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Abstract

Recently we developed a new formulation of numerical integration of orbital motion named
manifold correction methods [4, 5, 6, 7, 8, 9]. The main trick is to keep rigorously the
consistency of some physical relations such as that of the orbital energy, of the orbital
angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is
done by applying a sort of correction to the integrated variables at every integration step.
Typical methods of correction are certain geometric transformation such as the spatial scaling
and the spatial rotation, which are commonly used in the comparison of reference frames,
or mathematically-reasonable operations such as the modularization of angle variables into
the standard domain [—m, 7). The finally-evolved form of the manifold correction methods
is the orbital longitude methods [9, 10, 11, 14], which enable us to conduct an extremely
precise integration of orbital motions. In the unperturbed orbits, the integration errors are
suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases,
on the other hand, the errors initially grow in proportion to the square root of time and
then increase more rapidly, the onset time of which depends on the type and the magnitude
of perturbations. This feature is also realized for highly eccentric orbits by applying the
same idea to the KS-regularization [12, 13, 15]. Especially the introduction of time element
greatly enhances the performance of numerical integration of KS-regularized orbits whether
the scaling is applied or not.

1 METHODS OF MANIFOLD CORRECTION

In short, the new method is a modern revival of Nacozy’s original idea [19] to correct the
integrated orbits during the integration process to ensure that they exactly lie on a certain
manifold containing the true solution such as an energy-constant hypersurface by a kind of
projection operation. It was first named as the methods of manifold correction by Murrison
[18]. Later Hairer discussed it independently and called it the projection method [16].

The simplest example [4] of the manifold correction is to maintain the Kepler energy relation,

K=T-U (1)

where T = #2/2 is the kinetic energy and U = p/r is the (negative) gravitational potential
energy. The correction is achieved to all the binary subsystems by applying the single spatial

scaling,
(#,0) = (o, 00), (2)

at every integration step. This form of correction was motivated by a theoretical examination
of the manner of error growth of a circular motion by the simplest integrator, the Euler method
[4]. Here the scale factor o is determined from the solution of an associated cubic equation,

To* — Ko —U =0, (3)

numerically by means of the Newton method starting from an obvious initial guess o9 = 1.
See Figure 1, which compares the error growth of a Keplerian orbit obtained by the standard
method to integrate the equation of motion in rectangular coordinates directly and that with
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Figure 1: Illustrated are the errors in the mean longitude at epoch as functions of time in a
log-log scale. Integrated was a moderately eccentric (e = 0.1) Keplerian orbit by (1) the stan-
dard method to integrate directly in rectangular coordinates, (2) the scaling method for Kepler
energy consistency [4], and (3) the antifocal longitude method [11]. The adopted integrator
was the eleventh order implicit Adams method in the PECE mode (predict, evaluate, correct,
evaluate), the step size was fixed through the integration and set as 1/90 the orbital period, the
starting tables were prepared by Gragg’s extrapolation method, and the errors were measured
by comparing with the reference solutions obtained by the same method, the same integrator,
and the same model parameters but with half the step size. Since the order of the integrators
are sufficiently high, halving the step size eliminates almost all the truncation errors.

the aforementioned single scaling for the Kepler energy, K, which becomes a constant in this
unperturbed case. This figure shows that the well-known quadratic increase of the integration
errors is reduced to a linear growth, which has been observed for a limited type of integration
scheme; the symplectic integrator and the symmetric linear multistep method. The observed
difference in the rate of error growth, which was partially enhanced by the introduction of some
Encke-like technique to reduce the effect of round-off error accumulation [3], will lead to a large
difference in the magnitude of integration error in the long run.

In case of perturbed orbits, the Kepler energy is no more a constant. Then we follow its time
development by integrating its equation of motion simultaneously with that of the position and
velocity. The good performance of the scaling method is unchanged as seen in Figure 2, which
illustrates an example of n-body integration; Mercury’s error growth in the integration of the
Sun and nine major planets.

The effectiveness of manifold correction methods is independent on various aspects of the
orbit integration such as the method of integration (Runge-Kutta, extrapolation, or linear mul-
tistep), the type of base orbits (elliptic, parabolic, or hyperbolic), the kind of perturbations
(autonomous or not, conservative or not, velocity-dependent or not, etc.) [4].
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Figure 2: Same as Figure 1 but for the longitude error of Mercury in the simultaneous integration
of the Sun and nine major planets for half a million years. The step size was chosen relatively
large as around 1.4 days.

2 ORBTIAL LONGITUDE METHODS

The Kepler energy is not the only quantity suitable to be monitored for the manifold correction.
Any quasi-conserved quantity can be used additionally. Then we refined the single scaling
method by adding such quantities as (1) a quantity related to the Laplace integral [5], (2) the
orbital angular momentum [6], and (3) the full Laplace integral vector [7]. Such extensions
enhance the performance but at the cost of increase of computational effort.

Next we developed some simplified version of the last evolved form, the linear transformation
method [7], by reducing the complexity of the manifold correction by some sets of variable
transformation [8, 9]. Finally we arrived a method requiring no manifold correction, which
we named the (original) orbital longitude method [9]. The method uses a set of six variables
consisting of (1) L as the three rectangular components of the orbital angular momentum, (2) g
as a true orbital longitude measured from a certain longitude origin solely determined from I_:,
and (3) P4 and Pp as the two on-the-plane components of the Laplace integral vector.

