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Abstract 

  The magnetotelluric method is one of the most effective techniques for probing subsurface 
structures. It utilizes frequency response functions between electromagnetic field components as input 
data for inversion to estimate the electrical resistivity structure of the subsurface. One of the most 
frequently used approaches for estimating the magnetotelluric response function is ensemble averaging, 
in which each observed time series is divided into segments of constant length. However, this method 
can result in power leakage at frequencies distant from the main lobe of the spectral window, leading 
to a severe bias in the estimates of the response functions. Prewhitening is a highly effective approach 
for reducing spectral leakage by flattening the power of the observed data prior to calculation of their 
Fourier transforms. However, it is known that the standard prewhitening method, which uses a least-
squares approach, is not robust to outliers in the time series. Therefore, this study investigates the 
advantages and disadvantages of a prewhitening method that uses a robust filter and robust partial 
autocorrelation coefficient (PARCOR) algorithms, compared to the standard prewhitening method. By 
applying the robust method to synthetic and real-world MT data, it was found that the robust filter 
effectively removed spike noise. However, combining the robust filter and robust PARCOR resulted in 
excessive alteration of the data, including signals and time delays of the boxcar-like feature of time 
series. This combined use is therefore not recommended for magnetotelluric data processing. When the 
robust filter was not used, prewhitening using the robust PARCOR provided comparable 
magnetotelluric response functions to those obtained by the standard prewhitening method. Because 
the former took more than 100 times longer than the latter, the standard prewhitening method seems 
to be more cost effective, at least in the examples in the present work, although further investigation 
would be desirable to determine the usefulness of the robust PARCOR algorithm. 
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1． Introduction 
  The magnetotelluric (MT) method is a passive 
electromagnetic (EM) exploration method used to image 
subsurface electrical resistivity structures based on 
EM field data observed on the Earth’s surface. This 
method can be used to investigate electrical resistivity 
structures from the near surface to the mantle. Because 
of its effectiveness in probing subsurface structures, 
the MT method has been used for a variety of purposes 
worldwide, including the exploration of structures 
under seismogenic zones (e.g., Aizawa et al., 2021; Usui 
et al., 2021, 2024a), volcanic areas (e.g., Usui et al., 2017; 

Heise et al., 2024), and the oceanic mantle (e.g., Tada et 
al. 2014; Baba et al., 2017). In the inversion for esti-
mating subsurface electrical resistivity structures, the 
frequency response functions between observed EM 
field components are used as input data. Therefore, it 
is important to be able to accurately estimate the 
frequency response functions to obtain reliable inversion 
results. 
  A frequently used approach for estimating MT 
response functions is ensemble averaging (e.g., Bendat 
and Piersol, 2010). In this method, observed time series 
are divided into segments of constant length (Fig. 1). 
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After calculating the Fourier transforms of each seg-
ment, the auto- and cross-spectral density functions of 
the EM field components are calculated by ensemble 
averaging, and the MT response functions are deter-
mined from the spectral density functions. The finite 
Fourier transform of the time series of a segment can 
be viewed as the Fourier transform of an infinite time 
series multiplied by a rectangular time window u (t ) 
(Fig. 2a) (Bendat and Piersol, 2010), where 

𝑢(𝑡) = {1   0 ≤ 𝑡 ≤ 𝑛∆𝑡,0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  （1） 

In the frequency domain, the Fourier transform of the 
time series of a segment is the convolution of the 
Fourier transforms of u (t ) and the unlimited time 
series, denoted as v (t ), as follows. 

∫ 𝑈(𝑠)𝑉 (𝑓 − 𝑠)𝑑𝑠∞
−∞

, （2） 

where U (f  ) and V (f  ) represent the Fourier transforms 
of u (t ) and v (t ), respectively. As shown in Fig. 2c, 
|U (f  )| has large side lobes, which allow power leakage 
at frequencies distant from the main lobe of the 
spectral window (Bendat and Piersol, 2010). These 
large side lobes are troublesome when analyzing MT 
time-series data. Since the amplitude of the EM field 
generally increases with decreasing frequency (e.g., 
Simpson and Bahr, 2005; Constable, 2015), high-power 
components at frequencies lower than the target 
frequency can significantly distort the estimates of 
spectral density functions in many cases. In what follows, 
this undesirable phenomenon is referred to as spectral 

 

Fig. 1. Schematic of ensemble averaging method. Time-series data are divided into a number of data segments with a fixed 
length (nΔt in this figure). The Fourier transform of each data segment is used as a sample to estimate the MT response 
function. 

 

Fig. 2. (a) Rectangular time window. (b) Hanning window. (c) Amplitude of rectangular window in frequency domain. (d) 
Amplitude of Hanning window in frequency domain. 
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leakage. 
  One of the most effective methods for reducing 
spectral leakage is to increase the segment length (nΔt ). 
As the segment length increases, |U (t )| approaches a 
delta function. However, this approach decreases the 
number of samples used to estimate the response 
functions, thereby increasing the uncertainty of the 
estimates. Therefore, this approach is not useful unless 
the length of the time series is substantially longer 
than the period at which the response function is 
estimated. To remedy the spectral leakage problem, a 
tapered time window is commonly used (Bendat and 
Piersol, 2010). A popular window for such tapering is 
the Hanning window (Fig. 2b), which is defined as: 

𝑢ℎ(𝑡) =
⎩{⎨
{⎧1 2⁄ (1 − 𝑐𝑜𝑠 ( 2𝜋𝑡𝑛∆𝑡))   0 ≤ 𝑡 ≤ 𝑛∆𝑡,

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 （3） 

Fig. 2d shows the absolute value of the Fourier 
transform of uh (t ), denoted as Uh (f  ). The side lobes of 
|Uh (f  )| are notably smaller than those of |U (f  )|, although 
the width of the main lobe of |Uh (f  )| is twice that of 
|U  (f  )| (Fig. 2). However, as demonstrated in Sections 3 
and 4, such tapering still cannot sufficiently suppress 
spectral leakage. 
  Another powerful technique for preventing spectral 
leakage is prewhitening, which was introduced by 
Blackman and Tukey (1958). Tukey (1967) stated, ‘If low 
frequencies are 10 3, 10 4, or 10 5 times as active as high 
ones, a not-infrequent phenomenon in physical situations, 
even a fairly good window is too leaky for comfortable 
use. The cure is not to go in for fancier windows, but 
rather to preprocess the data toward a flatter spectrum, 
to analyze this “prewhitened” series, …’. Prewhitening 
flattens the power of the observed data before calculating 
their Fourier transforms. However, standard prewhiten-
ing methods that use an autoregression (AR) estimator 
are sensitive to outliers in the time-series data (Martin 
and Thomson, 1982; Maronna et al., 2019). To address 
this, the method must be made sufficiently robust to 
flatten the spectrum properly. In the present study, 
prewhitening was applied using a robust filter and 
robust partial autocorrelation coefficient (PARCOR) 
algorithms, which was originally proposed by Maronna 
et al. (2019), to the MT response function estimation 

and the advantages and disadvantages of this method 
were investigated. The next section describes the 
detailed algorithms for the robust prewhitening method, 
and in Sections 3 and 4, these algorithms are applied 
to synthetic and real-world MT data. 

