報告

小型 GNSS 受信機を用いた迅速な重力探査の実行: 実習「本郷キャンパスの重力異常図を作ろう」の報告

西山竜一*[†]・馬 妍雪*・青山都和子*・清藤大河*・永井はるか*

Rapid Gravity Survey Using a Very Small GNSS Receiver: Trial to Produce a Gravity Anomaly Map of Hongo Campus

Ryuichi NISHIYAMA*[†], Yanxue MA*, Towako AOYAMA*, Taiga SEITO* and Haruka NAGAI*

はじめに

重力異常は沈み込み帯のテクトニクスや地下の基盤構造 に対する拘束条件を与える基礎的な地球物理量である. 日 本では20世紀後半から観測網の整備とデータの統合が進 み,近年では充実したデータベースが構築されつつある(例 えば、村田、2013). 全球レベルの重力異常についても衛 星測地技術の発達に伴い高品質のデータが利用できる状況 にある (例えば, Balmino et al., 2012; Pavlis et al., 2012). 一方で、火山体や断層構造に関する細かな(km スケール 以下の) 密度構造を議論するためには, 自ら重力探査を行 うことの重要性は依然として大きい(Nishiyama et al., 2017, 2020). 重力探査を行うためには観測地点の位置を正 確に測定する必要があり、特に鉛直方向の決定精度が重要 である.地球の典型的な鉛直重力勾配が-0.3 mgal/m で あることから、重力異常の決定精度を 0.1 mgal に保つた めには標高の精度を約30cm,理想的には10cm程度で決 定する必要がある. そのため実務的には, 重力測定自体よ りも測点の位置決定の方が時間を要する問題であった.本 報告では,近年商用化されつつある小型で安価な GNSS 受 信機を用いることで、測点の位置決定の問題を簡略化し迅 速な重力探査が行えるようになったことを実証する.具体 的には、u-blox 社の2 周波対応 GNSS アンテナ ANN-MB-00 を同社の小型受信機 ZED-F9P で受信し, Android 携帯を通じて RTK (Realtime Kinematic) 測位を行えるよ うにした手順について詳述する.具体例として、本郷キャ ンパス内の13地点において重力測定・RTK 測位を行った 結果を紹介する、本郷キャンパスにおける測定は、本学理

学系研究科の地球観測実習(2021年度)の一環として行われたものである。

小型 GNSS 受信機のセットアップ

標準的な携帯電話に付属する GNSS 受信機は搬送波の 位相を取得できないため、その位置決定精度は数 m に限 られてしまう.そのため携帯電話では、重力探査に必要な 鉛直方向の位置決定精度を得ることは出来なかった.しか し近年、小型の2周波対応 GNSS アンテナおよび受信機 が低価格で入手できるようになりつつある(高須,2022). 本報告では、u-blox 社の GNSS アンテナ ANN-MB-00 と 同社の小型受信機 ZED-F9P について取り上げる.ZED-F9P については地殻変動観測のための受信機として用い ることを提案している研究グループも存在する(小門, 2020).ちなみに、これらの製品の購入に要した金額は、 リチウムイオン電池のモジュールと合わせても10万円以 下であった.

図1に本目的のために構築した GNSS 観測体制の模式図 と実際の写真を示す.プラスチック製の工具箱の中にリチ ウムイオン電池モジュール(日泉社製12VC100,容量100 Wh)および受信機を収納し,手軽に運搬できるようにし た.全体の重量は1kg程度である.この構成で昼間8時間 程度の連続測定には十分であった.受信機にはBluetooth 通信モジュール(SparkFun Electronics 社製WRL-12576) が取り付けられているため,操作者はAndroid 携帯端末 から測位情報を閲覧できる.測位情報を閲覧するための Android アプリについては様々な種類のものが流通してい るが,以下の3つの観点から"U-Droid Center for u-blox[®]" を選定した.

- Bluetooth を用いた受信機との通信が行えること
- NTRIP (Networked Transport of RTCM via In-

²⁰²²年9月5日受付, 2022年9月26日受理.

