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1.0 MOTIVATION OF CAPACITY CURVE EXTRACTION 

 

1.1 Need for structural health monitoring 

 

Following major seismic events, visual inspections of building damage are often required to evaluate if 

it can be safely occupied. Such inspections are time consuming, especially in an area with dense 

building stock and limited number of engineers. This may result in occupants being unnecessarily 

displaced from safe buildings for a long duration of time while waiting for their building to be evaluated 

which can cause significant loss of income or added strain on temporary shelters. On the other hand, 

such inspections may be subjective, and damage may be hidden behind other building components or 

misdiagnosed. This can lead to unsafe buildings mistakenly being judged as safe which could lead to 

significant injuries and death if it collapses during a strong aftershock or future seismic event. 

 

Due to the above issues, there is a need for another method of evaluating building damage to either 

replace or supplement visual inspections. Recently, structural health monitoring is seen as a potential 

solution to these issues. While there are many methods available in literature, the capacity curve 

extraction method proposed by Kusunoki et al. (2018) with further modifications by Yeow et al. (2022) 

is the focus of this implementation. Details on the Matlab and Python implementations are provided in 

Section 2.0. Further descriptions on the theory and application of their methodology are described from 

Sections 3.0 to 8.0, and an example is provided in Section 9.0. 

 

1.2 Benefits of adopted capacity curve extraction 

 

As mentioned in the previous section, there are many methods available in literature to perform 

structural health monitoring, such as monitoring changes in dynamic behavior with time or using Kalman 

filters. However: (i) a building’s dynamic properties may not be sensitive to building damage, (ii) 

hysteretic and/or building models often need to be created or assumed for such implementations, and 

(iii) such methods may be sensitive to noise in the recordings. On the other hand, the approach proposed 

by Kusunoki et al. (2018) only requires floor acceleration recordings and an estimate of the distribution 

of floor masses along the height of the building. Furthermore, modifications by Yeow et al. (2022) 

enabled the method to be automated and unbiased, which allows for it to be easily adopted in 

engineering practice. 

 

1.3 Application to assessing building damage 

 

The implemented methodology and theory discussed in this document are for the purposes of extracting 

out the capacity curve of a building’s response during an earthquake. There are several possible ways 
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to use such information to assess building damage which are currently not included in the 

implementations. These are described in Kusunoki (2020) and Yeow et al. (2022). Some examples 

are shown in Figure 1-1, where building damage can be classified using the extent of ductility response 

(Figure 1-1a). Alternatively, the safety can be judged by the possibility of exceeding its safety limit during 

a strong aftershock of equal intensity to the main shock (Figure 1-1b).  

 

Figure 1-1. Applications of extracted capacity curve for evaluating damage (Yeow et al., 2022); 

(a) consideration of ductility response, and (b) evaluation of safety for aftershock of equal 

intensity as main shock 

 

Kusunoki (2020) proposed that the boundary between moderate and severe damage can be based on 

the maximum ductility response permitted before the safety limit is exceeded during the strong 

aftershock, μ*, and proposed the following to evaluate this ratio: 

𝜇∗ =
1

16
(4.41𝜇𝑆𝐿 + 7.98√𝜇𝑆𝐿 + 3.61) (1-1) 

 

Where μSL is the ductility response corresponding to the safety limit state. 

 

The boundary between minor and moderate damage is set to be the halfway point between yield (i.e., 

μ = 1.0) and μ*. The values shown in Figure 1-1a correspond to μSL being approximately 6. 

 

In order to determine the extent of ductility response, a trilinear fit is required for reinforced concrete 

buildings. Such methods are available in literature (i.e., Wang et al. (2021)) but was not incorporated 

into the Matlab and Python implementations at this stage as other potential methods of evaluating 

building damage are currently still under investigation. 
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1.4 Limitations of adopted capacity curve extraction method 

 

Extensive validation of the methodology had been performed by Yeow et al. (2022) considering 

reinforced concrete (RC) frame buildings. However, they noted several limitations of the methodology. 

