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Abstract

When applying electromagnetic sounding methods, such as the magnetotelluric method, studies are

usually carried out by: (1) treating the inducing field as spatially uniform and (2) treating the Earth as a

semi-infinite conductor with a plane surface. These assumptions are both approximations of electro-

magnetic induction caused by the incidence of a laterally non-uniform inducing field into the conducting

spherical Earth. Although the basic theoretical concept was established many decades ago, the physical

conditions for these two approximations are not fully and systematically understood, and some confusion

appears in the literature. Therefore, the basic formulation of electromagnetic induction in both spherical

and Cartesian coordinate systems is re-examined and the conditions for systematically deriving the two

approximations are clarified. The results reveal that the solutions for the two coordinate systems are

consistent with each other at an appropriate limit and that the two approximations result in neither

indefinite nor non-unique problems, as suggested by some previous studies, if appropriate approximation

conditions are applied.

Keywords： electromagnetic induction, magnetotelluric method, plane-wave approximation, flat Earth

approximation, electrical conductivity

1．Introduction

The magnetotelluric (MT) method is a geophysical

exploration tool that is widely used for various purposes,

such as mineral explorations, crustal studies, and deep

mantle studies (e.g., Chave and Jones, 2012). The basic

theory behind the MT method (Cagniard, 1953) relies on

electromagnetic (EM) induction in the Earth, which is

assumed to be a half-space with a flat surface consisting

of electrically conducting materials with an arbitrary

distribution, due to the incidence of spatially uniform

inducing field variations from outside (originating in the

ionosphere and/or magnetosphere). Here, we consider

two approximations to be important to the theoretical

framework. One approximation allows us to treat the

Earthʼs actually spherical surface as if it were flat, which

we hereinafter refer to as the flat Earth approximation,

and the other approximation allows us to treat the

external inducing field as spatially uniform, which we

hereinafter refer to as the plane-wave approximation.

Both are obviously approximations, because, in reality,

neither is the Earthʼs surface flat nor are external EM

fluctuations spatially uniform. These two approxima-

tions in the EM theory are the main topic of the present

paper. Although every EM induction method, including

the MT method, relies on other approximations, such as,

for example, neglecting the displacement current in

Maxwell equations, they are beyond the scope of the

present paper. In addition, deviations of the Earthʼ s

geometry from a perfect sphere are ignored.

Before the first publication by Cagniard (1953), Price

(1950) presented a more general theory of EM induction

using a flat Earth approximation without a plane-wave

approximation. These two pioneering studies were fol-

lowed by a long-lasting controversy as to whether the

spatial non-uniformity of the inducing field should be

taken into account and/or how significant its effects

would be (Wait, 1954; Price, 1962; Srivastava, 1965; Towle,

1974). After this controversy, the method proposed by

Cagniard (1953) based on a plane-wave approximation

was successfully developed, but much less attention has

been focused on the problem of the source effect, insofar

as EM variations observed at relatively short periods

(high frequencies) and/or at mid-low latitudes are con-

cerned. Conversely, it is generally recognized that

careful treatment may be required when MT data are

acquired at high latitudes (Viljanen et al., 1999; Pulkkinen
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et al., 2003) or in the period band where Solar quiet daily

geomagnetic (Sq) variations are dominant (Schmucker,

1999; Shimizu et al., 2011; Koch and Kuvshinov, 2015).

Most recently, Murphy and Egbert (2018) reported that

the effects of a finite source scale may be significant,

even within a period range of 10 to 100 s for geomagnetic

pulsations Pc3 to Pc4 at mid-low latitudes. This suggests

that the theory of Price (1950) may still be useful for MT

studies on particular occasions when external EM field

fluctuations are localized.

For periods longer than a few days, the EM induc-

tion problem is treated in a spherical coordinate system

(e.g., Banks, 1969), because the Earthʼs sphericity cannot

be ignored in such a situation. The approach is referred

to as global induction when the electrical structure of

the entire Earth is considered, or semi-global induction

when the heterogeneous structure of only a limited

region is considered (Utada et al., 2003). Correspondingly,

an approach using a flat Earth approximation with

solutions of Maxwell equations in a Cartesian coordinate

system is referred to as regional (or local) induction,

which is applied for periods less than approximately

104 s. In each approach, EM response functions, which

are defined as the ratio of different components of EM

field variations or the ratio of different coefficients of

spherical harmonic expansion, are calculated from ob-

served time-series data to estimate the electrical

conductivity distribution of the Earth. If a flat Earth

approximation is allowed, the equivalent response func-

tions defined in global and regional induction approaches

are expected to be consistent at an appropriate limit,

because they are not distinguishable (Weaver, 1994).

However, a few studies argue that the values of some

response functions are indeterminate (Price, 1950; 1962;

Honkura and Rikitake, 1985) or non-unique (Weaver,

1994), as discussed later.

