートについては,関東地域 の東部において海洋性地殻もイメージングされ、東経 140.3°付近では厚さ10km以上に及ぶ結果が得られた. フィリピン海プレートを巻き込んでいるために厚く見え る可能性や鉱物的な組成による可能性を指摘している (2.3 参照).

Matsubara *et al.* (2005) は防災科研 Hi-net のデータ を用いて P 波・S 波速度構造の解析をグリッドインバー ジョン (Matsubara *et al.*, 2004, 2005) により行った (Table 1). 沈み込むフィリピン海・太平洋プレート上 面の低速度海洋性地殻を明瞭にイメージングした.フィ リピン海プレートは,最上部の海洋性地殻は低速度領域

として深さ80km程度まで、マントル部は高速度域とし て深さ 100 km 程度まで明瞭にイメージングされ,深さ 100 km 付近で太平洋プレートと接触する様子がイメー ジングされている.この結果は,Sekiguchi (2001) と調 和的である.フィリピン海プレート上面境界については, 低速度層や地震活動などから、Ishida(1992)と比較し て5km 程度浅く推定している.太平洋プレートの低速 度海洋性地殻は深さ120km付近まで連続的に明瞭にイ メージングされている. 領域を日本全国に広げた Matsubara et al. (2008) では, 深さ 150 km 程度まで低速度海 洋性地殻がイメージングされている. このことは,太平 洋プレートの海洋性地殻の斑糲岩からエクロジャイトへ の変成が深くまで生じていないことを表していると考え ている.フィリピン海プレートの沈み込みにより太平洋 プレート上面の温度上昇速度が一般的な沈み込み帯より も遅くなることがシミュレーションにより指摘されてお り (Iwamori, 2000), この結果はそれを示唆するものと 結論付けた.このことは、後に、Hasegawa et al. (2007) によっても同様な結果が得られている.

Wu et al. (2006) は気象庁一元化震源のデータを用い て、P波速度構造の解析を行い(Table 1),フィリピン 海プレートを+5%程度の高速度でイメージングした. フィリピン海プレートは深さ 110~120 km において太平 洋プレートと接触している. 伊豆弧付近では地震活動が 低くなり、東海地域に及ぶと再び活発な地震活動を伴っ て沈み込む様子を捉えた. 伊豆弧の下においても高速度 領域が見られるため、火山フロントの存在を考慮すると 高温のため地震活動は低く, aseismic なスラブが沈み込 んでいると考えている. 関東地域東部においては深さ 50-70 km 付近の浅いところで太平洋プレートと接触し、地 震活動も活発になっていることを指摘している.太平洋 プレートの存在により沈み込みが制約され変形が大きく なり、さらに、冷たい太平洋プレートとの接触により フィリピン海プレートのマントルウェッジが低温にな り,一層地震活動が高められていると考えている.一方, 太平洋プレートは+1%程度の高速度でイメージングさ れた.

Shelly *et al.* (2006) は茨城県中部から福島県にかけて の領域の P 波・S 波速度構造を Double-differnce トモ グラフィー法 (Zhang and Thurber, 2006) により推定 している (Table 1). 沈み込む高速度な太平洋プレート と,その最上部に位置する低速度・高 Vp/Vs の海洋性 地殻をイメージングしており, Matsubara *et al.* (2005) と調和的である. 深さ 50~70 km においては沈み込む海 洋性地殻の Vp/Vs は 1.95 程度であるが,深さ 70 km 以