[†] r-nishi@eri.u-tokyo.ac.jp

^{*} 東京大学地震研究所

^{*} Earthquake Research Institute, The University of Tokyo.

図 1. 工具箱に収納して運搬できるようにした GNSS アンテナと小型受信機.

ternet Protocol) 方式によって基準点データを受信 でき, RTK 測位が行えること

 標高だけでなく楕円体高を表示すること(観測終了 後に「日本のジオイド2011」Ver.1(兒玉ほか, 2014) を用いて自分で標高計算を行えるように)

受信機の詳細設定については、東京海洋大学海洋工学部海 事システム工学科 GPS/GNSS 研究室のウェブサイトにあ る情報を参照した.

本郷キャンパス内での実践例

本観測システムの最初の実践として、本郷キャンパス内 13 地点での RTK 測位および重力観測を行った. 観測は、 理学系研究科の地球観測実習(2021 年度)の一環として、 2021 年 6 月 8 日と 12 日に行われた. ちなみに、実習地と して大学キャンパスを用いた理由は、2020 年初頭から猛威 を振るう新型コロナウイルス感染症(COVID-19)の影響 で合宿形式の実習を行うことが難しくなったためである.

図2に本郷キャンパスの地図と観測点の配置を示す.4 名の受講者は2グループに分かれ,地震研究所2号館を起 点としてそれぞれ野外の6地点で相対重力観測を行った. 重力計にはLaCoste & Romberg型相対重力計(シリアル ナンバーG875)を用いた.引率者である西山は,受講者が 重力測定を行う傍らで本観測システムを用いた RTK 測位 を行った.RTK 測位には,東京都文京区のCQ出版社が善 意で提供している基準点情報を使用した(参照「善意の基 準局掲示板」).一点の重力測定に掛かる時間は10分に満 たないが,13 測点中11点で整数値バイアスが求まった安

図 2. 本郷キャンパスでの重力測定/RTK 測位の測点配置.

定した測位解(RTK Fixed)が決定された.残る2点(「低 温センター前」と「東洋文化研究所前」)では精度の良い解 は求まらなかった(RTK Float).両地点ともに、上空が樹 木や建物により覆われているためにGNSS衛星からの電波 が届かなかったことが原因であると思われる.

測位精度の評価

表1に RTK 測位によって決定された座標を示す. 楕円 体高から標高への変換には,日本のジオイド 2011」Ver.1 (兒玉ほか,2014)を用いた.表1には国土地理院が発行

表 1.	RTK 測位結果および重力測定値	(* 地形密度を 2.67 g/	 m³と仮定した単純ブーゲー異常を表示。 	地形補正を行っていない
------	------------------	------------------	--	-------------

Gravity station	Latitude	Longitude	Ellipsoidal	RTK	Geoid	Elevation	DEM	Gravity	Gravity Ano	Gravity Anomaly (mgal)	
	(degree)	(degree)	height (m)	solution	height (m)	(m)	(m)	(mgal)	Freeair	*Bouguer	
安田講堂前	35.7132953	139.7616759	60.34	FIX	36.91	23.43	23.5	979785.479	-1.86	-4.49	
図書館前	35.7121539	139.7607104	60.66	FIX	36.91	23.75	23.9	979784.527	-2.59	-5.27	
医学部2号館前	35.7109259	139.7616722	60.29	FIX	36.89	23.40	23.6	979785.095	-2.01	-4.65	
東洋文化研究所前	35.7091873	139.7616971	59.85	FLOAT	36.88	22.97	22.9	979784.554	-2.62	-5.18	
本部前	35.7090423	139.7635026	58.96	FIX	36.87	22.09	22.2	979785.053	-2.32	-4.81	
御殿下	35.7127402	139.7639125	53.38	FIX	36.9	16.48	16.6	979787.431	-1.99	-3.85	
アブルボア前	35.7175111	139.7620271	55.76	FIX	36.94	18.82	17	979788.458	-1.25	-3.15	
農学部農場	35.7166321	139.7619846	54.51	FIX	36.94	17.57	17.7	979788.215	-1.20	-3.18	
工学部1号館前	35.7140365	139.7602210	60.28	FIX	36.92	23.36	23.5	979785.829	-1.57	-4.20	
弥生門前	35.7146966	139.7627440	50.31	FIX	36.92	13.39	13.5	979788.550	-2.00	-3.51	
低温センター前	35.7157071	139.7643131	64.29	FLOAT	36.92	27.37	16.1	979788.415	-1.42	-3.22	
浅野キャンパス裏	35.7163149	139.7654756	45.00	FIX	36.92	8.08	8.2	979790.607	-1.71	-2.63	
T-37(地震研前駐車場)	35.7184814	139.7596114	58.18	FIX	36.96	21.22	21.3	979787.460	-1.00	-4.81	