The present paper briefly reviews these two basic

approximations in the EM induction problem to aid a

systematic understanding of the theory, including some

knowledge that was a matter of serious controversy but

has almost been forgotten. Because the main focus of the

present paper is the approximate treatment of the

geometry of the external inducing field (spatially uni-

form or non-uniform) and of the Earthʼs surface (flat or

spherical), we assume the simplest model of the Earthʼs

structure, in which the Earth is treated as a uniform

conducting sphere with the global induction approach

and as a uniform half-space with the regional induction

approach. In other words, the validity of both approxi-

mations relies mostly on the features of the primary field

that reflects the average structure, but is much less

affected by the features of the secondary field that

reflects the lateral heterogeneity of the Earthʼs conduc-

tivity (Lezaeta et al., 2007). Schmucker (1985) conducted

a more comprehensive and detailed investigation than

the present paper on the behaviors of EM response

functions derived both in a Cartesian coordinate system

and in a spherical coordinate system. However, some of

the basic derivation processes or conditions of the

approximation are not clearly shown. Thus, another goal

of the present paper is to provide a basic formulation

from the very beginning to better understand the EM

induction problem.

2．Basic theory of EM induction in the Earth with

uniform conductivity

A number of studies in the literature describe the

basic theory of EM induction, but few describe both

global and regional induction approaches systematically.

Here, for the convenience of a later discussion, let us

summarize the basic theory of EM induction in the sim-

plest situation (uniform conductivity) for both approaches.

We choose spherical (Fig. 1a) and Cartesian (Fig. 1b)

coordinate systems, which are common in electromag-

netism (Langel, 1987). For the theoretical derivation, we

consider Maxwell equations in a frequency domain with

angular frequency denoted by ω and ignore the dis-

placement current,

∇×Er, ω=−iω Br, ω, (1)

∇×Hr, ω=σEr, ω+jextr, ω, (2)

∇∙Br, ω=0, (3)

where jext is the source current, which produces the

inducing field. We denote electrical conductivity in the

Earth as σ, which is assumed to be constant inside the

Earth. Magnetic field, magnetic induction, and electric

field are denoted as Hr, ω, Br, ω, and Er, ω,

respectively. Magnetic permeability μ is assumed to be

constant, so we have Br, ω=μHr, ω. The position

vector is given as r=r , θ ,φt in a spherical system and

r=x, y, zt in a Cartesian system, where the superscript

t denotes the transpose.

In EM induction, the source is assumed to be

outside the Earth, and the space between the source and
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the Earthʼs surface is assumed to be an insulator (σ=0).

Therefore, from (2), in this insulating space, we have

∇×Hr, ω=
1
μ
∇×Br, ω=0, (4)

which allows us to define the magnetic scalar potential

ψr, ω,

Br, ω=−∇ψr, ω. (5)

From (3) and (5), we have the Laplace equation for the

scalar potential outside the Earth,

∇ ψr, ω=0. (6)

Because jext=0 in (2) inside the Earth, we can represent

Br, ω=

Δ

×Πr, ω, (7)

to satisfy (3), where Π is the vector potential. Using the

Coulomb gauge,

∇∙ Πr, ω=0, (8)

the electric field is given by,

Er, ω=−iω Πr, ω. (9)

The vector potential satisfies the following basic equation:

∇−iωσμ Πr, ω=0. (10)

Because of condition (8), the vector potential can be

expressed by two independent modes, poloidal and

toroidal (magnetic) modes (e.g., Backus, 1986), which can

take the form

Πr, ω=∇×rχr, ω+∇×∇×rχ′ r, ω, (11)

in the case of a global approach, and

Πr, ω=∇×ẑχr, ω+∇×∇×ẑχ′ r, ω, (12)

in the case of a regional approach, where ẑ is a unit

vector in the vertical direction. The scalar functions χ

and χ′ satisfy (e.g., Banks, 1969)

∇−iωσμ χr, ω=0, (13)

∇−iωσμ χ′ r, ω=0. (13)�

Because of the formal identity of (13) and (13)�, these

equations should have a common general solution with

different coefficients, which are determined by applying

appropriate boundary conditions. We hereinafter denote

all variables for the toroidal mode with single prime

symbols. In considering EM induction problems due to

an external inducing field, the source (inducing) field is

given as a coefficient in the expression of the scalar

potential.

2．1 Solution for global/semi-global induction in a

spherical coordinate system

A general solution for (6) in a spherical coordinate

system can be obtained by separating variables in the

form of spherical harmonic expansion (e.g., Langel, 1987),

ψr, ω

=a









ϵ
ω r

a 


+ιω a

r 


Y
θ ,φ, (14)

where Y
 is a spherical harmonic function of degree n

and order m, and a is the Earthʼs radius. In addition,

ϵ
ω and ιω are complex-valued expansion coeffici-
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Fig. 1. (a) Spherical coordinate system and (b) Cartesian coordinate system used in the present study. The center of the

Earth is chosen as the origin (O) in (a), while a certain point on the Earthʼs surface is chosen in (b).



ents of the external (inducing) and internal (induced)

parts of the scalar potential, respectively. Furthermore,

we assume the Earth to be a perfect sphere, because the

argument of the deviation of its actual geometry from a

perfect sphere is not essential for the present purpose.