2． Method 
  Prewhitening time-series data can be achieved with 
an AR sequence that approximately fits the time-series 
data (Martin and Thomson, 1982; Maronna et al., 2019). 
If {𝑦𝑡}𝑡=−∞∞  is a zero-mean stationary time series, the 
p-th-order AR, denoted as AR (p ), satisfies the following 
difference equation (Hamilton, 1994): 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡, （4） 

where {𝜀𝑡}𝑡=−∞∞  is a white noise sequence, i.e., a 
collection of independent and identically distributed 
(iid) random noise with zero mean.  
  There are several algorithms to estimate the AR 
coefficients 𝜙1 ,..,𝜙𝑝 (Kitagawa, 2005). One of the most 
well-known is the Durbin-Levinson algorithm (Brockwell 
and Davis, 2002). The Durbin-Levinson algorithm deter-
mines the AR coefficients that minimize the following 
expression: 

𝐸[(𝑦𝑡 − 𝜙1𝑦𝑡−1 − 𝜙2𝑦𝑡−2 − ⋯ − 𝜙𝑝𝑦𝑡−𝑝)2], （5） 

which represents the expectation of the mean-squared 
error between 𝑦𝑡 and a linear combination of 𝑦𝑡−1,…, 𝑦𝑡−𝑝. A linear combination that minimizes Eq. (5) is the 
minimum mean squared error (MMSE) linear predictor 
(Brockwell and Davis, 2002). Coefficients 𝜙1 ,..,𝜙𝑝  are 
computed recursively. The coefficients at the m-th 
iteration, denoted by 𝜙𝑚,1,..,𝜙𝑚,𝑚, are computed using 
the following: 

𝜙𝑚,𝑚 = {𝛾(𝑚) − ∑ 𝜙𝑚−1,𝑚𝑚−1𝑖=1 𝛾(𝑚 − 𝑖)}/𝑣𝑚−1, （6） 

⎝⎜
⎛ 𝜙𝑚,1⋮𝜙𝑚,𝑚−1⎠⎟

⎞ 

= ⎝⎜
⎛ 𝜙𝑚−1,1⋮𝜙𝑚−1,𝑚−1⎠⎟

⎞ − 𝜙𝑚,𝑚 ⎝⎜
⎛𝜙𝑚−1,𝑚−1⋮𝜙𝑚−1,1 ⎠⎟

⎞, 
（7） 
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𝑣𝑚 = 𝛾(0) − (𝜙𝑚,1, . . , 𝜙𝑚,𝑚)( 𝛾(1)⋮𝛾(𝑚)) 

 = 𝑣𝑚−1(1 − 𝜙𝑚,𝑚2 ), （8） 

𝛾(𝑗) = 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑗) = 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑗), （9） 

where 𝜙1,1 = 𝛾(1)/𝛾(0) , 𝑣0 = 𝛾(0) and 𝛾(𝑗) (𝑗 = 0,… ,
𝑚), which represents the autocovariance function of 
{𝑦𝑡}𝑡=−∞∞ . The coefficients at the m-th iteration 𝜙𝑚,1, . . , 𝜙𝑚,𝑚  are equivalent to the coefficients 𝜙1 ,..,𝜙𝑚  that 
minimize Eq. (5). 
  Maronna et al. (2019) showed that 𝜙𝑚,𝑚 for the 
Durbin-Levinson algorithm, which is called the partial 
autocorrelation of {𝑦𝑡}𝑡=−∞∞  (Brockwell and Davis, 2002), 
corresponds to the regression coefficient between the 
memory- (𝑚 − 1) forward and backward MMSE predic-
tion residuals. The memory- (𝑚 − 1 ) forward MMSE 
predictor 𝑦𝑡̂,𝑚−1  and residual 𝑢̂𝑡,𝑚−1  are defined as 
follows: 

𝑦𝑡̂,𝑚−1 = ∑ 𝜙𝑚−1,𝑖𝑦𝑡−𝑖𝑚−1𝑖=1 , （10） 

𝑢̂𝑡,𝑚−1 = 𝑦𝑡 − 𝑦𝑡̂,𝑚−1. （11） 

The memory- (𝑚 − 1) backward MMSE predictor 𝑦𝑡̂−𝑚,𝑚−1∗  
and residual 𝑢̂𝑡−𝑚,𝑚−1∗  are given by: 

𝑦𝑡̂−𝑚,𝑚−1∗ = ∑ 𝜙𝑚−1,𝑖𝑦𝑡−𝑚+𝑖𝑚−1𝑖=1 , （12） 

𝑢𝑡̂−𝑚,𝑚−1∗ = 𝑦𝑡−𝑚 − 𝑦𝑡̂−𝑚,𝑚−1∗ . （13） 

Then, the MMSE linear predictor of 𝑢̂𝑡,𝑚−1 with respect 
to 𝑢𝑡̂−𝑚,𝑚−1∗ , 

𝜁𝑚∗ = arg min𝜁𝑚
𝐸[(𝑢̂𝑡,𝑚−1 − 𝜁𝑚𝑢̂𝑡−𝑚,𝑚−1∗ )2], （14） 

is equivalent to the partial autocorrelation (Maronna et 
al., 2019). If one calculates 𝜁𝑚  by the least-squares 
method from the memory- (𝑚 − 1) forward and backward 
MMSE residuals, this algorithm corresponds to the 
PARCOR method described by Kitagawa (2005). The 
optimal order of the AR model can be determined by 
the Akaike information criterion (AIC): 

𝐴𝐼𝐶(𝑚) = 𝑛[𝑙𝑜𝑔(2𝜋𝑣𝑚) + 1] + 2(𝑚 + 1), （15） 

as shown in Kitagawa (2005). In Eq. (15), n is the 
sample number in time-series data. The first term on 

the right-hand side is composed of the maximum log-
likelihood, whereas the second term depends on the 
AR order (m ) (Kitagawa, 2005). 
  Because outliers in time-series data can lead to bias 
and inflated variability in the AR coefficients obtained 
by the least-squares method, the robust prewhitening 
method that uses a robust filter and robust PARCOR 
algorithms has been introduced (Maronna et al., 2019). 
As the first step in making the method robust, 
𝑦𝑡−𝑚, 𝑦𝑡−𝑚+1, … , 𝑦𝑡−1 in the memory- (𝑚 − 1) forward and 
backward MMSE prediction residuals (Eqs. (11) and 
(13)) are replaced by a modified time series obtained 
through a robust filter to avoid the propagation of the 
influence of outlying data (Martin and Thomson, 1982; 
Maronna et al., 2019). The calculation algorithm for the 
robust filtered values is based on an approximate 
conditional mean robust filter (Masreliez, 1975; Martin, 
1979). Details of the robust filter algorithm are provided 
in Appendix A.  
  In the second step, a robust PARCOR method was 
used to calculate the partial autocorrelation. In this 
study, Eq. (14) is replaced with a univariate regression 
S-estimator (Rousseeuw and Yohai, 1984), which seeks 
a coefficient 𝜁𝑚∗  that minimizes the robust scale 
estimate, 𝜎̂𝑚, of the regression residuals. Specifically, if 
the number of time-series data is n, Eq. (14) is replaced 
by 

𝜁𝑚∗ = arg min𝜁𝑚
𝜎̂𝑚(𝒖̂(𝜁𝑚)), （16） 

where 𝒖̂(𝜁𝑚) ∈ ℝ𝑛−𝑚 is the residual vector 

𝒖̂(𝜁𝑚) = ⎝⎜
⎛𝑢̂𝑚+1,𝑚−1 − 𝜁𝑚𝑢̂1,𝑚−1∗

⋮𝑢̂𝑛,𝑚−1 − 𝜁𝑚𝑢̂𝑛−𝑚,𝑚−1∗ ⎠⎟
⎞. （17） 

The fast algorithm for the S-estimator proposed by 
Salibian-Barrera and Yohai (2006) was used for robust 
estimation. These authors used random subsampling 
to select multiple initial estimates. However, in this 
study, 11 samples evenly distributed over [-1, 1] were 
used as the initial estimates because 𝜁𝑚 has a limited 
range. The I-step of the fast algorithm (Salibian-Barrera 
and Yohai, 2006) was applied to each candidate until 
convergence was achieved.  
  The robust filter and PARCOR were alternately 
applied. First, the partial autocorrelation 𝜁1∗ was deter-
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mined using the S-estimator: 