図 3. (a) 本研究により得られた本郷キャンパスの単純ブーゲー異常図(仮定密度 2.67 g/cm³). 点線(緑)は, b の広域なブーゲー異 常図から抽出したコンター. (b) 産業技術総合研究所 GALILEO データベース(https://gbank.gsj.jp/gravdb/index.php) による関東平 野のブーゲー重力異常図(仮定密度 2.67 g/cm³). 黄色の点は本郷キャンパスの位置を表す.

する「基盤地図情報(数値標高モデルDEM5A)」から得 られた航空レーザー測量の標高値を併記している.RTK Fixedの解が求まった11点のうち,アブルボア前を除く 10点では,両者の標高値の差が20cm以内に収まった(残 差の平均値は-11cm,標準偏差は4cm).測位精度の厳 密な議論には,電子基準点/水準点/三角点においてRTK 測位を行うことが望ましいが(例えば,小林,2020), 0.1 mgal 程度の精度を目指す重力探査には十分な精度を発 揮していることが確認できた.次節で述べる重力解析には, RTK Float となってしまった点については,DEM5Aの 数値標高値を用いることにした.

本郷キャンパスの重力異常図

表1に観測された重力値を示す.これらは、観測中の潮 汐による重力の時間変動を補正した後の値である(GOTIC2 を使用、Matsumoto et al., 2001).絶対値への換算には、 地震研究所2号館地下の絶対重力計による観測値を基準と した.図3(a)に、地形密度を2.67g/cm³と仮定して単 純ブーゲー補正を行った重力異常図を示す.ブーゲー異常 の最大値は本郷キャンパスの北東部で約-2.5 mgal、最小

値は南西部で約-5.0 mgal となった. 北東から南西にかけ てブーゲー異常値が減少する一定の傾向が見られた(約 3mgal/km). 同図には、産業技術総合研究所が発行する ブーゲー異常図(同じく仮定密度 2.67 g/cm³)のコンター を示した(緑・点線).ブーゲー補正の方法と精密さが異 なるため,重力異常値の絶対値は異なるものの,北東-南 西にかけてのブーゲー異常値の減少傾向については良い一 致が見られた.図3(b)には産業技術総合研究所が発行 する関東地方のブーゲー異常図を示した. 関東平野に拡が る負のブーゲー異常の成因については、基盤岩深度つまり 低密度な堆積層の厚さの分布を反映していると考えられて いる(長谷川・駒澤, 1990;纐纈, 1993;鈴木, 2002). この考えの下では、本研究で得られた北東-南西方向の ブーゲー異常値の減少傾向は、筑波山(岩盤が露出)から 横浜方向にかけて堆積層が分厚くなっていることを反映し たものと結論付けられる.

議論・まとめ

本研究は、小型の GNSS 受信機による RTK 測位を行う ことで、約 20 cm の精度での標高測定が短時間で可能にな ることを実証した.この精度は重力探査には十分であり、 GNSS アンテナ・受信機の軽量化も相まって、観測の機動 性が飛躍的に向上した.

RTK 測位には基準点が必要であり、従来は基準点を自 ら準備する必要があった.本観測では、設置者の善意で公 開されている基準点情報を利用した.近年は、国土地理院 の電子基準点、民間携帯電話事業会社の基準点の情報を前 述のNTRIP方式で配信するサービスが始まっているため、 これらのサービスを利用すれば日本の全土で本観測と同等 の精度が得られると見込まれる.このことは、無人重力探 査のフロンティアを拡げることにもつながるだろう.ド ローン・自動運転車などにこれらのシステムを搭載すれば、 火山の火口の中など人間が立ち入れない遠隔地での重力探 査などが行えるかもしれない.