Using (5) and (14), the three components of the magnetic

induction B outside the conducting sphere (r>a can be

derived as follows:

Br,ω

=−
nϵ

ω r

a 


−n+1ιω a

r 


Y
θ ,φ,

(15)

Br,ω

=−
ϵ

ω r

a 


+ιω a

r 


 ∂
∂θ

Y
θ ,φ,

(16)

Br,ω

=−
ϵ

ω r

a 


+ιω a

r 


 1
sin θ

∂
∂φ

Y
θ ,φ.

(17)

Note that the double summation in (14) is simplified in

(15) through (17), and we use the same notation

hereinafter.

A general solution for (13) and (13)� can be derived

with a variable separation as

χr, ω=


R
r ,ωY

θ ,φ (18)

χ�r, ω=


R
′ r ,ωY

θ ,φ, (18)�

and the radial functions R and R�satisfy the same

differential equation

d R


dr  +
2
r

dR


dr
+−

nn+1
r  R

=0, (19)

and

d R
�

dr  +
2
r

dR
�

dr
+−

nn+1
r  R

�=0. (19)�

The general solution for (19) and (19)� can be written as

(Banks, 1969),

R
r ,ω=α

ω jr +β
ωyr , (20)

and

R
�r ,ω=α

�ω jr +β
�ωyr , (20)�

where α
ω, β

ω, α
�ω, and β

�ω are complex-

valued coefficients, jr  and yr  are the spherical

Bessel function of the first and second kind, respectively,

and

=−iωσμ. (21)

Hereinafter,  is referred to as the induction wave-

number. Moreover, 1/Im gives the radial scale length

of field attenuation due to EM induction, which is

referred to as the skin depth. We can set

β
ω=0 and β

�ω=0 (22)

in the present case of EM induction in the Earth with an

external inducing field, from the physical requirement

for the scalar functions χ and χ� to be regular at r=0.

Using (20) and (20)� for the scalar functions χ and χ�

in (11), the vector potential can be derived as

Πr, ω=
 

0

1
sin θ

R
 ∂Y



∂φ

−R
 ∂Y



∂θ


+
 

1
r

R
�nn+1Y



1
r

∂rR
�

∂r

∂Y


∂θ

1
rsin θ

∂rR
�

∂r

∂Y


∂φ
 (23)

As a physical requirement, the electric current should

not flow across the Earthʼ s surface (at r=a), which

constrains the coefficient for the toroidal mode as

α
�ω=0. (24)

This means that all three components of the second

term (the toroidal mode) of the right-hand side of (23)

vanish, and we have only to consider the first term (the

poloidal mode). Price (1950) proved that the magnetic

field of the toroidal mode diminishes outside the

conductor, by showing the electric field (vector poten-

tial) to be derived by a spatial gradient of a scalar

function. This proof is, however, doubtful and meaning-

less, because the toroidal mode is defined only inside the

conductor.

Using the obtained general solution and (7), we

derive expressions for the three components of mag-
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netic induction inside the Earth (r<a), as follows:

Br,ω=
1
r




R
r ,ωnn+1Y

θ ,φ (25)

Br,ω=
1
r




∂rR
r ,ω
∂r

∂Y
θ ,φ
∂θ

(26)

Br,ω=
1

rsinθ



∂rR
r ,ω
∂r

∂Y
θ ,φ
∂φ

. (27)

Applying the boundary condition (continuity of each

magnetic component at r=a) to (15) through (17) and (25)

through (27) results in a set of two equations,

n+1ιω−nϵ
ω=

nn+1
a

R
a,ω (28)

and

ϵ
ω+ιω=

−1
a

d

dr
rR

r ,ω 


, (29)

for each spherical harmonic degree and order.

The Q-response of the geomagnetic depth sounding

(Banks, 1969) is defined as the ratio of internal to

external coefficients and is obtained from (28) and (29) as

Q
ω=

ιω
ϵ

ω

=
n

n+1

d

dr
R

r ,ω 


−nR
a,ω/a

d

dr
R

r ,ω 


+n+1R
a,ω/a

. (30)

Considering condition (22), (30) becomes independent of

harmonic order m and may be written as

Qω=
ιω
ϵ

ω

=
n

n+1

d

dr
jr  


−nja/a

d

dr
jr  


+n+1 ja/a

, (31)

in the case of a homogeneous conductor. Thus, if we

obtain the Q -response at a frequency with spherical

harmonic expansion, we can estimate the electrical

conductivity, σ, of the Earth. It is possible to derive an

analytic solution for R
a,ω independently of the

harmonic order m if the Earthʼs conductivity structure

is one-dimensional (1-D), varying only in the radial

direction; but, in this case, the Q-responses at different

frequencies must be obtained in order to determine the

structure (e.g., Banks, 1969).

From the solution for the vector potential (23) and

(9), we can derive expressions for the three components

of the electric field inside the conducting sphere as

Er,ω=0 (32)

Er,ω=−iω


1
sin θ

R
r ,ω

∂Y
θ ,φ
∂φ

(33)

Er,ω=iω


R
r ,ω

∂Y
θ ,φ
∂θ

(34)

Using (26), (27), (33), and (34), we have an expression for

the impedance at a particular harmonic degree n at the

surface (r=a) of a homogeneous conducting sphere as

Z
ω=−Z

ω=Zω

=iωμ 1a +
1

ja
d

dr
jr  




. (35)

Note again that the impedance does not depend on the

harmonic order m, when electrical conductivity is

laterally uniform.