Users should be aware of these limitations before using the functions. 

 

Firstly, the methodology was unable to properly consider long-period components of building 

displacement response. This is due to a combination of: (i) the zero-mean nature of wavelets which 

were used to filter out frequency components, (ii) the use of double integration to estimate displacements 

from acceleration data, and (iii) long period components being indistinguishable from noise components. 

This can lead to an underestimation of displacement response.  

 

The second issue is the current inability to consider time-variation in the contribution of various 

frequency components to the predominant mode of response. In reality, building damage may result in 

the frequency of higher-mode components decreasing and overlapping that of the predominant 

response mode during elastic response, and hence higher-mode components may be incorrectly 

included in the final extracted capacity curve. Conversely, inelastic response may be incorrectly filtered 

since its frequency could overlap long-period noise components during elastic response. Methods to 

address the time-variation in the contributions are currently being researched. 

 

The final issue is that while the methodology is applicable to multistory buildings, it essentially 

condenses the response down into an equivalent single-degree-of-freedom system. This raises the 

question on whether the method is capable of capturing the response of the building if a higher-mode 

type failure occurs, such as the case where a soft-story failure occurred near the top of the building. 

This mode of failure should be rare given modern engineering practice, but the ability to capture such 

damage mechanisms if it does occur is still beneficial. 

 

Due to the above issues, users are cautioned against applying this framework to buildings exhibiting 

elastoplastic hysteretic behavior in its current state. Further research is being performed to address 

these limitations, and such changes will be implemented into the functions in the near future. 
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2.0 INSTALLATION AND USAGE GUIDE 

 

2.1 Matlab version 

 

2.1.1 Setting up Matlab version 

 

The Matlab version of the code requires no special setup. However, it does require the Wavelet Toolbox 

product in addition to the basic version of Matlab. Once these are installed, the script can be immediately 

executed.  

 

2.1.2 Matlab version description 

 

Function call command 

SelectedRanks = capcurvemaster(TotalAcc, dT, ...) 

 

Input parameters 

Required inputs: 

Parameter Description 

TotalAcc Matrix containing total floor acceleration data in units of "g". Matrix 

should have dimensions of SigLength by NumF, where SigLength is 

the length of each floor recording signal, and each NumF is the 

number of floors in the building (including ground and basement floors 

if applicable). Each subsequent column should correspond to each 

subsequent floor level in increasing order. E.g., column [1] should be 

the lowest floor, while column [NumF] should be the roof level 

dT Timestep between each recorded data. This is assumed to be constant 

and in units of seconds 
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Optional inputs: 

Parameter Description 

Mass A row of floor mass values, with each entry corresponding to the 

corresponding floor from " TotalAcc ". E.g., the last entry in Mass 

should correspond to the mass of the roof level.  

Note 1: if this row is not provided, it will be assumed that the mass is 

the same on all floors of the building. 

Note 2: if the user specifies this row themselves, it must have 

dimensions of 1 by NumF. If this condition is not satisfied, the function 

will terminate prematurely. 

wname The mother wavelet adopted for performing the discrete wavelet 

transform method. DEFAULT - 'sym10' 

plotflag A 1 by 3 entry which flags which figures should be plotted  

plotflag(1) = 1: plot individual rank hysteretic response 

plotflag(2) = 1: plot tentative hysteretic response 

plotflag(3) = 1: plot final extracted backbone curve 

Note: if any other values are used for flags, the corresponding plot will 

not be generated 

 

Optional output file names (NOTE: if not provided, the corresponding output file will not be generated) 

Parameter Description 

outrankd Name for file containing representative response for each individual 

rank 

outrank Name for file containing properties of each individual rank 

outcombd Name for file containing floor response considered selected ranks only 

outhyst Name for file containing tentative representative displacement-

acceleration hysteresis 

outscurve name for file containing skeleton curve 

 

Output parameters 

Parameter Description 

SelectedRanks List of selected ranks 

 

Required toolboxes 

⚫ Wavelet toolbox (https://www.mathworks.com/products/wavelet.html) 
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2.1.3 Matlab version call function application 

 

As described in Section 2.1.2, the call function to run the application in Matlab is: 

>>SelectedRanks = capcurvemaster(TotalAcc, dT, ...) 