𝜁1∗ = arg min𝜁1
𝜎̂1(𝒖̂(𝜁1)), （18） 

𝒖̂(𝜁1) = ( 𝑦2 − 𝜁1𝑦1⋮𝑦𝑛 − 𝜁1𝑦𝑛−1
). （19） 

The robust filter was then applied to time-series data 
with 𝜁1∗ and the minimum, 𝜎̂1. Subsequently, the partial 
autocorrelation 𝜁2∗ was determined using Eq. (16). The 
other AR coefficients were calculated by replacing 
𝜙𝑚,𝑚 in Eq. (7) with 𝜁2∗. The robust filter was applied 
to the time-series data again with AR coefficients and 
the minimum, 𝜎̂2 . These operations were repeated 
until m reached the maximum value. The optimal 
order of the AR model can be selected using the 
robust AIC for the S-estimator (Tharmaratnam and 
Claeskens, 2013): 

𝐴𝐼𝐶. 𝑆(𝑚) = 2(𝑛 − 𝑚)𝑙𝑛(𝜎̂𝑚) + 2 𝐾𝑠,𝑚𝐽𝑠,𝑚 , （20） 

𝐽𝑠,𝑚 = 1𝑛 − 𝑚 ∑ 𝜌′′𝑑
𝑛−𝑚
𝑖=1  

(𝑢𝑚̂+𝑖,𝑚−1 − 𝜁𝑚𝑢̂𝑖,𝑚−1∗
𝜎̂𝑚 )(𝑢̂𝑖,𝑚−1∗

𝜎̂𝑚 )2, 
（21） 

𝐾𝑠,𝑚 = 1𝑛 − 𝑚 

∑ 𝜌′𝑑2 (𝑢̂𝑚+𝑖,𝑚−1 − 𝜁𝑚𝑢̂𝑖,𝑚−1∗
𝜎̂𝑚 )𝑛−𝑚

𝑖=1
(𝑢̂𝑖,𝑚−1∗

𝜎̂𝑚 )2. 
（22） 

Here, 𝜌′𝑑  and 𝜌′′𝑑  are the first- and second-order 
derivatives of the loss function of the bisquare weight 
(Maronna et al., 2019), respectively. Using the AR 
coefficients that minimize 𝐴𝐼𝐶. 𝑆 , denoted as 𝜙1̂…𝜙𝑝̂̂ , 
the AR residuals can be calculated using 

𝑦𝑡 − 𝜙1̂𝑦𝑡−1 − ⋯ − 𝜙𝑝̂̂𝑦𝑡−𝑝̂. （23） 

The Fourier transforms of the AR residuals were 
computed using a fast Fourier transform (FFT) after 
tapering with Hanning window (Bendat and Piersol, 
2010). Subsequently, the influence of the AR filter was 
adjusted by dividing the Fourier transform by 

1 − ∑ 𝜙𝑘̂𝑒𝑥𝑝 (−𝑗2𝜋𝑓𝑘𝑓𝑠 )𝑝̂
𝑘=1 , （24） 

where 𝑗 is an imaginary unit, 𝑓 is the frequency, and 𝑓𝑠 
is the sampling frequency. Corrected Fourier transforms 

were used for the response function estimation after 
instrument calibration. Although Martin and Thomson 
(1982) and Maronna et al. (2019) directly used filtered 
time-series data to compute Fourier transforms, in the 
present study, the original time-series data were used 
for the subsequent response function estimation, and 
filtered time-series data were used only to estimate 
the AR coefficients. This approach avoids the risk that 
incorrectly altered signals are directly used in response 
function estimation. 

3． Application to synthetic MT data 
  The robust prewhitening method was applied to a 
synthetic time-series dataset to investigate its advantages 
and disadvantages. The synthetic data were similar to 
those used by Usui et al. (2024b) and were obtained 
from the response functions computed using the 
Oblique Conductor model of Tietze et al. (2015). The 
sampling frequency was 24 Hz, and the data length 
was 72 h (three days). Gaussian and spike noise were 
added to all channels of the local and remote stations. 
The Gaussian and spike noise for each channel and 
station were mutually independent. Because the power 
of cultural noise usually varies with time, the ampli-
tude of the Gaussian noise was modulated sinusoidally 
over 24 h. Specifically, the Gaussian noise was multi-
plied by an amplification factor, as shown in Fig. 3a. 
Spike noise occurred with a probability of one in ten 
thousand in the synthetic time series. Fig. 3b‒e shows 
the resulting synthetic time series for the Ex and Bx 
channels. Fig. 4 compares the power spectra for the 
EM field components before and after the addition of 
noise. The power of the noise was larger than that of 
the signal in periods of less than approximately 30 s in 
the magnetic field data, whereas the noise in the 
electric field data influenced a wider period range, 
with its power being larger than that of the signal in 
periods of less than approximately 100 s. 
  To analyze the data, the overlapped processing 
technique (Bendat and Piersol, 2010) was used, and 
each time series was divided into segments with 50% 
overlap. The maximum segment length was 524288, 
which was halved iteratively down to 128, resulting in 
13 segment lengths. For each segment length, response 
functions were estimated at the third and fourth fre-
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quencies, that is, 3/nΔt and 4/nΔt Hz. The maximum 
order of the AR models used for prewhitening was 100. 
To estimate the response functions, a robust remote 
reference method was employed, applying the Huber 
weight (Huber, 1964) followed by a more severe weight 
function proposed by Chave and Thomson (1989, 2004).  

The impedance tensors were obtained using four dif-
ferent prewhitening methods: no prewhitening, standard 
(non-robust) prewhitening, prewhitening with only robust 
PARCOR, and prewhitening with both robust PARCOR 
and filtering. In the standard prewhitening method, 
the PARCOR method was used with a least-squares 

 

Fig. 3. (a) Multiplication factor for raw Gaussian noise. The green portion corresponds to the time range of (b) and (d), and the 
yellow portion corresponds to the time range of (c) and (e). (b, c) Synthetic time series for the x-component of the local 
electric field (mV/km). (d, e) Synthetic time series for the x - component of the local magnetic field (nT). In (b), (c), (d), and (e), 
the panels from top to bottom show the time series for the signal, signal + Gaussian noise, signal + Gaussian noise + spike 
noise, time series after applying the robust filter (𝑥ො௧|௧ in Eq. (A41)), and residuals of AR model ( εt in Eq. (4)). 
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approach. Mean values were subtracted from the respec-
tive channels before applying prewhitening. 
  Fig. 5a, b shows the histories of the AIC and 
AIC.S for the Ex -  and Bx - components. The AIC was 
computed for standard prewhitening, while AIC.S was 
computed for the two robust prewhitening methods. 
For both components, the AIC and AIC.S decreased 
with increasing AR order, except at m = 3 for the 
robust prewhitening methods. Table 1 lists the AR 
orders that minimized the AIC and AIC.S under the 
constraint that m ≤ 100. For many components, the 
selected AR order was 100, suggesting that the AIC 
and AIC.S could further decrease for m > 100. Fig. 5c, 
d depicts the histories of √𝜈𝑚  for standard pre-
whitening and 𝜎̂𝑚 for robust prewhitening. The square 
root of 𝜈𝑚 was used because √𝜈𝑚 and 𝜎̂𝑚 have the 
same dimension. The histories of the AIC and AIC.S 
have similar shapes to those of √𝜈𝑚  and 𝜎̂𝑚 . The 
sample number (n) for the time series for each channel 
was 6220800. Since the sample number was significantly 
larger than the maximum AR order (m =100), the maxi-
mum log-likelihood term was dominant in the AIC. The 
change rates for the AIC and AIC.S per single increase 