First	Year	Range		Number	Numbe	r of data	Number	Resolusion		Manually	Inversion	Method
author	longitude	latitude	depth	of event	Р	s	of station longitude	e latitude	depth	picked system	style	of inversion
nida	1992 137-141	34-38	0-212	244	8692	0	66 0.25°	0.25°	30km	KT-net	block	Aki and Lee (1976)
hmi	1996 138.8-140.8	35-37	0-110	3,038	40763	0	41 4km	4km	4-10km	KT-net	block	Lees and Crosson (1989)
amiya	2000 136.8-141	33-37	0-600	12,489	282,000	90,276	0.1°	0.1°	8-10km	KT-net	grid	Hirahara (1988)
skiguchi	2001 136-141	34-37	0-400	15,139	560,322	510,116	128 0.05°	0.05°	5-10km	KT-net	block	Paige and Saunders (1982)
atsubar	2005 138.6-141	34-37	0-200	15,214	422,799	369,596	129 0.1°	0.1°	5-10km	Hi-net	grid	Matsubara et al. (2004,2005
'n	2006 137-141	34-38	0-200	ł	1	1	25km	25km	10km	JMA	grid	Benz et al. (1996)
helly	2006 139.5-141.75	36-37.5	0-160	3,513 4	$42.000^{*1}/2.070.000^{*1,*2}$	$45.000^{*1}/2.330.000^{*1,*2}$	60 30km	30km	15km	JMA	grid	Zhang and Thurber (2006)
amiya	2007 136.8-141.3	32.8-37.3	0-450	18,805	413,803	200,575	$106 0.1^{\circ}$	0.1°	8-10km	KT-net	grid	Hirahara (1988)
irose	2008 137-141	34-38	0-212	20,667	436.380/4.098.424*2	$400.603/3.784.559^{*2}$	179 10-15km	30-40km	5-20km	JMA	grid	Zhang and Thurber (2006)
akajima	2009 136-142	34-38	0-380	6,508	735,520	444,049	637 0.15-0.2°	$0.15-0.2^{\circ}$	20km	Tohoku Univ.	grid	Zhao et al. (1992)

深では 1.85 程度になり, その値の低下は流体の解放によ るものと推定している. その上側には高 Vp/Vs 領域が 存在し, 蛇紋岩化マントルウェッジではないかと考えて いる.

Kamiya and Kobayashi (2007) では防災科研 KTnetのデータを用いて P 波・S 波速度構造を推定した (Table 1). フィリピン海プレートの沈み込みに伴い深 さ 25-70 km に低速度領域をイメージングし、下側の深 さ70kmまで至る低速度領域はフィリピン海プレート の低速度海洋性地殻と考えた. 深さ 70 km 以深で低速度 領域が不明瞭になることから、この付近で斑レイ岩から エクロジャイトへの変成が生じていると推定している. また、彼らは、フィリピン海プレートの高速度領域の厚 さが関東地域西部の下で急激に変化している様子をイ メージングした. 相模トラフから東側では, 厚さ 70 km の高速度域がフィリピン海プレートとして太平洋プレー トの上に存在する一方、関東西部の下では高速度域の厚 さは 25 km 程度に変化している. 相模トラフから東側の 厚いフィリピン海プレートは、島弧のため沈み込む前か ら厚い(瀬野, 1987)可能性や,相模トラフから沈み込 み北東へ進むフィリピン海プレートが東から西へ沈み込 む太平洋プレートに押されることにより厚くなった (Hori, 2006) とも考えられる. また, Kamiya and Kobayashi (2007) はその厚さから, 断裂して 2 つの部分に に分かれたプレートが重なり合っている可能性も指摘し ている.

この領域の地震活動を見ると、微小地震の震源が相模 トラフから急傾斜に分布する領域でもあり、スラブ SG (SG は Sagami に由来)という新たな内部構造も提唱さ れている(江口, 2007).

弘瀬・他(2008)は気象庁一元化震源データを用いて P波・S波速度構造の推定を行った(Table 1). 西南日 本と同様に(弘瀬・他, 2007),厚さ数 km の低 Vs・高 Vp/Vsなフィリピン海プレートの海洋性地殻をイメー ジングし,関東中部で凹状になっている形状を推定し た.トモグラフィーの結果の低速度異常の分布から推定 しているため,地震活動から推定されていた境界より も,東側で深く,西側で浅くなっている.