 

“TotalAcc” and “dT” are variables and can be applied without firstly defining the parameter name. On 

the other hand, all optional inputs require the parameter name to be called first before providing the 

corresponding value or text.  

 

For example, if we have m floor recordings, each with a length of n with a timestep of Tstep, and we 

want to export the final capacity curve into a file named ‘Temp.txt’, we can assign the variables as: 

 

>>TotalAcc =  [A11 A12 A13 … A1m 

  A21 A22 A23 … A2m 

  A31 A32 A33 … A3m 

  … … … … … 

  An1 An2 An3 … Anm]; 

 

>> dT =Tstep; 

 

>> M =  [M1 M2 M3 … Mm]; 

 

>> filename = ‘Temp.txt’; 

 

Where Aij is the ith total acceleration data of the jth sensor and Mj is the mass corresponding to the floor 

where the jth sensor was attached. We will need to state the ‘Mass’ and ‘outscurve’ string in order to 

call the function as follows: 

>> SelectedRanks = capcurvemaster(TotalAcc, dT, ‘Mass’, M, ‘outscurve’, filename) 

 

Alternatively: 

>> SelectedRanks = capcurvemaster(TotalAcc, dT, ‘Mass’, [M1,M2,M3,…,Mm];, ‘outscurve’, ‘Temp.txt’) 

 

NOTE: The optional inputs do not have to be specified in the same order listed in Section 2.1.2. For 

example, ‘outscurve’ can be defined before ‘Mass’. However, the subsequent input must be related to 

the specified parameter name (i.e., M must come after immediately ‘Mass’, and filename must come 

immediately after ‘outscurve'). 
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2.2 Python/Pycharm version 

 

2.2.1 Setting up Python/Pycharm version 

 

1. Download the latest version of Python from the following link: 

https://www.python.org/downloads/ 

2. Download the latest version of Pycharm, which is a Python user interface. Other Python user 

interfaces can be used, but the remaining instructions are specific to Pycharm. Link as follows: 

https://www.jetbrains.com/pycharm/ 

3. Install both Python and Pycharm. We recommend installing both in the same drive. 

4. Download and unzip “CapCurveExtract.zip” into a folder of your choice. 

5. Open Pycharm, select “open”, and select the “CapCurveEx” folder to open the project 

 

6. Open “capcurveextraction.py”. Expand line 9 to show required packages. If a package has not been 

installed, it will be underlined in red. In the following figure for example, “matplotlib”, “numpy”, 

“pywavelets”, and “scipy” have not been installed. Note that “mean” and “signal” are also underlined 

https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/
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in red. However, these are imported from “numpy” and “scipy” packages, so it does not require any 

further installation as long as the latter two have been installed. 

 

 

7. If pywt needs to be imported, replace “import pywt” with “import pywavelets as pywt”. This is 

because the package name we want to install is “pywavelet”, but the module name needed for the 

code is “pywt”. 

 

 

8. If there are any uninstalled packages, click on the package name. A red “!” mark will appear to the 

left. Click this mark, then “Install package (package name)”. Click on this option and Python will 

automatically install the package. You will require an internet connection if the package must be 

downloaded prior to installation. The following example shows this for “matplotlib”. Repeat for all 

other packages. Alternatively, the option to install the package may also appear by hovering the 

cursor over the package name underlined in red. 
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9. If step 7 was required, replace “import pywavelets as pywt” back to “import pywt”. This is because 

the script calls for the module name, not the package name. Now that it has been installed, we no 

longer need to call for “pywavelets” 

 

 

10. Python and Pycharm should now be setup to call the function. 
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2.2.2 Python version description 

 

Function call command 

Selectedranks = capcurvemaster(data, dT, …) 