in AR order were smaller than 0.01% at m =100. 
  At m = 3, the AIC.S for the Ex - component was 
noticeably smaller than at higher orders. The robust 
scale estimate of the regression residual is used in the 
equations of the AIC.S (Eqs. (20), (21), and (22)), and the 
robust scale was locally small at m = 3 (Fig. 5c). Because 
the average of the data-adaptive weights for m = 3 was 
smaller than those for the other orders, the data might 
be excessively downweighted at m = 3, leading to 
locally small AIC.S. Time series of residuals of the AR 
model (εt of Eq. (4)) are depicted at the bottoms of Fig. 
3b‒e. Long-period changes in the original time series 
disappeared in the residual time series. The robust filter 
altered the time series during prewhitening. The 
bottoms of Fig. 3b‒e depict the time series after 
applying the robust filter (𝑥𝑡̂|𝑡 in Eq. (A41)). The spike 
noise disappeared after the application of the robust 
filter, as the filter removed such noise as outliers. 
  Fig. 6 compares the estimated apparent resistivity 
and phase with the true sounding curves. Only off-
diagonal components are shown to facilitate visualization. 
When no prewhitening was applied (Fig. 6a), the ap-
parent resistivity was underestimated and exhibited 

 

Fig. 4. Power spectra of x - components of synthetic EM field at local MT (left and middle panels) and 
reference stations (right panel). (a–c) Power spectra of EM field containing signals only. (d–f) Power spectra 
of EM field containing signals and noise. 
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oscillations. These downward biases and oscillations 
exceeded the error bars. To investigate the cause of 
this further, the response function and normalized 
power for the Ey -  and Bx - components were computed 
as the ratio of the average Fourier transform of the 
noise-contaminated data to that of the time series 
containing only the signals. The common logarithms of 
the normalized powers are equivalent to the log (power)  
differences between the noise-contaminated data and 
signals. In the computation, the second and fifth fre-
quencies were used in addition to the third and fourth  

frequencies. The segment length was reduced by 
multiplying by 1/4 instead of 1/2 to avoid duplication 
of frequencies (e.g., the fourth frequency for 524288 
length is equal to the second frequency for 262144 
length). Fig. 7 shows the resultant apparent resistivity 
and normalized power for two different combinations 
of segment length (one starts from 524288 and the other 
starts from 262144). The increase in the normalized 
power of Ey with decreasing period is due to the 
increase in the noise-to-signal ratio in the electric field. 
On the other hand, the normalized power of Bx was 

 

Fig. 5. Changes in AIC and ඥ𝜈௠ for standard prewhitening and AIC.S and 𝜎ො௠ for robust prewhitening as AR model order 
increases. (a, b) Changes in AIC and AIC.S for Ex- and Bx-components of synthetic data, respectively. (c, d) Changes in ඥ𝜈௠ 
and 𝜎ො௠ for Ex -  and Bx - components of synthetic data, respectively. The square root of 𝜈௠ is used because ඥ𝜈௠ and 𝜎ො௠ 
have the same dimension. 

Table 1. AR orders selected in prewhitening for synthetic time-series data. Because 
the upper limit of the AR order was fixed, there is no order higher than 100. 
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greater than zero in all periods, indicating that the 
powers of the Bx component were overestimated, even  
when the noise power was relatively low. Because the 
Fourier transforms were directly calculated from the 
raw data in the non-prewhitening case, the power 
leakage at longer periods significantly distorted the 

Fourier transforms, resulting in an overestimation of 
the Bx power. In addition, an undulation of the normalized  
power of Bx was observed. Fig. 7 illustrates that, even 
if the segment length is the same, the lower the 
frequency, the larger the overestimation of the Bx-
component. It appears that the undulation of the normal-

 

Fig. 6.  Comparison of sounding curves for apparent resistivity and phase for synthetic time-series data against true 
sounding curves. Circles with error bars are the estimated response functions, and the solid and dashed lines indicate the 
true sounding curves for the yx-  and xy- components, respectively. Error bars indicate the 95% confidence intervals under 
the assumption that the standard errors of the apparent resistivity and phase follow a Gaussian distribution. 

 

Fig. 7.  Apparent resistivity of yx - component and common logarithms of normalized power of Ey -  and Bx -
 components for synthetic time-series data. Results of the non-prewhitening case are depicted. Normalized 
power is defined as the ratio of the average Fourier transform of noise-contaminated data to that of the time 
series containing only a signal. The stars, squares, triangles, and circles in the bottom figures correspond to 
the normalized power at the second, third, fourth, and fifth frequencies, respectively, for each segment 
length. The segment length was reduced by multiplying by 1/4 to avoid the duplication of frequencies. The 
segment length of (a) starts from 524288, whereas the segment length of (b) starts from 262144. 
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ized power of Bx was caused by the differences in the 
distortions and that the Fourier transforms at lower 
frequency could be distorted more severely. This was 
probably because the power of the Bx - component 
increases with decreasing frequency on the logarithmic 
scale. As a result, the longer the period, the larger the 
underestimation of the apparent resistivity. 
  When prewhitening was applied, the downward 
bias and undulation of the apparent resistivity were 

not noticeable (Fig. 6b‒d). Fig. 8b‒d shows that the 
power spectra for the Bx component after prewhitening 
are flat. All prewhitening methods provided comparable 
response functions in this example. However, when a 
lower AR order was used, specifically 20, for the 
prewhitening, noticeable differences appeared. Fig. 9 
shows an enlarged view of the apparent resistivity of 
the yx-component and the normalized power of the 
Ey -  and Bx - components for this case. The downward 

 

Fig. 8. (a–d) Comparison of power spectra of Bx - component before and after prewhitening. Decibels are used as the units for 
the vertical axes because Fourier transforms do not have physical units after AR filtering in the prewhitening method. To 
clarify differences between (c) and (d), the ratio of the power shown in (c) to that shown in (d) is depicted in (e). 
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bias of the apparent resistivity and overestimation of 
the Bx component appeared at the longest four periods 
when the standard prewhitening method was used 
(Fig. 9b), whereas such undesirable features were not 
noticeable when robust prewhitening was used (Fig. 
9c, d). It would appear that, at least in this example, 
the standard prewhitening method needs a higher AR 
order to sufficiently flatten the power of the data 
compared to robust prewhitening. 
  There was a significant difference in computation 
times among the three prewhitening methods. The 
computation times required for standard prewhitening 
and robust prewhitening using only the robust PARCOR 
were 114 s and 19451 s, respectively. Because the S-
estimator seeks a solution that minimizes the scale 
starting from a number of initial values (11 initial 
values in this study) and performs iterative calcula-
tions for each initial value, it requires a significantly 
longer time than standard prewhitening. The computa-
tion time for robust prewhitening using both robust 
PARCOR and filtering was 55246 s. If the robust filter 
was used, the computation time increased by more 
than two times compared to when only robust PARCOR 
was used. As all prewhitening methods yielded com-
parable response functions, the standard prewhitening 
method seems to be cost effective in this example. 
 