Nakajima et al. (2009) はデータ流通されている防災 科研 Hi-net, 気象庁,大学などの観測点の波形データを 東北大学で読み取ったデータを用いて, P波・S波速度 構造を推定した (Table 1). フィリピン海プレートは,伊 豆の北西側においても連続的に存在し,深さ 130~140 km 付近まで沈み込んでいるという結果を得た. フィリピン 海プレートの高速度域をマントルとし,高速度域の下限

をフィリピン海プレートの下面として太平洋プレートの 接触部を定義した.陸域における接触部の南西端は,野 口 (2007) や Hasegawa et al. (2007) と一致し, 浅間山 の東から群馬・埼玉県中部を通り三浦半島東岸から房総 半島西岸に至る領域である.北東端は,赤城山と日光白 根山の間から、東南東へ延びる領域である. プレートの 接触部、は関東平野の中部から東部に相当する領域であ り,広く分布している.これらの海洋性プレートの接触 により、太平洋プレート上面境界における地震の下限も 東北沖の 50 km 付近から 80 km 付近へ変化している. フィリピン海プレート上面境界における地震活動の下限 は 20-30 km から急激に深くなり深さ 60 km まで至り, 東北沖の太平洋プレートでの地震活動の加減よりも深く なっている. これは, 関東下には 48MA の古いフィリピ ン海プレートが沈みこんでいる (Seno and Maruyama, 1984)からであると考えている。

2.2 関東中部の東西に伸びる低速度領域

関東地域の北緯 35.5~36°の深さ 30~50 km 付近付近 には、東西に伸びる低速度領域が存在する (Fig. 2). Ohmi and Hurukawa (1996) は, 北緯 36°付近に東西に 広く分布する低速度領域を見出した. これは, 深さ 25~ 30 km では山梨県から東京都にかけて存在し、深さ 60 km 程度まで続き、深くなるにつれて低速度領域は北へ 移動することから、沈み込むフィリピン海プレートの伊 豆・小笠原弧の厚い地殻であると考えた. Kamiya and Kobayashi (2000) では、この低速度領域のうち、深さ 40 km より深い下側の領域は Poisson 比が 0.25 (Vp/Vs が1.73)程度であるためフィリピン海プレート最上部の 低速度海洋性地殻と考えられるが、深さ 25~40 km の浅 い領域には、Poisson 比が 0.3 (Vp/Vs が 1.87) 以上に なっており、場所によっては Poisson 比が 0.35 (Vp/Vs が 2.08) に達することから、Christensen (1972) の橄欖 岩の蛇紋岩化率と地震波速度の関係式を用いて蛇紋岩化 ウェッジマントルが存在すると考えた. 蛇紋岩はすべり やすい物質であるため地震活動も低く調和的である. こ の領域は Sekiguchi (2001) は, Kamiya and Kobayashi (2000) と同様に防災科研 KT-net のデータを用いて解 析を行い, 同様に低速度領域を得ているが, Poisson 比 は大きくても 0.3 (Vp/Vs が 1.87) 程度であり、極端に 大きな Poisson 比の領域が広範囲に存在するという結 果は得られなかった.両者には、グリッドインバージョ ンとブロックインバージョンという手法の違いがある が、同種のデータを用いてこのように異なる結果が得ら れている. Matsubara et al. (2005) では, 防災科研 Hi-net のデータを用いて解析を行い, Vp=7.3 km/s, Vs=3.9

— 336 —

km/s, Vp/Vs=1.87 程度であり、Vp/Vs は Sekkiguchi (2001)と同程度であるという結果が得られ、厚さ10km 程度の領域は20%程度蛇紋岩化したマントルウェッジ が存在すると解釈した. Matsubara et al. (2008) におい ても同様な結果が得られている. Wu et al. (2006) は, 気象庁一元化のデータを用いて P 波速度の解析を行い, 同様に低速度領域をイメージングした.彼らは、深さ30~ 50 km の低速度領域は、ユーラシアプレートの物質が フィリピン海プレートの沈み込みによって深いほうへ巻 き込まれているために低速度領域になっていると考えて いる. 弘瀬・他 (2008) は, Kamiya and Kobayashi (2000; 2007) と同様に高 Vp/Vs 域という結果から,蛇 紋岩化していると考えている. Nakajima et al. (2009) で は、ユーラシアプレートのモホ面の深さを考慮し、蛇紋 岩化していると仮定した場合でも、非常に小さい領域に 限られるとしている.

