技術研究報告(東京大学地震研究所) No. 2, 135-140 頁, 1998 年. Technical Research Report (Earthquake Research Institute, University of Tokyo), No. 2, p. 135-140, 1998.

浅間火山の山頂地震観測

辻 浩*・行田紀也*・小山悦郎*及川 純**・井田喜明**

Seismic Observation at the Summit of Asama Volcano

Hiroshi TSUJI*, Noriya GYODA*, Etsuro KOYAMA*, Jun OIKAWA** and Yoshiaki IDA**

はじめに

浅間山は長野県と群馬県の境に位置し、山頂火口で噴火 を繰り返してきた。1990年7月に少量の火山灰を吹き上げ て以来目だった活動はないが、火山性地震は日に数個から 数十個発生しており、時折群発的な地震活動を見せる。

火山活動を把握する上で継続的な地震観測は重要であ る.火山性地震は通常規模が小さく、火口に近づくほどよ り良い波形がとらえられる.そこで浅間観測所では、1996 年10月に山頂火口の近傍に4点の地震観測点を新設した. 本稿では、この山頂観測により得られた成果を波形と震源 についてまとめ、従来の観測網によるものと比較検討して みる.

山頂地震観測と観測点の分布

浅間観測所では、従来から11点の地震観測点を保持し てきた。1996年10月には山頂に新設した4点を加えて、 計15点の観測網ができ上がった。図1にその全観測点の 分布図(a)と新設した4観測点がある山頂近傍の拡大図 (b)を、また表1に全観測点の座標を示す。地震観測点は 火口を中心に、ほぼ山体を取り囲むような配置になってい る。地震計は、従来の地震観測点と新設した山頂観測点 ともに、固有周期1秒の速度型地震計を使用している。減 衰定数は0.7、サンプリング周波数は120Hz である。GIP, SKS, HOT, SEN の4観測点は上下(U-D)成分を、また 山頂の4観測点を含む残りの11観測点は3成分を観測す る。山頂の4観測点は、約1mの深さに地震計を埋設し た. データは群馬県が防災用に設置した火口監視カメラ用 シェルターまでメタルケーブルで伝送され,更に画像伝送 用光ケーブルによって,浅間観測所まで伝送される.

TKA を除いた 14 観測点のデータは,光ケーブル,メタ ルケーブル, 無線,NTT 回線により一旦浅間観測所に集 められる.そして衛星地震観測システムにより小諸火山化 学研究施設に転送され,データの収集,処理が行われてい る.TKA は直接,無線テレメータによって,小諸へ伝送さ れる.

地震のタイプと波形

浅間山で発生する地震は、その波形や震源域によりいく つかのタイプに分類することができる(辻ほか、1990;井 田、1995). 今回は A 型、B 型、N 型の 3 タイプの地震につ いて、MAE、SKS、KUR の 3 観測点と、新設した KAH、 KAM、KAN、KAC の 4 観測点とで波形にどのような差異 があるのかを比較してみる. 図 2 にはそれらの観測点の上 下動波形を示す.

A 型地震(図 2 (a))は、火口直下やや西よりの比較的深 部に分布する地震である. このタイプは KUR の初動が震 源からの距離の割には大きな振幅を持つ. これはおそらく 深部の減衰の少ないパスを通ってくるためだろう.

B型地震(図2(b))は、震源が火口直下にあり、浅間山 で最も発生頻度の高い火山性地震である.山頂の観測点で 得られた波形は、周辺の MAE, SKS, KUR のものと比べ て明らかに振幅も大きく、波形も明瞭である.特に火口リ ムの脇に設置した KAC の波形は、初動付近が顕著であ り、後続波が素早く消失する.

N型地震(図2(c))は、ほぼ単一な周期の振動が単調に 減衰する地震であり、その震源はB型地震の分布する範囲 に含まれる.波形もB型地震と同様に、火口に近づくほど 明瞭であり振幅も大きい.

¹⁹⁹⁷年11月28日受付. 1998年2月6日受理.

^{*} 火山噴火予知研究推進センター浅間火山観測所, ** 火山噴火 予知研究推進センター, (東京大学地震研究所).

^{*} Asama Volcano Observatory, Volcano Research Center,

^{**} Volcano Research Center, (Earthquake Research Institute, University of Tokyo).

表 1. 浅間山地震観測点の座標

観測点名	北緯(度)	東経 (度)	標高 (m)
MAE(前掛山)	36.39905	138.53586	2256
FJM(富士見坂)	36.39914	138.54107	2132
SAN(三の鳥居)	36.40125	138.55170	1825
AVO(浅間観測所)	36.40157	138.57171	1382
HOT (仏岩)	36.38092	138.53855	1585
SKS(石尊山)	36.38660	138.52100	1869
GIP (牙山)	36.39430	138.49993	2033
KUR(黒豆河原)	36.41991	138.54550	1557
ONI(鬼押出し)	36.43232	138.51711	1438
SEN(仙人岳)	36.42472	138.49736	1622
KAH(火口東)	36.40416	138.52621	2557
KAM(火口南)	36.40036	138.52047	2467
KAN (火口西)	36.40587	138.51766	2428
KAC(火口カメラ)	36.40349	138.52042	2519
ΓKA(高峰)	36.4009	138.48014	2025

震源分布

小諸火山化学研究施設では win システム (卜部・束田, 1992;卜部, 1994)により地震波形検測を行っている. 浅 間山の火山性地震は,殆どが S 波の初動が不明瞭なので, 震源決定は P 波の初動を用いて行われる. 震源決定に用い られた速度構造は,最上層(海面下 4 km まで)の P 波速 度が 2.5 km/s,それ以深が 6.1 km/s である (沢田ほか, 1983; 辻ほか, 1990).