4． Application to real-world data 
  Next, prewhitening methods were applied to real-
world data measured at the Kakioka Magnetic Obser-
vatory, Japan (Kakioka Magnetic Observatory, 2013a, 
b). The 10-Hz sampling data for the electric field 
(Kakioka Magnetic Observatory, 2013a) and magnetic 
field (Kakioka Magnetic Observatory, 2013b) were 
employed. For the remote reference method, data 
from Memambetsu (Kakioka Magnetic Observatory, 
2013c) were used. To maximize the influence of noise, I 
used EM time-series data in a time period in which 
the activity of the geomagnetic field was weak, speci-
fically, five days from November 14 to 18, 2020. For 
time periods in which the geomagnetic field activity 
was not low, significantly smoother MT response 
functions could be obtained (e.g., Fujii et al., 2015). The 
response functions were estimated at the second and 
third frequencies for each segment length. Except for 
these differences, the calculation conditions were the 
same as those in the previous synthetic data analysis. 
  Fig. 10a, b shows the histories of the AIC and 
AIC.S for the Ex -  and Bx - components, and Table 2 lists 
the AR orders that minimized the AIC and AIC.S 
under the constraint that m ≤ 100. The shapes of the 
AIC and AIC.S histories are similar to those of √𝜈𝑚 
and 𝜎̂𝑚, respectively (Fig. 10c, d), as in the case of the 
synthetic data analysis. As for the Ex - component, the 

 

Fig. 9.  Apparent resistivity and normalized power for AR order of 20. The top panels are enlarged views of the apparent 
resistivity, while the bottom panels show the common logarithms of the normalized powers of the Ey -  and Bx - components. 
Normalized power is defined as the ratio of the average Fourier transform of noise-contaminated data to that of the time 
series data containing only a signal. The Fourier transforms after prewhitening are used in the lower panels of (b), (c), and 
(d). The squares and triangles in the bottom figures correspond to the normalized power at the third and fourth frequencies, 
respectively, for each segment length. 
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AIC and AIC.S nearly monotonically decreased with 
increasing AR order, even at m = 100. On the other 
hand, the histories of the AIC and AIC.S for the Bx -
 component heavily depended on the prewhitening 
method. The AIC for the standard prewhitening 
method monotonically decreased with increasing AR 
order, as in the case of the Ex - component. The AIC.S 
for the robust prewhitening methods sharply decreased 
at a few AR orders, and the changes at higher orders 
were relatively small. It was possible that the robust 
PARCOR downweighted the variations requiring higher 
AR orders as outliers in determining the autocorrelation.  

When both robust PARCOR and filtering were applied 
to the Bx component data, the AIC.S oscillated with 
increasing AR order (Fig. 10b). As described below, 
the robust filter presumably removed most of the 
signals, as well as noise. This excessive alteration of 
data might have caused the oscillations. 
  The raw time series, the time series altered by 
the robust filter, and the residuals for the AR model 
for the Ex -  and Bx - components are compared in Fig. 
11. The boxcar-like feature in the raw time series of 
the Ex - component, which is downwardly convex, is 
delayed by a few seconds in the time series altered by 

Fig. 10. Changes in AIC and ඥ𝜈௠ for standard prewhitening and AIC.S and 𝜎ො௠ for robust prewhitening as AR model order 
increases. (a, b) Changes in AIC and AIC.S for Ex -  and Bx - components at Kakioka Magnetic Observatory, respectively. (c, d) 
Changes in ඥ𝜈௠ and 𝜎ො௠ for Ex- and Bx-components at Kakioka Magnetic Observatory, respectively. It should be noted that 
only the left vertical axis of (d) uses a logarithmic scale. The square root of 𝜈௠ is used because ඥ𝜈௠ and 𝜎ො௠ have the same 
dimension. 

Table 2. AR orders selected in prewhitening for time-series data at Kakioka (Ex, Ey, 
Bx, and By) and Memambetsu (Br, x and Br, y). Because the upper limit of the AR 
order was fixed, there is no order higher than 100. 
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the robust filter. The reason for this delay is as follows. 
In the red-colored time ranges in Fig. 11, the raw time 
series were altered based on Eq. (A41) in Appendix A 
because the difference between the raw and conditional 
mean values was larger than the thresholds in Eq. 
(A37). On the other hand, on the right sides of the red-
colored ranges, raw data or only slightly altered values 
were used because the difference between the raw 
and conditional mean values was relatively small. Such 
a delay can be avoided by changing the adjustable 
parameters of the robust filter, i.e., thresholds a and b 
in Eqs. (A37) and (A40) and the maximum number of 
consecutive alterations (k ) (see the last sentence of 
Appendix A). Actually, when k =10 was used, the time 
shift of the boxcar-like feature did not occur. However, 
the appropriate setting of these parameters probably 
depends on the data, and it seems impossible to 
determine prior to data analysis. The residuals of the 

Bx-components are nearly flat (Fig. 11), implying that 
most of the signals, as well as noise, were removed as 
outliers by the robust filter. 
  Fig. 12 shows the resultant sounding curves for the 
apparent resistivity and phase. When no prewhitening 
was applied, the resultant sounding curves were dis-
continuous, and zigzag features were noticeable in the 
apparent resistivity (Fig. 12a), as in the synthetic data 
example. When prewhitening was applied, the response 
functions significantly improved (Fig. 12b‒d). However, 
at periods of 100‒1000 s, the apparent resistivity of the 
xx -  and yx - components obtained using the robust 
PARCOR and filtering (Fig. 12h) is noticeably different 
from those obtained with standard prewhitening or 
robust prewhitening with only robust PARCOR (Fig. 
12f, g). When the robust filter was used, the change in 
the power of the Bx - component after prewhitening is 
sharp from 100 to 1000 s (Fig. 13h), suggesting that the 

 

Fig. 11.  Comparison of raw time series, time series altered by robust filter (𝑥ො௧|௧ in Eq. (A41)), and residuals for AR 
model (εt in Eq. (4)) of the Ex -  and Bx - components at Kakioka Magnetic Observatory, Japan. 
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prewhitening using the robust PARCOR and filtering 
failed to estimate AR coefficients adequately. 
  This study identified negative effects associated 
with the combined use of the robust filter and robust 
PARCOR: the excessive alteration of data and time 
delays in boxcar-like time series features. These issues 
likely hindered proper estimation of the AR coefficients. 
Although such undesirable results may be avoided by 
changing the adjustable parameters of the robust filter, 
it seems impossible to know the appropriate values of 
those parameters in advance. Therefore, careful param-
eter selection through trial and error is necessary. 
Based on these findings, it can be concluded that the 
combined use of the robust filter and robust PARCOR 
is not recommended for MT data processing. 
  As in the synthetic data example, the computation 
time significantly increased with robust prewhitening 

compared to standard prewhitening. In concrete terms, 
the computation time for standard prewhitening and 
robust prewhitening with only the robust PARCOR 
were 80 and 12218 s, respectively, and that for robust 
prewhitening with both the robust PARCOR and 
filtering was 235113 s. Since standard prewhitening 
gave comparable response functions to those obtained 
by robust prewhitening with only robust PARCOR in 
a significantly shorter time, the standard prewhitening 
method is also considered to be cost effective in this 
example. However, the sensitiveness of the standard 
prewhitening method to outliers has been recognized 
(Martin and Thomson, 1982; Maronna et al., 2019), and 
Chave and Thomson (1989, 2004) mentioned the impor-
tance of the robust prewhitening in MT data processing, 
although they used a different robust prewhitening 
algorithm. Thus, further investigation is warranted 

 

Fig. 12. (a–d) Estimated sounding curves for apparent resistivity and phase with error bars at Kakioka Magnetic Observatory, 
Japan. Error bars indicate the 95% confidence intervals under the assumption that the standard errors of the apparent resistivity 
and phase follow a Gaussian distribution. (e–h) Enlarged views of apparent resistivity for each case. 
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to determine the usefulness of the robust PARCOR 
algorithm. 