深さ 20~50 km における低速度かつ高 Vp/Vs 域に存 在する物質が、蛇紋岩化したウェッジマントルである か、流体を含んだ下部地殻であるかということについ て、P波速度とVp/Vsの値から区別することができる (Matsubara et al., 2009; 松原・小原, 2010). 例えば, 下 部地殻を構成する主な岩石である玄武岩が角閃石へ変成 した場合, Christensen (1996) によれば 1GPa 下におい て P 波速度は 7.05 km/s であり、 Vp/Vs は 1.75 程度で ある.一方,その領域の物質が低温変成した蛇紋岩化マ ントルウェッジであるとすると、Vp=7.5 km/s, Vs=4.1 km/sの場合 Vp/Vs=1.83 程度になり、20%蛇紋岩化し た橄欖岩が存在すると考えることができる (Christensen, 1972). さらに速度が低く Vp=6.5km/sの時は、Vs= 3.4 km/s, Vp/Vs=1.91 程度になり, 45% 程度蛇紋岩化 した橄欖岩が存在する領域はさらに低速度かつ高 Vp/ Vs 域となる. このような関係から, Vp=6.5 km/sの領 域で Vp/Vs が 1.9 に至らない場合は下部地殻物質に流 体などが存在していると考えられ、Vpが7.1 km/sを超 える場合は角閃石の最大速度を超えるため、蛇紋岩化 ウェッジマントルが存在すると考えることができる.

Mastubara *et al.* (2005) では、低速度かつ高 Vp/Vs 域の Vp=7.3 km/s と得られたため、20% 程度蛇紋岩化 したマントルウェッジの存在を推定しているが、MeSOnet による結果から、この領域の地震波速度の詳細が推 定され、関東地震のアスペリティの深端との関係が詳細 に解明されることが期待される.

2.3 関東東部の南北に伸びる低速度領域

関東地域の東経140.2~140.6°の深さ40~70 km 付近 には、東西に伸びる低速度領域が存在する(Fig. 3). Ohmi and Hurukawa (1996) は,関東地域の東部にお いて,深さ 45 km~60 km に至る領域で南北に伸びる低 速度領域の存在を見出した.この低速度領域は,深くな るにつれて西へ移動することから,太平洋プレート最上 部の低速度海洋性地殻と推定した.Sekiguchi (2001) も, 南北に連なる低速度領域の存在を指摘し,フィリピン海 プレートが太平洋プレートの沈み込みにより巻き込まれ たものか,太平洋プレートの低速度海洋性地殻のどちら の可能性も指摘している.

Sekiguchi (2001) では, 深さ 35~40 km の Poisson 比が示されているが、千葉県北部における東経 140.2 度 付近において境界が見られ、Poisson 比は東側で 0.30 以 上の領域が存在し、西側では 0.25 以下に領域が分布して いる. Matsubara et al. (2005) では, 深さ 30 km におけ る Vp/Vs 構造が示されているが,同様に,東経 140.3 度 付近で境界があり、 東側でやや高い Vp/Vs 域、 西側で は低 Vp/Vs 域という傾向が見られ, さらに, 北緯 35.75 度での東西断面図でも、低速度かつ低 Vp/Vs 域が広 がっている. Shelly et al. (2006) によると,茨城県中部 における沈み込む太平洋プレートの上側のフィリピン海 プレートが存在すると考えられる領域の Vp/Vs は 1.7 付近の値になっている. Vp/Vs が低いことを考えると, 蛇紋岩化したウェッジマントルが存在を考えるのは難し い. 低速度かつ低 Vp/Vs 域は Takei (2002) によれば, 水が高 aspect 比で存在する場合に考えられる. この関 係を用いて, 例えば Matsubara et al. (2004) は東北脊梁 山地において, Nakajima and Hasegawa (2007) や松原 (2008)は中部地方の下部地殻において水が存在する可 能性があると解釈している. この領域についても、低速 度・低 Vp/Vs である場合は、同様に考えることが可能 である. Sekiguchi (2001) では, この領域には, 太平洋 プレートの沈み込みによりフィリピン海プレートが巻き 込まれているために低速度になった可能性も指摘されて いる.本結果とあわせてこの領域には、厚くなったフィ リピン海プレートに高 aspect 比の水が存在していると 考えられる.