浅間山では、1996年11月10日より12月末日までやや 群発的に地震が発生した.この内12月1日から12月31 日の間に発生した地震のなかで震源決定された事象を用 い、山頂の4観測点を震源決定に加えた震源分布図(a) と、従来の11観測点だけで決めた震源分布図(b)を比較 した(図3).

山頂観測点を加えた震源分布図は, B型地震の発生する 範囲が狭い範囲にまとまっている.特に深さに関しては顕 著で,浅い部分に震源が密集するようになっている.更に, B型地震とA型地震の震源が明確に区分されるように なった.

震源決定をする際,全観測点を読み取りに使えることは 希であり,従来は最低6観測点以上で読み取りが可能な事 象について震源決定が行われてきた.今回は,比較のため に山頂の4観測点のデータを削除したため,結果として6 観測点以下の読み取り値による震源データも含まれること になった.しかし図3(b)に示す震源分布は,6観測点以 上を使って決められてきた従来の震源分布と,基本的には 同じ特徴を持つ.

まとめ

浅間山の火山性地震をとらえる上で、山頂火口近傍での 地震観測は、データの質を向上させる上で極めて有効であ る. 今回、データ量としては不十分であるが、その効果を 確認することができた.

B型地震とN型地震について,山頂観測点で明瞭な波形 が得られた.またこれらの地震の震源は,直上に位置する 山頂観測点の効果により,浅い範囲にまとまった.

以上のことから、山頂観測点は浅間山の震源決定や波形の解析に、重要な役割を果たすことが認識できた.しかし、 山頂地震観測点の維持はその自然環境からみて決して容易 なことではない.厳しい条件の中で、山頂観測点のデータ を豊富に収集していくことが今後の課題である.

謝 辞:山頂観測点の設置にあたっては、東京大学大学院 生の市原美恵さん、鬼澤真也さん、宗包浩志さん、青山 裕さん、及び東京農工大学大学院生の大國谷 宏さんのご 協力をいただいた. 地震研究所地震地殻変動観測センター の卜部 卓助教授には、winシステムにおけるデータ処理 に関して数多くのご教示をいただいた. 山頂観測点のデー 夕伝送には、群馬県の火口監視画像用光ケーブルを利用さ せていただいた. ここに記して感謝いたします.

文 献

井田喜明, 1995, 浅間山, 火山噴火予知連絡会 20 年のあゆみ (気 象庁火山業務資料), 134-149.

- 沢田宗久・行田紀也・長田 昇・小山悦郎・辻 浩・鍵山恒 臣・宮崎 務, 1983, 浅間山の P 波速度構造,火山, 28, 301-304.
- 辻 浩・行田紀也・小山悦郎・井田喜明・鍵山恒臣・萩原道 徳,1990,浅間山の地震波速度と火山性地震の分布,日本火山 学会1990 年秋季大会講演予稿集,70.
- ト部 卓・東田進也, 1992, WIN-微小地震観測網波形検測支援のためのワークステーション・プログラム(強化版), 地震学会1992年度秋季大会講演予稿集, No. 2, 331.
- ト部 卓, 1994, 多チャンネル地震波形データのための共通 フォーマットの提案, 地震学会 1994 年度秋季大会講演予稿集, No. 2, 384.

図 1. (a) 浅間山地震観測点の分布. 図中 GIP, SKS, HOT, SEN は上下動成分,それ以外は3成分観測.(b) 山頂付近の拡 大図. 中央の円形が火口. 4 観測点とも3 成分観測.

図 2. 新設された山頂観測点(KAC, KAH, KAM, KAN)と従来の観測点(MAE, SKS, KUR)で観測された地震波形の 例. すべて上下動. (a) A 型地震(1996年11月11日02時56分24秒). (b) B 型地震(1996年12月11日18時27分34 秒). (c) N 型地震(1996年12月4日02時23分12秒).

図 3. 1996 年 12 月 1 日~31 日に発生した火山性地震の震源分布. 図中×は地震観測点の位置, 中央の波線の円は火口を示 す. M (マグニチュード)の数字は, その上の円の大きさと対応しており, UD はマグニチュードが決まっていないものを示 す. (a) 山頂観測点も使って決めた震源分布. (b) 山頂観測点を使わずに決めた震源分布. B 型地震は浅い部分に密集し, それより深い位置から西方向に A 型地震が点在している.