2．2 Solution for regional/local induction in a Car-

tesian coordinate system

Next, we attempt to solve (6) by variables separa-

tion in a Cartesian coordinate system by letting (Price,

1950),

ψr,ω=Sx,yZz,ω. (36)

Substituting (36) into (6), we have

1
S  ∂S

∂x +
∂S

∂y =−
1
Z

∂Z

∂z =−ν (37)

where ν is a real-valued constant hereinafter referred to

as the source (inducing field) wavenumber, and we set

ν>0 without loss of generality. Then, the horizontal and

vertical functions S and Z are found to satisfy

∂S

∂x +
∂S

∂y +νS=0 (38)

and

∂Z

∂z −νZ=0, (39)

respectively. If we assume a harmonic function for a

particular solution of (38)

Sx,y~eν∙s, (40)

where

ν=ν,ν

, (41)
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s=x, y

, (42)

then we will have a particular solution for (39) as

Zz,ω~e, (43)

where

ν=ν=ν
+ν

. (44)

If we define ν and ν to be unbounded real numbers in

−∞,∞, a general solution for (36) is given by a Fourier

integral as

ψr,ω=






ϵν,ωe+ιν,ωeeν∙sdνdν.

(45)

Considering the behavior of the right-hand side of (45)

for the limit νz→−∞, we find that complex-valued

coefficients ϵν,ω and ιν,ω correspond to the

amplitudes of the externally inducing and internally

induced fields, respectively. Using (5) and (45), we derive

expressions for the three components of magnetic

induction above the surface (z<0 of the semi-infinite

uniform conductor,

Br,ω

=−






iνϵν,ωe+ιν,ωeeν∙sdνdν (46)

Br,ω

=−






iνϵν,ωe+ιν,ωeeν∙sdνdν (47)

and

Br,ω=






νϵν,ωe−ιν,ωeeν∙sdνdν.

(48)

Inside the conductor (z>0, we also solve (10) by

decomposing the vector potential into poloidal and

toroidal modes as given in (12) and write the variable

separation solutions of (13) and (13)� in a Cartesian

coordinate system as

χr,ω=Sx,yZz,ω, (49)

and

χ�r,ω=S�x,yZ�z,ω. (49)�

Substituting (49) and (49)� into (13) and (13)�, respec-

tively, we have

1
S  ∂S

∂x +
∂S

∂y =κ−
1
Z

∂Z

∂z =−ν (50)

and

1
S

′  ∂S�
∂x +

∂S�
∂y =κ−

1
Z

∂Z�
∂z =−ν, (50)�

where

κ=iωσμ. (51)

Here, κ is the induction wavenumber. Again, 1/Re (κ

gives the vertical length scale of field attenuation due to

EM induction, which is referred to as the skin depth.

The non-dimensional ratio of induction to source wave-

numbers Re κ/ν is referred to as the induction number

(e.g., Utada and Munekane, 2000).

The horizontal and vertical functions, S, S�, Z,

and Z�can be obtained as solutions of

∂S

∂x +
∂S

∂y +νS=0, (52)

∂S�
∂x +

∂S�
∂y +νS�=0, (52)�

∂Z

∂z −ν+κZ=0, (53)

and

∂Z�
∂z −ν+κZ�=0, (53)�

respectively. As in the case outside the conductor, as

shown above, we assume the horizontal functions in (52)

and (52)� both to be harmonic functions, so,

Sx,y, S�x,y~eν∙z. (54)

Then, particular solutions for (53) and (53)� can be

written as

Zz,ω, Z�z,ω~e, (55)

where

γ =ν+κ. (56)

Here, Re γ gives the vertical length scale of non-plane

field attenuation. The general solutions for (49) and (49)�

can be written in the form of a Fourier integral, as

follows:
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χr,ω=






ϵν,ωe+ιν,ωeeν∙sdνdν

(57)

and

χ�r,ω=






ϵ�ν,ωe+ι�ν,ωeeν∙sdνdν.

(57)�

Then, we can set,

ιω=0 and ι�ω=0 (58)

by considering the behavior of Z to be regular at

Re γz→∞ inside the uniform conductor. Finally, we

obtain an expression for vector potential consisting of

poloidal and toroidal modes as

Πr, ω=∇×
0

0

SZ
+∇×∇×

0

0

S�Z�
=

Π

Π

Π
+

Π�

Π�

Π�, (59)

where

Πr,ω=






iνϵν,ωeeν∙sdνdν, (60)

Πr,ω=−






iνϵν,ωeeν∙sdνdν, (61)

Πr,ω=0, (62)

and

Π�r,ω=−






iνγ ϵ�ν,ωeeν∙sdνdν,

(60)�

Π�r,ω=−






iνγ ϵ�ν,ωeeν∙sdνdν,

(61)�

Π�r,ω=






νϵ�ν,ωeeν∙sdνdν. (62)�

The condition whereby the electric current is not

allowed to flow across the surface (z=0) in (59) requires

the vertical function (62)� to diminish, i.e., ϵ�=0, which

leads both horizontal functions (60)� and (61)� also to

diminish everywhere inside the conductor (z>0). Again,

we have only to consider the poloidal mode inside the

conductor, as in the case of spherical coordinate system

solutions. Substituting (60) through (62) into (7), we obtain

expressions for the three components of the magnetic

induction inside the conductor as

Br, ω=−






iνγ ϵν,ωeeν∙sdνdν (63)