一方, Nakajima *et al.* (2009) では, この領域は低速 度かつ高 Vp/Vs 域という結果が得られている. そこで, 彼らは, フィリピン海プレート最東部は厚く蛇紋岩化し ていると考えている.

いずれも、P 波速度は 6.5 km/s 程度であるが、S 波速 度が $3.5 \sim 4.5 \text{ km/s}$ と異なっているため、このように異 なる解釈がなされている。MeSO-net の成果により、特 に S 波速度が詳細に解明されることが期待される。

2.4 伊豆弧付近の低速度領域

Ishida (1992) では, 伊豆半島は高速度であるが, 深さ 16 km 以深では火山フロントに沿って低速度領域であっ た.伊豆半島の北西側ではフィリピン海プレートの沈み 込みに相当する高速度領域は見られず、この領域のフィ リピン海プレートの断裂や弱い領域である場合、マグマ が上昇しやすくなっている可能性を考えている. Kamiya and Kobayashi (2007) では、火山フロントに沿っ た低速度領域が背弧側だけではなく、前弧側にも広がっ ていることを指摘している.これは,第三紀の火山の噴 出物が火山フロントと和達ベニオフ帯の深さ110kmの 等深線のあいだで見つかっていることから (中村, 1962)、現在の火山フロントとの間の低速度領域は、第三 紀の火成活動の名残であると考えている.フィリピン海 プレートの沈み込みにより太平洋プレート上面の温度上 昇が一般的な沈み込み帯よりも遅くなるというシミュ レーションの結果 (Iwamori, 2000) が, トモグラフィー の結果からも示唆されている(Matsubara et al., 20005; Hasegawa et al., 2007) ことから、太平洋プレートの沈 み込みに伴う火山フロントが深いほう、西のほうへ移動 していると考えている.

3. MeSO-net の測線下の定常観測網による解析結果

MeSO-net における稠密観測のアレイに沿った断面に ついて,防災科研 Hi-net の観測網により得られたデー タから得られた(Matsubara *et al.*, 2005)結果を Fig. 4 ~6 に示す.

神奈川県東部から茨城県南西部にかけての断面では, 沈み込むフィリピン海プレート最上部の低速度海洋性地 殻が北緯 36 付近までイメージングされている(Fig. 4 の[]部分).北緯 36 度付近以北ではフィリピン海プ レートは高速度領域になっている.地震活動は,低速度 領域内でも発生しているが,北緯 35.8 度以北では高速度 領域で活発に発生している.一方,太平洋プレートの最 上部は低速度領域になっている.これは,低速度海洋性 地殻と考えられる(Fig. 4 の矢印部分).二重面の地震活 動の下面側では,高速度領域としてイメージングされ, 特に S 波で顕著である.

千葉県中部九十九里海岸から千葉県北西部を経て茨

城・栃木・埼玉県境付近にかけての断面図を Fig. 5 に 示す.フィリピン海プレート最上部の低速度海洋性地殻 に相当する低速度層が北緯 36 度以南で明瞭である ([]部分).一方,北緯 36 度以北については,低速度 領域が明瞭ではない.地震活動は,北緯 36 度以南につい ては,海洋性地殻のモホ面付近からマントルにかけて発 生している.一方で,プレート境界付近での地震活動が 多く見られ,マントル内での活動も顕著である. 房総半 島東部の深さ 40~60 km に低速度領域内が存在し(Fig. 5 の丸で囲まれた領域) この領域内では地震活動が見ら れる.一方,深さ 50~80 km に連なる低速度領域は,太 平洋プレート最上部の海洋性地殻に相当する (Fig. 5 の 矢印部分).二重面の上面の地震活動は,低速度海洋性地 殻内で発生していることがわかる.二重面の下側は,高 速度な太平洋プレートがイメージングされている.