5． Conclusion 
  When the MT response function is estimated using 
ensemble averaging, spectral leakage can lead to a 
severe bias in the resultant estimates. Prewhitening is 
one of the most powerful tools for preventing spectral 
leakage. However, it is known that the standard pre-
whitening method using a least-squares approach is 
not robust to outliers in the time series. To address 
this issue, a robust prewhitening method was applied 
using a robust filter and robust PARCOR algorithms 
to synthetic and real-world MT data and its advantages 
and disadvantages were investigated. The main findings 
are as follows. 
・The importance of using prewhitening was con-
firmed for processing time-series data from MT 
measurements. If prewhitening was not used, the 
apparent resistivity exhibited significant under-
estimation and undulation. 
・The robust filter could remove spike noise. However, 
negative effects were found to be associated with 
the combined use of the robust filter and robust 

PARCOR: the excessive alteration of data and 
time delay of the boxcar-like feature of time series. 
Thus, it was concluded that their combined use is 
not recommended for MT data processing. 
・In the examples in the present work, prewhitening 
using the robust PARCOR provided comparable 
MT response functions to those obtained by standard 
prewhitening if the robust filter was not used. 
Because the former took more than 100 times 
longer than the latter, the standard prewhitening 
method seems to be cost effective. 

As previous studies have pointed out the sensitiveness 
of standard prewhitening to outliers in time series 
data and the importance of robust prewhitening in 
MT data processing, further investigation would be 
desirable to determine the usefulness of the robust 
PARCOR algorithm. 
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Appendix A: Robust filter algorithm 
  Martin (1979) applied the filtering method originally 
proposed by Masreliez (1975) to the AR model. In the 
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present study, the approximate conditional mean robust 
filter of Martin (1979) was used to avoid propagating 
the influence of outliers. This appendix shows the 
details of the algorithm. In the subsequent description, 
it is assumed that {𝑦𝑡}𝑡=−∞∞  is a zero-mean stationary 
time series. Using the state vector 𝒙𝑡 ∈ ℝ𝑝 , Martin 
(1979) expressed the p-th order AR model by 

𝒙𝑡 = 𝜱𝒙𝑡−1 + 𝜺𝑡 , （A1） 

𝑦𝑡 = 𝒉𝑇 𝒙𝑡 + 𝑣𝑡 , （A2） 

𝒙𝑡 = (𝑥𝑡, 𝑥𝑡−1 … , 𝑥𝑡−𝑝+1)𝑇 , （A3） 

𝜱 = (𝜙1 ⋯ 𝜙𝑝−1 𝜙𝑝𝑰(𝑝−1)×(𝑝−1) 𝟎𝑝−1), （A4） 

𝜺𝑡 = (𝜀𝑡, 0,… ,0)𝑇 , （A5） 

𝒉 = (1,0,… ,0)𝑇 , （A6） 

where 𝜙1 , 𝜙2 ,…,𝜙𝑝 indicate the coefficients of the p -
 th-order AR model; 𝑰(𝑝−1)×(𝑝−1)  is the (p-1) × (p-1) 
identity matrix; and 𝟎𝑝−1 is the zero vector in ℝ𝑝−1. It 
is assumed that the sequences {𝜀𝑡}𝑡=−∞∞  and {𝑣𝑡}𝑡=−∞∞  
are mutually independent noises with zero means and 
that the elements of each sequence are individually 
independent and identically distributed (iid). It is also 
assumed that 𝒙𝑡  is independent of 𝜀𝑖 (𝑖 > 𝑡) and 𝑣𝑡 . 
Because 𝒙𝑡 follows the p-th order AR relationship and 𝑦𝑡  is the observed value, 𝑣𝑡  indicates the deviation 
from the p - th order AR model, including the influence 
of outliers in time-series data. 
  In the approximate conditional mean robust filter, 
the conditional expectation of the state vector 

𝒙̂𝑡|𝑡 = ∫ 𝒙𝑡𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,,… , 𝑦𝑡)𝑑𝒙𝑡
 

ℝ𝑝
, （A7） 

is selected as a robust filter value. In Eq. (A7), 𝑿𝑡 and 𝑌1, … , 𝑌𝑡 indicate the random variables for the state 
vector and observed values, respectively, and 𝑓𝑿𝑡|𝑌1,…,𝑌𝑡 
is the conditional probability density function (PDF) 
for the state vector. Masreliez (1975) proposed a recur-
sion algorithm to calculate conditional expectation. For 
the derivation of the recursion algorithm, it is necessary 
to introduce a conditional mean vector and conditional 
covariances: 

𝒙̃𝑡|𝑡−1 

= ∫ 𝒙𝑡𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,,… , 𝑦𝑡−1)𝑑𝒙𝑡
 

ℝ𝑝
, （A8） 

𝑷𝑡 = ∫ (𝒙̂𝑡|𝑡 − 𝒙𝑡)(𝒙̂𝑡|𝑡 − 𝒙𝑡)𝑇 
ℝ𝑝  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,, … , 𝑦𝑡)𝑑𝒙𝑡, （A9） 

𝑴𝑡 = ∫ (𝒙̃𝑡|𝑡−1 − 𝒙𝑡)(𝒙̃𝑡|𝑡−1 − 𝒙𝑡)𝑇 
ℝ𝑝  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,,… , 𝑦𝑡−1)𝑑𝒙𝑡. （A10）

The conditional mean 𝒙̃𝑡|𝑡−1 is an estimate of 𝒙𝑡 given 𝑦1,… , 𝑦𝑡−1 , and 𝑷𝑡  and 𝑴𝑡  are the conditional co-
variances given 𝑦1,… , 𝑦𝑡  and given 𝑦1,… , 𝑦𝑡−1 , 
respectively. From Eq. (A1), the following relationship 
can be obtained: 

𝒙̃𝑡|𝑡−1 = 𝜱𝒙̂𝑡−1|𝑡−1. （A11） 

With the aid of Bayes’ theorem, 

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,… , 𝑦𝑡) 
= 𝑓𝑌1,…,𝑌𝑡|𝑿𝑡(𝑦1, … , 𝑦𝑡|𝒙𝑡)𝑓𝑿𝑡(𝒙𝑡)𝑓𝑌1,…,𝑌𝑡(𝑦1,… , 𝑦𝑡) , （A12） 

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1) 
= 𝑓𝑌1,…,𝑌𝑡−1|𝑿𝑡(𝑦1, … , 𝑦𝑡−1|𝒙𝑡)𝑓𝑿𝑡(𝒙𝑡)𝑓𝑌1,…,𝑌𝑡−1(𝑦1, … , 𝑦𝑡−1) , （A13） 

the following relationship can be obtained: 

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,… , 𝑦𝑡)𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1) 
= 𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1,𝑿𝑡(𝑦𝑡|𝑦1,… , 𝑦𝑡−1, 𝒙𝑡)𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1)  