Br, ω=−






iνγ ϵν,ωeeν∙sdνdν (64)

Br, ω=






νϵν,ωeeν∙sdνdν. (65)

If we apply the boundary condition (continuation of each

of the three components) at the surface of the conductor

(z=0), we obtain a set of two equations relating co-

efficients outside and inside the conductor,

ϵν,ω+ιν,ω=γϵν,ω, (66)

ϵν,ω−ιν,ω= νϵν,ω. (67)

Then, the ratio of external to internal coefficients can be

derived as

qν,ω=
ιω
ϵω

=
γ−ν

γ+ν
, (68)

which is a response function similar to Q in a global

approach (31). This result indicates that we can estimate

electrical conductivity using (68), if the source wave-

number ν is accurately estimated with an array

observation.

From (60) through (62) and (9), expressions for the

three components of the electric field can be derived as

Er, ω=−iω






iνϵν,ωeeν∙sdνdν, (69)

Er, ω=iω






iνϵν,ωeeν∙sdνdν, (70)

and

Er, ω=0. (71)

Using (63), (64), (69), and (70), we obtain an expression for

the impedance of each source wavenumber as

Zν,ω=−Zν,ω=
iωμ

γ
. (72)
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3．Plane-wave approximation

The term ʻplane-waveʼ is usually defined as a wave

at a point sufficiently distant (as compared to wavelength)

from the radiation source. When used in EM induction

problems in which the basic equation differs from a

wave equation, an alternative definition appropriate to

its physical meaning is needed. Price (1950) proposed an

expression for the scalar potential of a spatially uniform

field in the form of (36) with the same S, but with

Zz,ω=Aωz+Bω (73)

which is a general solution of (39) in the case of ν=0 A

and B are constants). If we compare (73) with a general

solution for the case of finite ν (45) by letting ν=0 in (45),

we find the simple relation

Bω= ϵ0,ω+ι0,ω, (74)

and that A is independent. If we apply boundary

conditions at the surface after deriving the three

components of the magnetic field and using the internal

solution given by (63) through (65) with ν=0, we have

Aω=0. (75)

This means that the spatially uniform inducing field

with a term Aωz in the scalar potential makes no

contribution to EM induction in a semi-infinite conductor

with a flat surface. Although Price (1950) proved that the

problem becomes indeterminate using the scalar

potential of this form, we find that the inclusion of

Aωz in (73) also has no mathematical significance,

because the form of (43) does not uniformly converge to

the form of (73) at a limit of ν→0.

Price (1962) argued the indeterminate problem

again, by letting ν=0 in (43) this time and Sx,y=1 in

(36). However, the latter seems to be either a typo or a

simple mistake by the author, because the horizontal

gradients of S must be finite in order to produce

horizontal components of finite intensity. Among the

possible particular solutions of

∂S

∂x +
∂S

∂y =0, (76)

which is a special case of (38) for ν=0, we may choose a

linear function

Sx,y=aωx+bωy+cω (77)

for the present case, because it produces laterally uni-

form horizontal magnetic components to have finite

(bounded) intensity at infinity. Substituting (77) into (36)

and (5) yields

Br,ω=−aωϵ0,ω+ι0,ω, (78)

Br,ω=−bωϵ0,ω+ι0,ω, (79)

and

Br,ω=0. (80)

If we apply boundary conditions at the surface, we have

only

ϵ0,ω+ι0,ω=κϵ0,ω. (81)

In this case, the problem of determining induced fields

inside and outside the conductor (ι and ϵ) when an

external inducing field (ϵ) is given becomes indetermi-

nate, as suggested by Price (1962).

This consequence is not surprising, because we let

the vertical components inside and outside the con-

ductor diminish automatically by letting ν=0 in the

form of the scalar potential (36). The magnetic field due

to the potential of this form is absolutely uniform, which

does not exist in reality. Now, we realize that the

treatment of the inducing field as a plane-wave (spatially

uniform field) is an approximation of a special case of EM

induction, in which the spatial non-uniformity of the

inducing field can be neglected. Such a situation is

simply expressed as

ν≪κ. (82)

If we apply the condition of the plane-wave approxima-

tion of (82) to (66) and (67), we have a set of two equations

relating the three coefficients,

ϵν,ω+ιν,ω=κϵν,ω, (83)

and

ϵν,ω−ιν,ω=νϵν,ω, (84)

and therefore the problem is determinate.

If the condition for a plane-wave approximation (82)

holds, the response function defined by (68) approaches

unity,

qν,ω=
ιν,ω
ϵν,ω

=
γ−ν

γ+ν
→ 1−2

ν

κ
→ 1, (85)

and the vertical component of the magnetic field

vanishes, which also shows that the total (inducing plus

induced) field is nearly horizontal and is almost twice as

H. Utada

─ 8 ─



intense as the inducing field at the surface. In this way,

the total magnetic field appears to be planar at the

surface of a semi-infinite conductor under the condition

given by (82), as if it resulted from plane-wave incidence.