埼玉県南部から千葉県北部にかけての断面では, 沈み 込む太平洋プレートの最上部に位置する低速度海洋性地 殻がイメージングされている (Fig. 6). 東経 140.3~ 140.7 度付近の深さ 40 km 以深では, P 波も S 波も低速 度な領域が分布している.一方で, この領域の Vp/Vs は低くなっている.地震活動は,低速度領域の両端で多 く発生し,低速度領域の中では少ない. 2.3 において述 べたように, 今後の詳細な構造の解明が期待される.

4. まとめ

関東地域における地震波速度構造に関する研究をまと めた. 観測網の充実や研究の進歩により,沈み込むフィ リピン海プレートや太平洋プレート最上部に位置する低 速度海洋性地殻がイメージングできるようになった. プ レート境界の位置などについての議論をするためには, さらに深さ方向に詳細な構造を推定する必要がある. さ らに,ユーラシアプレートのモホ面とフィリピン海プ レート上面の位置関係や,蛇紋岩化マントルウェッジが 存在するかなど,様々な解釈が可能な状態である. 境界 や MeSO-net の構築により,さらに精度の高い構造が得 られ,沈み込むプレートの上面境界や各領域に存在する 物質・物性についても言及できるようになることが期待 される. 松原 誠・小原一成

Fig. 4. NE-SW cross sections of Vp, Vs, Vp and Vs perturbation, and Vp/Vs across the western and central Kanto region (Matsubara *et al.*, 2005). Triangles show the NIED Hi-net stations.

Fig. 5. NW-SE cross sections of Vp, Vs, Vp and Vs perturbation, and Vp/Vs across the eastern Kanto region (Matsubara *et al.*, 2005). Triangles show the NIED Hi-net stations.

150|__________36.2

36.0

35.8

8

/p/Vs

35.6

2.0

35.4

Fig. 6. WNW-ESE cross sections of Vp, Vs, Vp and Vs perturbation, and Vp/Vs across the central Kanto region (Matsubara *et al.*, 2005). Triangles show the NIED Hi-net stations.

謝 辞

本稿における図の作成には、Wessel and Smith (1998) による GMT を使用しました. ここに記して謝意を評し ます. 速度構造の断面図作成には松原 (2009)の速度構 造断面表示ソフトウェアを使用しました.