= 𝑓𝑌𝑡|𝑿𝑡(𝑦𝑡|𝒙𝑡)𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1, … , 𝑦𝑡−1), 
（A14） 

where the second equality holds because the random 
variable 𝑦𝑡 is determined only from 𝒙𝑡 and 𝑣𝑡. There-
fore, using Eq. (A14), Eq. (A7) can be transformed into 

𝒙̂𝑡|𝑡 

= 𝑴𝑡
∫ 𝑓𝑌𝑡|𝑿𝑡(𝑦𝑡|𝒙𝑡)𝑴𝑡−1(𝒙𝑡 − 𝒙̃𝑡|𝑡−1)𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1, … , 𝑦𝑡−1)𝑑𝒙𝑡 
ℝ𝑝 𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1, … , 𝑦𝑡−1)

+𝒙̃𝑡|𝑡−1. 
（A15）
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Because 𝒙𝑡 is independent of 𝑣𝑡 , 𝑓𝑌𝑡|𝑿𝑡(𝑦𝑡|𝒙𝑡) can be 
expressed as 

𝑓𝑌𝑡|𝑿𝑡(𝑦𝑡|𝒙𝑡) = 𝑓𝑌𝑡|𝑿𝑡(𝒉𝑇 𝒙𝑡 + 𝑣𝑡|𝒙𝑡) 
= 𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡), （A16） 

where 𝑉𝑡 is a random variable for 𝑣𝑡. Using Eq. (A16), 
Eq. (A15) can be transformed into 

𝒙̂𝑡|𝑡 = 𝑴𝑡 
∫ 𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝑴𝑡−1(𝒙𝑡 − 𝒙̃𝑡|𝑡−1)𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1, … , 𝑦𝑡−1)𝑑𝒙𝑡 
ℝ𝑝 𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1, … , 𝑦𝑡−1)  

+𝒙̃𝑡|𝑡−1. 
（A17） 

An additional assumption of the recursion algorithm is 
that the conditional PDF 𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1  is Gaussian 
(Masreliez, 1975), that is, 

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1) 
= 1√(2𝜋)𝑝𝑑𝑒𝑡(𝑴𝑡) 𝑒𝑥𝑝 

(− 12 (𝒙𝑡 − 𝒙̃𝑡|𝑡−1)𝑇 𝑴𝑡−1(𝒙𝑡 − 𝒙̃𝑡|𝑡−1)), 
（A18） 

𝜕𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝜕𝒙𝑡  

= −𝑴𝑡−1(𝒙𝑡 − 𝒙̃𝑡|𝑡−1) 

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1). 
（A19） 

Using Eq. (A19), Eq. (A17) can be transformed into 

𝒙̂𝑡|𝑡 = 𝒙̃𝑡|𝑡−1 − 𝑴𝑡𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 
∫ 𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡) 
ℝ𝑝  

𝜕𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝜕𝒙𝑡 𝑑𝒙𝑡. 
（A20）

By applying partial integration and using Eq. (A16), 
integration of the right-hand side of Eq. (A20) can be 
transformed into 

∫ 𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡) 𝜕𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝜕𝒙𝑡 𝑑𝒙𝑡
 

ℝ𝑝
 

= ∫ 𝒉𝑓′𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡) 
ℝ𝑝  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝑑𝒙𝑡 

= 𝒉𝑓′𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1). 

（A21） 

Using Eqs. (A20) and (A21), the following equation can 
be obtained to update the conditional expectation for 
the state vector: 

𝒙̂𝑡|𝑡 = 𝒙̃𝑡|𝑡−1 − 𝑓′𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1, … , 𝑦𝑡−1)𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 𝑴𝑡𝒉. （A22） 
  Next, equations are derived to update the condi-
tional covariance matrices. A new conditional covariance 
matrix is introduced: 

∫ (𝒙̃𝑡|𝑡−1 − 𝒙𝑡)(𝒙̃𝑡|𝑡−1 − 𝒙𝑡)𝑇 
ℝ𝑝  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,,… , 𝑦𝑡)𝑑𝒙𝑡 

= − 𝑴𝑡𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 

∫ 𝜕𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝜕𝒙𝑡
 

ℝ𝑝
 

(𝒙𝑡 − 𝒙̃𝑡|𝑡−1)𝑇 𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝑑𝒙𝑡 

（A23）

where Eqs. (A14), (A16), and (A19) are used. Notably, 
the conditional covariance matrix in Eq. (A23) differs 
from 𝑷𝑡  because 𝒙̃𝑡|𝑡−1  is used instead of 𝒙̂𝑡|𝑡 . By 
applying partial integration, the integration of Eq. 
(A23) can be transformed into 

−𝑰𝑝 ∫ 𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝑑𝒙𝑡
 

ℝ𝑝  

−∫ 𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1) 
ℝ𝑝  

𝜕𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝜕𝒙𝑡 (𝒙𝑡 − 𝒙̃𝑡|𝑡−1)𝑇 𝑑𝒙𝑡 

（A24） 

where 𝑰𝑝 ∈ ℝ𝑝×𝑝 is the p×p identity matrix. The first 
term in Eq. (A24) can be transformed into 

−𝑰𝑝𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1), （A25） 

and using Eq. (A19), the second term can be transformed 
into 
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∫ 𝜕𝑓𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝜕𝒙𝑡 (𝜕𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝜕𝒙𝑡 )𝑇 𝑑𝒙𝑡
 

ℝ𝑝
𝑴𝑡 

= −𝒉∫ 𝑓′′𝑉𝑡(𝑦𝑡 − 𝒉𝑇 𝒙𝑡)𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1(𝒙𝑡|𝑦1,… , 𝑦𝑡−1)𝑑𝒙𝑡𝒉𝑇 𝑴𝑡
 

ℝ𝑝  

= −𝒉𝑓′′𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1)𝒉𝑇 𝑴𝑡, 

（A26） 

where partial integration is applied again. Using Eqs. 
(A24), (A25), and (A26), Eq. (A23) can be transformed 
into 

∫ (𝒙̃𝑡|𝑡−1 − 𝒙𝑡)(𝒙̃𝑡|𝑡−1 − 𝒙𝑡)𝑇 
ℝ𝑝  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,,… , 𝑦𝑡)𝑑𝒙𝑡 

= 𝑴𝑡 + 𝑓′′𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1)𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 𝑴𝑡𝒉𝒉𝑇 𝑴𝑡. 
（A27） 

With the aid of Eq. (A27), an equation for updating the 
conditional covariance 𝑷𝑡 can be obtained: 

𝑷𝑡 = 𝑴𝑡 + 𝑓′′𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1)𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 𝑴𝑡𝒉𝒉𝑇 𝑴𝑡 

−(𝒙̃𝑡|𝑡−1 − 𝒙̂𝑡|𝑡)(𝒙̃𝑡|𝑡−1 − 𝒙̂𝑡|𝑡)𝑇 . 
（A28） 

Because 𝒙𝑡  is independent of 𝜀𝑡+1 , an equation for 
updating the conditional covariance 𝑴𝑡+1 can be ob-
tained from 𝑷𝑡 : 