Thus, it is a physically reasonable condition for a plane-

wave approximation of EM induction.

The condition for a plane-wave approximation ob-

tained here is also consistent with the basic theory of the

MT method (Cagniard, 1953), and we can derive an

expression for the impedance from (72) as

Zν,ω=−Zν,ω=
iωμ

γ
→

iωμ

κ
, (86)

at a plane-wave approximation (ν≪κ).

Next, we attempt to apply the concept of a plane-

wave approximation to the case of the global induction

approach in a spherical coordinate system. To do this,

we need to extend the condition (82) to the case of a

spherical conductor. If we apply spherical harmonic

expansion (18), the spatial wavenumber of the inducing

field of the spherical harmonic degree n is roughly

estimated (Srivastava, 1966; actual derivation is given in

the next section) as

ν~
n

a
(87)

and therefore the condition can be written as

n

a
≪. (88)

Weaver (1994) suggested that the expansion coefficients

at smaller spherical harmonic degrees are more appro-

priate for approximating a spatially uniform inducing

field (plane-wave). Now, we understand that this con-

dition (low harmonic degree) describes a part of the

condition (88) when  (or the frequency) is fixed.

The asymptotic behavior of the spherical Bessel

function

1
ja

d

dr
jr  


→ i for a → ∞, (89)

helps us to understand the behaviors of the response

functions discussed in Section 2.1. For example, sub-

stituting (89) into (31) gives the expression for Q -

response with a plane-wave approximation (
n

a
≪ ) as

Qω=
ιω
ϵω

→
n

n+1
i−n/a

i+n+1/a
→

n

n+1
. (90)

If we consider a degree n term, the right-hand side

of the spherical harmonic expansion of B (15) at the

surface (r=a) becomes

nϵ
ω−n+1ιω → 0, (91)

which means that the radial component of the magnetic

field diminishes. In other words, the magnetic lines at a

plane-wave approximation become parallel to the

surface of a spherical conductor, and are not spatially

uniform.

On the other hand, the asymptotic behavior of

impedance (35) with a plane-wave approximation is

derived as

Zω=iωμ 1a +
1

ja
d

dr
jr  




→
ωμ


, (92)

in a spherical coordinate system. Considering the

identity κ=i, the results of (90) and (92) are consistent

with those of (85) and (86) with a plane-wave approx-

imation in a Cartesian coordinate system, respectively.

Schmucker (1985) derived the same result, which he

referred to as the zero-wavenumber approximation.

The geomagnetic transfer function is expressed as

the ratio of the radial to azimuthal components (B/B or

B/B) of the magnetic field variations at long periods to

explore deep structures, assuming a ring current

(n=1, m=0 source (e.g., Banks, 1969). Expressions (63)

through (65) and (69) through (70) indicate that the

corresponding transfer function in a Cartesian coordi-

nate system (B/B or B/B) for a particular value of ν is

O(ν/γ, while the impedance is O 1/γ. This propor-

tionality is consistent with the simple relation between

impedance and geomagnetic transfer function: the latter

is approximated by a lateral gradient of the former

(Utada and Munekane, 2000). Therefore, the source field

effect in the geomagnetic transfer function tends to be

more intense than that in the impedance (Jones and

Spratt, 2002; Shimizu et al., 2011; Murphy and Egbert,

2018) if they are estimated from the same set of EM data.

The proportionality also suggests that the transfer

function should be smaller at shorter periods at the

surface of a uniform (or 1-D) conductor. However, ob-

servation results at short periods often exhibit transfer

functions of considerable amplitudes. This is because

lateral heterogeneity causes a significant secondary

magnetic field with a much higher wavenumber than

the source and induction wavenumbers. Accordingly,

the ratio of vertical to horizontal components of the
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magnetic field variations is used as a response function

that reflects the lateral conductivity contrast in regional

/local induction studies at short periods, known as the

induction vector or the tipper (Chave and Jones, 2012).

4．Flat Earth approximation

Here, we consider the case in which the Earth can

be regarded as a semi-infinite conductor with a plane

surface. This fundamental condition allows solutions of

the EM induction equation to be used in a Cartesian

coordinate system. Thus far, we have arbitrarily treated

global/semi-global and regional/local approaches with

formulations in spherical and Cartesian coordinate

systems, respectively. The previous section shows the

equivalence of corresponding solutions using different

approaches with a plane-wave approximation. However,

at a certain limit of the global approach, where a flat

Earth approximation is allowed, corresponding solutions

in a spherical coordinate system should not be dis-

tinguishable from those in a Cartesian coordinate

system, regardless of whether a plane-wave approxima-

tion holds. Honkura and Rikitake (1985) and Weaver

(1994) argued this problem independently, and they

derived different results. First, we re-examine the

results reported by these authors.