謝辞:小型GNSS受信機の購入に際して東京大学卓 越研究員制度の支援を受けました.産業技術総合研究所 GALILEOデータベースが公開している重力異常図を使用 しました.国土地理院のウェブサービス「地理院地図」を 用いて、基盤地図情報(数値標高モデルDEM5A)を取得 し使用しました.本報告記事の投稿に際して、2名の査読 者から有益な助言・コメントを戴きました.ここに記して 感謝致します.

文 献

- Balmino, G., N. Vales, S. Bonvalot and A. Briais, 2012, Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies, *J. Geod.*, **86**, 499–520, doi : 10.1007/s00190-011-0533-4.
- 長谷川功・駒澤正夫, 1990, 関東平野の基盤構造, 地質ニュース, 432, 37-44.
- 小林裕之,2020,低コスト2周波GNSS受信機による開空間での 静止測位と後処理解析の事例報告,森林利用学会誌,35,159-165,doi:10.4005/jjfs.104.1.
- 兒玉篤郎・宮原伐折羅・河和 宏・根本 悟・黒石裕樹, 2014, ジオイド・モデル「日本のジオイド 2011」(Ver. 1)の構築,国 土地理院時報, 126, 67-85.
- 小門研亮, 2020, 低価格アンテナ・受信機を用いた GNSS 連続観 測システムの開発, 日本測地学会講演会要旨, 134, 135-136.
- 纐纈一起, 1993, 基盤構造の探査, 地震2, 46, 351-370, doi: 10.4294/zisin1948.46.3_351.
- Matsumoto, K., T. Sato, T. Takanezawa and M. Ooe, 2001, GOTIC2: A program for computation of oceanic tidal loading effect, 測地学会誌, 47, 243-248, doi: 10.11366/sokuchi1954. 47.243.
- 村田泰章, 2013, 日本重力図マップデータ, 日本重力データベー ス DVD 版, 数値地質図 P-2, 産業技術総合研究所地質調査総 合センター.
- Nishiyama, R., S. Miyamoto and S. Nagahara, 2020, Estimation of the bulk density of the Omuro scoria cone (Eastern Izu, Japan) from gravity survey, 震研彙報, 95, 1-7, doi: 10.15083/0002000093.
- Nishiyama, R., S. Miyamoto, S. Okubo, H. Oshima and T. Maekawa, 2017, 3D density modeling with gravity and muonradiographic observations in Showa-Shinzan lava dome, Usu, Japan. *Pure Appl. Geophys.*, 174, 1061–1070, doi : 10.1007/ s00024-016-1430-9.
- Pavlis, N.K., S.A. Holmes, S.C. Kenyon and J.K. Factor, 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), *J. Geophys. Res.*, 117, B04406, doi: 10.1029/2011JB008916.
- 産業技術総合研究所 GALILEO データベース, https://gbank.gsj. jp/gravdb/index.php, (参照 2022-06-27).
- 鈴木宏芳, 2002, 関東平野の地下地質構造, 防災科学研究所研究 報告, 63, 1-19, doi: 10.24732/nied.00001131.
- 高須知二,2022,実用元年! cm 級 GPS 大実験:イントロダクショ ン2:増えてきている!低価格な高精度 GPS 受信機,トランジ スタ技術,2022-1,41-45.
- 東京海洋大学海洋工学部,1cmの精度の自作スマホナビを作って みよう,2020, https://www.mirai-kougaku.jp/laboratory/pages/ 200306.php, (参照 2022-06-27).
- 東京海洋大学海洋工学部海事システム工学科 GPS/GNSS 研究室 ウェブサイト, https://www.denshi.e.kaiyodai.ac.jp/gnss_tutor/ report.html, (参照 2022-06-27)
- 善意の基準局掲示板, https://rtk.silentsystem.jp/, (参照 2022-06-27).