𝑴𝑡+1 = ∫ (𝜱𝒙̂𝑡|𝑡 − 𝜱𝒙𝑡 − 𝜺𝑡+1) 
ℝ𝑝  

(𝜱𝒙̂𝑡|𝑡 − 𝜱𝒙𝑡 − 𝜺𝑡+1)𝑇  

𝑓𝑿𝑡|𝑌1,…,𝑌𝑡(𝒙𝑡|𝑦1,,… , 𝑦𝑡)𝑑𝒙𝑡 

= 𝜱𝑷𝑡𝜱𝑇 + 𝑸, 

（A29） 

𝑸 =
⎝⎜
⎜⎛𝜎𝜀2 00 0 ⋯ 0⋯ 0⋮ ⋮0 0 ⋱ ⋮⋯ 0⎠⎟

⎟⎞, （A30） 

where 𝜎𝜀2  is the variance of {𝜀𝑡}𝑡=−∞∞ . Hence, the 
state vector 𝒙̂𝑡|𝑡 can be calculated by recursions using 
Eqs. (A11), (A22), (A28), and (A29). 
  The conditional PDF 𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1 is the convolution 
of 𝑓𝑉𝑡  with the conditional PDF for the first com-
ponent of 𝒙𝑡 (Martin, 1979). Because PDF 𝑓𝑿𝑡|𝑌1,…,𝑌𝑡−1 
follows a multivariate Gaussian distribution, the con-
ditional PDF for the first component of 𝒙𝑡  can be 
expressed as 

𝑓𝑋𝑡|𝑌1,…,𝑌𝑡−1(𝑥𝑡|𝑦1,… , 𝑦𝑡−1) 
= 1√2𝜋𝑚𝑡

𝑒𝑥𝑝 (−12 (𝑥𝑡 − 𝑥𝑡̃|𝑡−1𝑚𝑡 )2), （A31） 

where 𝑚𝑡  is the (1, 1) element of the covariance 
matrix 𝑴𝑡 , and 𝑥𝑡̃|𝑡−1 is the first component of 𝒙̃𝑡|𝑡−1. 
For example, if the random variable 𝑉𝑡 is assumed to 
follow a zero-mean Gaussian distribution 

𝑓𝑉𝑡(𝑣𝑡) = 1√2𝜋𝜎𝑣2
𝑒𝑥𝑝 (− 12 (𝑣𝑡𝜎𝑣2)

2), （A32） 

the conditional PDF 𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1 is given by 

𝑓𝑌𝑡|𝑌1,…,𝑌𝑡−1(𝑦𝑡|𝑦1,… , 𝑦𝑡−1) 
= 1√2𝜋(𝑚𝑡 + 𝜎𝑣2) 𝑒𝑥𝑝 (− 12 (𝑦𝑡 − 𝑥𝑡̃|𝑡−1𝑚𝑡 + 𝜎𝑣2 )2).（A33） 

If Eq. (A33) is used as the conditional PDF, Eqs. (A22) 
and (A28) can be transformed into 

𝒙̂𝑡|𝑡 = 𝒙̃𝑡|𝑡−1 + 𝑦𝑡 − 𝑥𝑡̃|𝑡−1𝑚𝑡 + 𝜎𝑣2 𝒎𝑡, （A34） 

𝑷𝑡 = 𝑴𝑡 − 1𝑚𝑡 + 𝜎𝑣2 𝒎𝑡𝒎𝑡𝑇 , （A35） 

where vector 𝒎𝑡  is the first column of 𝑴𝑡 . Martin 
(1979), and Martin and Thomson (1982) proposed an 
approximate conditional mean robust filter based on 
Eq. (A34): 

𝒙̂𝑡|𝑡 = 𝒙̃𝑡|𝑡−1 + 𝒎𝑡√𝑚𝑡
𝜓 (𝑦𝑡 − 𝑥𝑡̃|𝑡−1√𝑚𝑡

), （A36） 

𝜓(𝑢) =
⎩{{
⎨{
{⎧𝑢   (|𝑢| ≤ 𝑎)𝑎(𝑏 − 𝑢)/(𝑏 − 𝑎)   (𝑎 < 𝑢 ≤ 𝑏)−𝑎(𝑏 + 𝑢)/(𝑏 − 𝑎)   (−𝑏 ≤ 𝑢 < −𝑎)0   (|𝑢| > 𝑏)

. （A37） 

In Eq. (A36), there is no information on the variance of 
𝑉𝑡 under the assumption that only a small fraction of 
time-series data is corrupted by outliers (Martin, 1979; 
Martin and Thomson, 1982). Eq. (A36) is equivalent to 
Eq. (A34) except for 𝜎𝑣2 if ∣𝑦𝑡 − 𝑥𝑡̃|𝑡−1∣ ≤ 𝑎√𝑚𝑡 . Using 
Eq. (A36), the first component of 𝒙̂𝑡|𝑡, denoted by 𝑥𝑡̂|𝑡, 
follows the equation 

𝑥𝑡̂|𝑡 = {𝑦𝑡   (∣𝑦𝑡 − 𝑥𝑡̃|𝑡−1∣ ≤ 𝑎√𝑚𝑡)𝑥𝑡̃|𝑡−1   (∣𝑦𝑡 − 𝑥𝑡̃|𝑡−1∣ > 𝑏√𝑚𝑡). （A38） 
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That is, the robust filter replaces an observed value 
with its estimate based on previous values if the dif-
ference between them is large, whereas the observed 
value is not altered if the difference is small. Martin 
and Thomson (1982) replaced Eq. (A35) with 

𝑷𝑡 = 𝑴𝑡 − 𝜒 (𝑦𝑡 − 𝑥𝑡̃|𝑡−1√𝑚𝑡
)𝒎𝑡𝒎𝑡𝑇

𝑚𝑡 , （A39） 

𝜒(𝑢) = 𝜓(𝑢)𝑢  

=
⎩{{
⎨{
{⎧1   (|𝑢| ≤ 𝑎)(𝑏/𝑢 − 1)/(𝑏/𝑎 − 1)   (𝑎 < 𝑢 ≤ 𝑏)−(𝑏/𝑢 + 1)/(𝑏/𝑎 − 1)   (−𝑏 ≤ 𝑢 < −𝑎)0   (|𝑢| > 𝑏)

. （A40） 

Eq. (A39) is equivalent to Eq. (A35) except for 𝜎𝑣2 if ∣𝑦𝑡 − 𝑥𝑡̃|𝑡−1∣ ≤ 𝑎√𝑚𝑡 .  
  In this study, the first component of the state 
vector is used as the filtered value, as in Martin and 
Thomson (1982), that is, 

𝑥𝑡̂|𝑡 = 𝑥𝑡̃|𝑡−1 + √𝑚𝑡𝜓 (𝑦𝑡 − 𝑥𝑡̃|𝑡−1√𝑚𝑡
), （A41） 

The minimum variance obtained by the S-estimator in 
estimating the AR coefficient is used as the variance 
𝜎𝜀2 in Eq. (A30). To prevent true signals from being 
unintentionally altered by the robust filter, large values 
are used for the parameters a and b in Eqs. (A37) and 
(A40). Specifically, a and b are fixed at 10 and 12, 
respectively. The median of the first p-th components 
of the original data is used for all elements of 𝒙̂0|0, and 
the autocovariance matrix for the original time series 
estimated by the S-estimator (Maronna et al., 2019) is 
used as 𝑷0 . As Maronna et al. (2019) suggested, when 
observed values are altered a sufficient number (k) of 
times consecutively, i.e., 𝑥𝑡̂|𝑡 ≠ 𝑦𝑡  for 𝑡 = 𝑡0 ,…, 𝑡0 + 𝑘 , 
the procedure returns to 𝑡0 and restarts the recursions 
from 𝑥𝑡̂0|𝑡0 = 𝑦𝑡0 . The value of k is fixed at 50 in this 
study. 
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