Honkura and Rikitake (1985) suggested that the

problem of EM induction in a semi-infinite conductor (a

flat Earth approximation) due to an inducing field having

an infinite wavelength (a plane-wave approximation)

may be treated by considering the case a→∞ in EM

induction theory for a spherical conductor, where a is

the Earthʼ s radius. They further argued that they

obtained Qω→
n

n+1
in this case, which is consistent

with (90) in a plane-wave approximation. The authors

then pointed out that the problem of estimating Qω

becomes indeterminate, because its value can take any

value between 1/2 and 1 with harmonic degree n being

any positive integer. The Earthʼ s surface can be re-

garded as completely flat if the Earthʼ s radius is in-

finitely large. However, such a mathematical treatment

(a→∞ is not appropriate, as the Earthʼs radius is not a

variable. Therefore, this condition must be rephrased

with (88), which is actually the condition for a plane-

wave approximation. However, we need a condition for a

flat Earth approximation for a case in which a plane-

wave approximation does not hold, in order to argue the

consistency of Q -responses estimated by different

approaches. We need an additional derivation for this

problem.

Weaver (1994) examined the consistency between

two estimates of the Q -response with a plane-wave

approximation: one estimate is Qω from a global

approach under a condition in which a flat Earth

approximation is allowed, and the other estimate is

qν,ω from a regional approach (68). Then, the author

also took a limit of a→∞ to have the value of the Q -

response under a flat Earth approximation (which is

inappropriate, as we have already pointed out) and

derived Qω→
n

n+1
. For this result, he suggested

taking the smallest value of harmonic degree, i.e., n=1,

for a plane-wave approximation, because this value

corresponds to a nearly uniform inducing field. Thus, he

demonstrated that the value of Q -response in a global

approach satisfying both conditions for plane-wave and

for flat Earth approximations converges to 1/2. How-

ever, as we have already shown in (85), the expression

for the response function qν,ω approaches unity at the

limit of a plane-wave approximation. The author

concluded the non-uniqueness of the response estimates

using two different approaches, although they should

not be distinguishable at an appropriate limit.

In order to solve these apparent contradictions, we

first need to revise the condition for a flat Earth

approximation instead of letting a→∞. Here, we attempt

to obtain an appropriate condition by considering a case

in which the basic equation for the radial function of (19)

is approximated by that for the vertical function (53) in

the variable separation solutions (Wait, 1962; Srivastava,

1966). If we consider a small area of the Earthʼs surface

(r=a, the radial direction can be replaced by the

vertical direction (r−a=−z, so that the radial

derivative in a spherical coordinate system can be

replaced by the vertical derivative in a Cartesian

coordinate system (
d

dr
=−

d

dz
). Note that such a

consideration is allowed only when we ignore lateral

variations of electrical conductivity. Then, the radial

function R
r  in (19) can be regarded as a function of

the vertical coordinate z, which satisfies a differential

equation in a local Cartesian coordinate system,

d R
z

dz −
2

a−z

dR
 z
dz

+−
nn+1

a−z
 R

z=0. (93)

When addressing the EM induction problem in a

Cartesian coordinate system, we consider a depth range,
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which is much smaller than the Earthʼ s radius, and

therefore a−z in (93) is approximated by a for the

estimation of the order of magnitude. Thus, (93) is

further approximated as

d R
z

dz −
2
a

dR
z

dz
+−

nn+1
a R

z=0.

(94)

We rewrite the coefficient of the third term of (94) as

γ
=ν

−=ν
+κ, (95)

where γ can be regarded as the total wavenumber

representing the spatial variation of the EM field in the

Earth, and

ν=
 nn+1

a
(96)

is an expression for the spatial wavenumber of the

inducing field in (56) in terms of the spherical harmonic

degree n. Note that Srivastava (1966) suggested that the

spatial wavenumber ν of the inducing field with a flat

Earth approximation can be related to the spherical

harmonic degree n as ν~
n

a
, as shown in the previous

section, which turned out to correspond to (96) in the

case of large n.

If the second term of (94) is negligible, the

differential equation is essentially identical to (53), the

particular solution of which takes the following form:

R
z,ω~e. (97)

With this solution, the second term of (94) is scaled to be

O γ/a , while the first and third terms are scaled to be

O γ

. Thus, we derive a condition for the second term

of (94) to be of a negligible order as

γa≫1, (98)

which is regarded as the condition for a flat Earth

approximation.

Because the spatial wavenumber γ consists of two

terms, ν and , as shown in (95), we need to consider

two cases separately: the case in which the wavenumber

of the inducing field dominates, ν> (a diffusion-

dominant case), and the case in which the induction

wavenumber dominates the total wavenumber γ, i.e.,

ν<, which can be called an induction-dominant case.

Thus, we have two conditions for a flat Earth approxi-

mation in diffusion- and induction-dominant cases as

n≫1 (99)

or

ν≪, (100)

respectively.

The condition (100) is essentially that for a plane-

wave approximation. This means that, if a plane-wave

approximation is allowed, a flat Earth approximation is

always allowed. On the other hand, if the harmonic

degree is a large number, then (99) is the condition for a

flat Earth approximation when a plane-wave

approximation does not hold. This can be a common

condition for a flat Earth approximation in other

geophysical methods, such as gravity or geomagnetism

for a scalar potential. If either (99) or (100) is satisfied, the

radial derivative in the Q-response (31) can be replaced

by the vertical derivative, which is scaled by −γ, and

therefore we have

Qω~
n

n+1
γa−n

γa+n+1
(101)

for a large value of the harmonic degree n that allows a

flat Earth approximation. Then, for a large value of

harmonic degree n, the response (101) approaches unity,

Qω →
n

n+1
→ 1 (102)

with a plane-wave approximation (ν≪), which is

consistent with qν,ω→1 in a Cartesian coordinate

system with ν≪κ (85).