To our surprise, the application of the modularization of angle ¢g into the standard range
[—m, m) at every integration step leads to no growth of integration error if the integration method
is sufficiently precise, say the eleventh order implicit Adams method with the step size as 1/90
the orbital period [10]. The true longitude is not the only orbital longitude to be used. By
replacing it with the antifocal longitude, we enhanced its performance further [11]. Here the
antifocal longitude is an orbital longitude with the coordinate origin as not the primary focus
but the secondary one.

See Figure 1 again which shows the superiority of this antifocal longitude method over the
standard and the single scaling method. Note that this slowness of the error increase also
means that the accumulation of round-off errors, which is usually expected to grow in the 1.5
power of the time, is also suppressed. As far as the author knows, this is the first exception of
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Brouwer’s law [2]. We think that this exceptional phenomenon was caused by transforming the
second-order differential equation in rectangular coordinates to the first-order one in the orbital
longitude. Its example is the equation of time development of true anomaly in the Keplerian
motion,

df

dt
which is nothing but a rewriting of Kepler’s second law or the defining relation of the angular
momentum.

In fact, we observed that the presence of the perturbations only enlarges this zero-growth
to the square-root-growth as was already observed in Figure 2. This low rate of error growth is
understood by the statistical accumulation of zero-mean random errors. Of course, this is only
for some initial phases and the actual integration errors will increase more rapidly when the
truncation errors become dominant. In any sense, these changes in the manner of error growth
has led to a drastic decrease of the overall integration errors as seen in Figures 1 and 2.

Recently, we elaborated these orbital longitude methods by introducing Sundmann’s time
transformation [14], which enhances the original orbital longitude methods especially in the
highly eccentric cases.

v(1 +ecos f)? where v=n(1 —62)_3/2, (4)

3 APPLICATION TO KS-REGULARIZED MOTION

The concept of the manifold correction is not limited to the direct integration in rectangular
coordinates. Since the two orbital longitude methods [9, 10, 11] loose their efficiency in highly
eccentric cases, we applied the same idea to the Kustaanheimo-Stiefel (KS) regularization.
In terms of the KS-regularized orbital motion, the Kepler energy relation reduced to that of,
H, the total energy of the four-dimensional harmonic oscillator, i, associated to the regulariza-
tion;
H=T+YV, (5)

where T' = (@')? /2 and V = —(K/2)@? are the kinetic and potential energies of the associated
four-dimensional harmonic oscillator, and ' denotes the differentiation with respect to the ficti-
tious time, s, the independent variable in the KS regularization. Again the correction is done
by the single scaling. This time the scale factor is explicitly evaluated as

_ H
U—‘/m. (6)

In late 1970’s, Mikkola invented a similar device to correct the KS variables to maintain the or-
bital energy (E) and the magnitude of the orbital angular momentum (J) of a binary subsystem.
Then Aarseth named it the EJ scaling [1]. We confirmed that the single scaling to maintain the
Kepler energy consistency in terms of the KS variables is slightly better than the EJ scaling [12].
Next we developed it into the quadruple scaling method, which adjusts all the four components
of the harmonic oscillator associated with the KS regularization [13].

See Figure 3 showing the performance of these two scaling methods. Again the scaling
reduces the error growth rate from quadratic to linear in the long run, although the appearance
of some amount of periodic errors are unchanged. The quadruple scaling provides the better
performance. However, we should note that this is at the cost of increase of variables to be
integrated simultaneously from 10 to 13.

Unfortunately, even the quadruple scaling method could not achieve the zero growth of
integration error. Therefore we examined the origin of the quadratic and linear error growth in
the KS regularization with and without the scaling.
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Figure 3: Similar as Figure 1 but for a highly eccentric (e = 0.6) orbit integrated by the methods
using the KS regularization; (1) the original KS regularization [20], (2) the single scaling method
[13], (3) the quadruple scaling method [13], (4) the KS regularization using the time element
in a primitive form, (5) the single scaling using the time element [15], and (6) the quadruple
scaling using time element [15]. The symbol ‘+T’ denotes the usage of time element. Most of
the curves are multiplied with some factors to avoid an overlap with others. The step size in
the fictitious time was fixed through the integration and made so large that one orbital period
in the real time is covered by only 36 steps. The order of the Adams method was set as that
led to the least errors; the 13th for the two methods of quadruple scaling, and the eleventh for
the others.

During the course of investigation, we unexpectedly discovered that the integration error of a
harmonic oscillator can be reduced to achieve the zero-growth manner if the integrator adopted
is sufficiently precise. Also we found that the cause of total error growth lies in integrating the
development equation of physical time

t=r

. (7)

Once Stiefel [20] proposed to integrate not the physical time, ¢, but its function named the time

element, T, defined as
1
th—<—K>ﬁ-(ﬁ)'. (8)

A primitive form of the equation of motion of 7 becomes as

1 2
! —\/
9
=r < > [(u)] +ee, (9)
where we omitted the terms reducing to zero in the case of unperturbed motion. Adoption of

this primitive form leads to the supression of periodic part whose appearance is eminent in the
initial phases as seen in Figure 3.
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On the other hand, if one rewrites the first two terms by using the Kepler energy relation,
the above equation of motion is further simplified as

T':—(%)—F---, (10)

where the first term remains to be a constant in the limit of unperturbed case. Namely the
motion of the time element reduces to a linear function of the fictitious time in the limit of
unperturbed orbits, which can be integrated error-free by any kind of proper integrator. We
confirmed that the combination of this elaborated form and the quadruple scaling guides us
to the zero growth of unperturbed orbit integration in the KS-regularized formulation as was
already shown in Figure 3.

In any case, the magnitude of the periodic error observed commonly in the KS regularization
integrating the physical time, ¢, no longer appears after its replacement by the time element, 7.
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