文 献

- Aki, K. and W.H.K. Lee, 1976, Determination of threedimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1. A homogeneous initial model, J. Geophys. Res., 81, 4381– 4399.
- Benz, H., B. Chouet, P. Dawson, J. Lahr and R. Page, 1996, Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111– 8128.
- Christensen, N.I., 1972, The abundance of serpentinites in the oceanic crust, J. Geol., 80, 709-719.
- Christensen, N.I., 1996, Poisson's ratio and crustal seismology, *J. Geophys. Res.*, **101**, 3139–3156, doi: 10.1029/95JB 03446.
- 江口孝雄・堀 貞喜, 2007, 首都圏直下とその付近でのフィリ ピン海プレートスラブの形態, 地学雑誌, 116, 3/4, 325-369.
- 浜田和郎・大竹政和・岡田義光・松村正三・山水史生・佐藤春 夫・井元政二郎・立川真理子・大久保 正・山本英二・石 田瑞穂・笠原敬司・勝山ヨシ子・高橋 博, 1982, 関東・ 東海地域地殻活動観測網一国立防災科学技術センターー, 地震 2, 35, 401-426.
- Hasegawa, A., J. Nakajima, S. Kita, T. Okada, T. Matsuzawa and S. Kirby, 2007, Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: Possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material, *Geophys. Res. Lett.*, 34, L09305, doi: 10.1029/2007GL029616.
- Hirahara, K., 1988, Detection of three-dimensional velocity anisotropy, *Phys. Earth Planet. Int.*, 51, 71–85.
- 平田 直・酒井慎一・佐藤比呂志・佐竹健治・纐纈一起, 2009,「首都直下地震防災・減災特別プロジェクト」サブプ ロジェクト①「首都圏周辺でのプレート構造調査,震源断 層モデル等の構築等」の概要,地震研究所彙報,84,41-56.
- 弘瀬冬樹・中島淳一・長谷川昭, 2007, Double-Difference Tomography 法による西南日本の3次元地震波速度構造お よびフィリピン海プレートの形状の推定, 地震2, 60, 1-20.
- 弘瀬冬樹・中島淳一・長谷川昭, 2008, Double-Difference Tomography 法による関東地方の 3 次元地震波速度構造お よびフィリピン海プレートの形状の推定, 地震 2, 60, 123-138.
- Hori, S., 2006, Seismic activity associated with the subducting motion of the PHS plate beneath the Kanto district, Japan, *Tectonophysics*, **417**, 85–100, doi: 10.1016/j.tecto. 2005.08.027.
- Ishida, M., 1992, Geometry and relative motion of the Philippine Sea plate and Pacific plate beneath the Kanto-Tokai district, Japan, J. Geophys. Res., 97, 489–513, doi: 10.1029/91JB02567.
- Iwamori, H., 2000, Deep subduction of H₂O and deflection of volcanic chain towards backarc near triple junction

due to lower temperature, *Earth Planet. Sci. Lett.*, **181**, 41-61, doi: 10.1016/S0012-821X (00) 00180-1.

- Kamiya, S., and Y. Kobayashi, 2000, Seismological evidence for the existence of serpentinized wedge mantle, *Geophys. Res. Lett.*, 27, 819-822, doi: 10.1029/1999GL011080.
- Kamiya, S., and Y. Kobayashi, 2007, Thickness variation of the descending Philippine Sea slab and its relationship to volcanism beneath the Kanto-Tokai district, central Japan, J. Geophys. Res., 112, B06302, doi: 10.1029/2005JB 004219.
- 笠原敬司・酒井慎一・森田裕一・平田 直・鶴岡 弘・中川茂 樹・楠城一嘉・小原一成, 2009, 首都圏地震観測網 (MeSO-net)の展開, 地震研究所彙報, 84, 71-88.
- Lees, J.M. and R. S. Crosson, 1989, Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data, J. Geophys. Res., 94, 5716– 5728.
- Matsubara, M., N. Hirata, H. Sato and S. Sakai, 2004, Lower crustal fluid distribution in the northeastern Japan arc revealed by high resolution 3-D seismic tomography, *Tectonophysics*, 388, 33-45, doi: 10.1016/j.tecto.2004.07.046.
- Matsubara, M., H. Hayashi, K. Obara and K. Kasahara, 2005, Low-velocity oceanic crust at the top of the Philippine Sea and Pacific plates beneath the Kanto region, central Japan, imaged by seismic tomography, *J. Geophys. Res.*, **110**, B12304, doi: 10.1029/2005JB003673.
- Matsubara, M., K. Obara and K. Kasahara, 2008, Threedimensional P-and S-wave velocity structures beneath the Japan Is lands obtained by high-density seismic stations by seismic tomography, *Tectonophysics*, 454, 86– 103, doi: 10.1016/j.tecto.2008.04.016.
- Matsubara, M., K. Obara and K. Kasahara, 2009, High-V_P/V_s zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, *Tectonophysics*, 472, 6–17, doi: 10.1016/j.tecto.2008.06.013.
- 松原 誠,2008,伊勢湾から北陸地域の三次元地震波速度構造 一中部・下部地殻の低速度・低 Vp/Vs 域一,月刊地球, **30**,409-418.
- 松原 誠, 2009, 日本列島三次元地震波速度構造表示ソフト ウェア,防災科学技術研究所研究報告, 76, 1-9.
- 松原 誠・小原一成,2010,地震波速度構造から推定される蛇 紋岩化ウェッジマントルの存在,月刊地球,月刊地球,32, 136-140.
- Nakajima J. and A. Hasegawa, 2007, Deep crustal structure along the Niigata-Kobe Tectonic Zone, Japan: Its origin and segmentation, *Earth Planets Space*, **59**, e5–e8.
- Nakajima, J., F. Hirose and A. Hasegawa, 2009, Seismotectonics beneath the Tokyo metropolitan area, Japan: Effect of slab-slab contact and overlap on seismicity, J. Geophys. Res., 114, B08309, doi: 10.1029/2008JB006101.
- 中村久由, 1962, 本邦諸温泉の地質学的研究, 地質調査所報告, 192, 1-126.
- 野口伸一, 2007, 関東地域のフィリピン海スラブと太平洋スラ ブの震源分布と収束形態月刊地球, 号外 57, 42-53.
- Obara, K., K. Kasahara, S. Hori and Y. Okada, 2005, A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention, *Rev. Sci. Instrum.*, **76**, 021301, doi: 10.1063/1.1854197.
- Ohmi, S. and N. Hurukawa, 1996, Detection of the subducting crust of oceanic plates beneath the Kanto district,