More precisely, we may have both induction-

dominant and diffusion-dominant cases for a single

observation. If the inducing field wavenumber has only

slight frequency dependence, the induction number will

be dependent on the square-root of the frequency as

Im
ν

=
1

 2


ν

∝ ω . (103)

Therefore, roughly, we can expect an induction-domi-

nant case at high frequencies and a diffusion-dominant

case at low frequencies in such a situation. However,

note that the frequency dependence is opposite when

we consider Sq harmonics. As shown by Schmucker

(1999), the principal components of the Sq signal have

mode frequencies ω expressed using the mode number

p as
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ω=pω p=1, 2, 3… , (104)

where ω is the fundamental frequency of Sq (corre-

sponding to the period of one day), while the harmonic

degree and order of the corresponding mode are given

by

n=p+1 and m=p, (105)

respectively. Using (21) and (96), we obtain expressions

for corresponding wavenumbers of EM induction and

the inducing field with a flat Earth approximation as


=−iωσμ=−ipωσμ, (106)

and

ν=
 nn+1

a
=

 p+1p+2
a

. (107)

The last equation indicates that the inducing field

wavenumber has a strong mode number dependence

and, therefore, frequency dependence. Thus, we obtain

the dependence of the induction number on the

corresponding mode number or mode frequency as

Im
ν

=
1

 2


ν

∝
1

 p
∝

1

 ω

, (108)

which means that the source field effect tends to be

more effective for higher harmonics with higher

frequencies (Shimizu et al., 2011).

5．Conclusions and additional notes

We have reviewed previous studies on the condi-

tions for two main approximations in the EM induction

method, plane-wave approximation and flat Earth

approximation, based on simple analytic solutions for a

uniform conductor both in spherical and Cartesian

coordinate systems. The results show that the magnetic

field becomes parallel to the surface of the conductor

when the condition for the plane-wave approximation is

satisfied. It is also demonstrated that the solutions in a

spherical coordinate system become equivalent to those

in a Cartesian coordinate system when the condition for

the flat Earth approximation is satisfied. In addition, we

show that the condition for the flat Earth approximation

is automatically satisfied when the plane-wave approxi-

mation condition is satisfied in general. If calculations in

both coordinate systems provide equivalent results, we

generally prefer the calculation in a Cartesian coordi-

nate system, which is easier. This is the case that most

MT studies examine. However, note that a map

projection, θ ,φ→x, y, is necessary for the treatment

in a Cartesian coordinate system, and that no map

projection can preserve shape and size simultaneously.

A projection distortion of shape, size, and azimuth at

peripheral regions is inevitable. This is not problematic

as long as we consider a 1-D conductor such as that

considered in the present review paper or the obser-

vation array covers only a local area (typical scale≤100

km). However, this may cause a serious problem when a

MT study is performed using an array consisting of a

number of observation sites distributed over a wide

region to reveal an actual (3-D) laterally heterogeneous

conductivity distribution (e.g., Miensopust, 2017). In such

a study, 3-D MT numerical modeling and inversion are

carried out for data interpretation over an area at least

several times greater than the array size, in order to

account primarily for the effects of distant and large-

scale lateral contrasts such as coastlines. In order to

avoid peripheral distortion due to a map projection, one

possible solution is to make a formulation of the forward

part of the inversion problem in a spherical coordinate

system, which is a direct approach that should be

examined. If inversion must be carried out in a Cartesian

coordinate system, careful examination is necessary to

confirm that the effects of peripheral distortion are not

significant before performing modeling and inversion.
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自然電磁場変動を用いた電磁誘導法における平面波近似と平板地球

近似について

歌田久司1）

1）東京大学地震研究所

要 旨

通常マグネトテルリク法をはじめとする電磁誘導法で

は，（1）地球を半無限導体とみなし，平坦な地表より上

方から与えられる（2）空間的に一様な電磁場変動が起こ

す電磁誘導を扱うことが多い．（1）と（2）はそれぞれ，

空間的に非一様な電磁場変動が，球体の地球内部に生じ

る電磁誘導の近似的取り扱いである．電磁誘導法の理論

的枠組みが確立してから長い年月が経過しているが，こ

の 2つの近似の成り立つ物理的条件は系統的に理解され

ているとは言いがたく，文献には混乱も見られる．小論

では，球座標系および直交座標系における電磁誘導問題

の基本式を再吟味することにより，2 つの近似の条件が

どのように導かれているのかを明らかにすることを目指

す．得られた結果は，それぞれの座標系での解には適切

な極限において必ず整合性があることを示した．すなわ

ち，近似の条件を適切に与えさえすれば，過去の文献で

指摘されたような「不定性」や「非一意性」などの問題

は生じないことがわかった．

キーワード：電磁誘導，マグネトテルリク法，平面波近

似，平板地球近似，電気伝導度
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