InSARによる2007年中越沖地震に伴う 地殻変動の観測と断層モデル

古屋正人¹, 高田陽一郎¹, 青木陽介² 1. 北海道大学大学院理学研究院自然史科学部門 2. 東京大学地震研究所

Background figure C

Dense GPS network, "GEONET"

>1200 stations

Monitoring earthquakes and volcanoes.

Is InSAR necessary? Absolutely, yes!!

Tectonic Setting

- 1. A "diffuse" plate boundary between EU (AM?) and NA (OK?).
- 2. Strain concentration(Niigata Kobe Tectonic Zone Sagiya et al., 2000)
- 3. Large inland earthquakes ... 1964, 2004, 2007 (July 16)

4. Active folding and thick Sedimentary layer
(Ikeda, 2002; Sato and Kato, 2005; Okamura et al., 2007)

ALOS/PALSAR Observation

Ascending 2006/09/11 2007/06/14 2007/07/16 (EQK) 2007/09/14 2007/10/30

> Ascending+ 2007/07/13 2007/08/28

Descending 2007/01/16 2007/07/16 (EQK) 2007/07/19 2007/10/19

ALOS/PALSAR InSAR -descending-

ALOS/PALSAR InSAR -descending stack-

 Toward sat.
 Away from sat.

 > -11 (cm)
 0
 < +11 (cm)</td>

ALOS/PALSAR InSAR –ascending-

0

Toward satellite > -6 (cm)

Away from satellite < +6 (cm)

ALOS/PALSAR InSAR –ascending stack-

ALOS/PALSAR InSAR -another ascending track-

Jul 13 '07 - Aug 28 '07

Away from satellite < +6 (cm)

Toward satellite > -6 (cm)

0

How large are atmospheric "noises"?

How do we interpret the observation?

Broad signals near the epicenter

- Main shock fault
 - A simple SE dipping fault
 - Constrained by aftershock data

Localized but significant signals near an anticline axis

 Aseismic faults around the fold (Nishiyama hill).

>> Goal: To infer these faults location, geometry and slip distribution

Aseismic slip: West-dipping, or East-dipping?

Simple forward modeling: L=25 km, W=10 km, dep.=10 km, slip=0.1 m, dip=30 deg.

Modeling (1) : InSAR descending

Modeling (2): InSAR ascending

d. "Obs" (aseismic) e. Cal (aseismic) f. Resid

-5

Fault location and geometry

Main shock: bottom 13km, top 0.8 km dip 40°, strike 47°

Aseismic(?) 1: bottom 10 km, top 0.5 km dip 47°, strike 40°

Aseismic 2: bottom 6 km, top 1.3 km dip 15°, strike 40°

Slip distribution: Main shock fault

Mw 6.62 (30 GPa)

Seismological estimates

Mw 6.7 (Aoi et al., 2007, NIED HP.) Mw 6.6 (Hikima and Koketsu, 2007, ERI HP.) Mw 6.7 (Yamanaka, 2007, NGY HP.) Mw 6.6 (Yagi, 2007, Tsukuba U HP.)

Slip distribution: Aseismic faults

Mw 5.96 and Mw 5.98

"Aseismic" effects -Descending-

Aseismic deformation of a fold-and-thrust belt

Fielding et al. (2004), Geology, 32(7), 577-580.

SAR image was acquired 6 months after the earthquake. When did the aseismic slip take place?

When did the aseismic slip take place?

The earliest post-earthquake image was acquired 3 days after the quake.

Conclusion & implications

- Besides the coseismic deformation due to the main shock fault, significant aseismic deformation was observed near a fold axis, ~15 km away from the epicenter, and turned out to terminate mostly within 3 days. ...This data is only detectable by InSAR.
- The aseismic slip was modeled as a combination of west-dipping fault (Mw5.96) to the NW and east-dipping fault to the SE (Mw5.98).
- Aseismic growth of a fold -> Low "seismic hazard"
- Inland areas need to be monitored even during an absence of earthquake.

Acknowledgement

- The ownership of PALSAR data belongs to JAXA/METI. PALSAR level 1.0 data are shared among PIXEL, and provided from JAXA under a cooperative research contract with ERI, Univ. Tokyo.
- GEONET F2-solutions were provided from GSI.
- Hypocenter data was provided from Dr. A. Kato@ERI.
- ASTER DEM is based on ASTER Data beta processed by the AIST GEO Grid from ASTER Data owned by METI.
- MF and YT are supported from the grant-in-aid for scientific research, JSPS (19340123).