Japan, *Tectonophysics*, **261**, 249–276, doi: 10.1016/0040–1951 (95) 00150–6.

- Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara and A. Yamamoto, 2004, Recent progress of seismic observation networks in Japan —Hi-net, F-net, K-NET and KiK-net—, *Earth Planets Space*, 56, xv-xxviii.
- Paige, C. C. and M. A. Saunders, 1982, LSQR: An algorithm for sparse linear equation and sparse least squares, *Trans. Math. Software*, 8, 43–71.
- Sekiguchi, S., 2001, A new configuration and a seismic slab of the descending Philippine Sea plate revealed by seismic tomography, *Tectonophysics*, **341**, 19–32, doi: 10.1016/S0040-1951 (01) 00182-2.
- 瀬野徹三,1987,1971年1月3日銭州海嶺付近の地震(M=5.5) の発生機構と深さ一伊豆海嶺西縁でのフィリピン海プレー トの厚さについて一,地震2,40,629-632.
- Seno, T. and S. Maruyama, 1984, Paleogeographic reconstruction and origin of the Philippine Sea plate, *Tectonophysics*, **102**, 53–84, doi: 10.1016/0040–1951(84)90008–8.
- Shelly, D.R., G.C. Berzoa, H. Zhang, C. H. Thurber and S. Ide, 2006, High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan, J. Geophys. Res., 111, B06311, doi: 10.1029/2005JB004081.
- 汐見勝彦・小原一成・針生義勝・松村 稔, 2009, 防災科研 Hi-

netの構築とその成果, 地震 2, 61 特集号, S1-S8.

- Takei, Y., 2002, Effect of pore geometry on VP/VS: from equilibrium geometry to crack, J. Geophys. Res., 107 (B2), 2043, doi: 10.1029/2001JB000522.
- Wessel, P. and W.H.F. Smith, 1998, New improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579.
- Wu, F., D. Okaya, H. Sato and N. Hirata, 2007, Interaction between two subducting plates under Tokyo and its possible effects on seismic hazards, *Geophys. Res. Lett.*, 34, L18301, doi: 10.1029/2007GL030763.
- Zhang, H. and C. H. Thurber, 2006, Development and applications of double-difference seismic tomography, *Pure Appl. Geophys.*, **163**, 373-403, doi: 10.1007/s00024-005-0021-y.
- Zhao, D., A. Hasegawa and S. Horiuchi, 1992, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 97, 19909–19928, doi: 10.1029/92JB00603.
- 地震調査研究推進本部 地震調査委員会,2004,相模トラフ沿 いの地震活動の長期評価について、<http://www.jishin. go.jp/main/chousa/04aug_sagami/index.htm>,(参照 2010-1-1).

(Received January 29, 2010) (Accepted March 26, 2010)