 

Input parameters 

Required inputs: 

Parameter Description 

data Matrix containing total floor acceleration data in units of "g". Matrix 

should have dimensions of SigLength by NumF, where SigLength is 

the length of each floor recording signal, and each NumF is the 

number of floors in the building (including ground and basement floors 

if applicable). Each subsequent column should correspond to each 

subsequent floor level in increasing order. E.g., column [0] should be 

the lowest floor, while column [NumF-1] should be the roof level 

dT Timestep between each recorded data. This is assumed to be constant 

and in units of seconds 

 

Optional inputs: 

Parameter Description 

Mass A row of floor mass values, with each entry corresponding to the 

corresponding floor from "data". E.g., the last entry in Mass should 

correspond to the mass of the roof level.  

Note 1: if this row is not provided, it will be assumed that the mass is 

the same on all floors of the building. 

Note 2: if the user specifies this row themselves, it must have 

dimensions of 1 by NumF. If this condition is not satisfied, the function 

will terminate prematurely. 

Wavelet The mother wavelet adopted for performing the discrete wavelet 

transform method. DEFAULT - 'sym10' 

plotflag A 1 by 3 entry which flags which figures should be plotted  

plotflag[0] = 1: plot individual rank hysteretic response 

plotflag[1] = 1: plot tentative hysteretic response 

plotflag[2] = 1: plot final extracted backbone curve 

Note: if any other values are used for flags, the corresponding plot will 

not be generated 
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Optional output file names (NOTE: if not provided, the corresponding output file will not be generated 

Parameter Description 

outrankd Name for file containing representative response for each individual 

rank information 

outrank Name for file containing properties of each individual rank 

outcombd Name for file containing floor response considered selected ranks only 

outhyst Name for file containing tentative representative displacement-

acceleration hysteresis 

outscurve name for file containing skeleton curve 

 

Output parameters 

Parameter Description 

SelectedRanks List of selected ranks 

 

Required modules 

⚫ Math 

⚫ sys 

⚫ matplotlib 

⚫ numpy 

⚫ pywavelets 

⚫ scipy 

 

Additional code(s) from Github 

wrcoef (developed by Ilya Zlotnik, 2017): https://github.com/izlotnik/wavelet-wrcoef 

 

https://github.com/izlotnik/wavelet-wrcoef
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2.2.3 Python version call function application 

 

As described in Section 2.2.2, the call function for the Python implementation is: 

>> Selectedranks = capcurvemaster(data, dT, …) 

 

“data” and “dT” are parameter values and can be applied without firstly defining the parameter name. 

On the other hand, all optional inputs requires the parameter name to be called, followed by an equal 

sign (=) and immediately followed by the parameter values.  

 

For example, if we have m floor recordings, each with a length of n with a timestep of Tstep, and we 

want to export the final capacity curve into a file named ‘Temp.txt’, we can assign the variables as: 

 

>>TotalAcc =  [A11, A12, A13, …, A1m 

  A21, A22, A23, …, A2m 

  A31, A32, A33, …, A3m 

  …, …, …, …, … 

  An1, An2, An3, …, Anm]; 

 

>> dT =Tstep; 

 

>> M =  [M1, M2, M3, …, Mm]; 

 

>> filename = ‘Temp.txt’; 

 

Where Aij is the ith total acceleration data of the jth sensor and Mj is the mass corresponding to the floor 

where the jth sensor was attached. We will need to state the ‘Mass’ and ‘outscurve’ string in order to 

call the function as follows: 

>> Selectedranks = capcurvemaster(TotalAcc, dT, Mass = M, outscurve=filename) 

 

Alternatively: 

>> Selectedranks = capcurvemaster(TotalAcc, dT, Mass = [M1, M2, M3, …, Mm], outscurve=‘Temp.txt’) 

 

NOTE: The optional inputs do not have to be specified in the same order listed in Section 2.2.2. For 

example, ‘outscurve’ can be defined before ‘Mass’.  
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2.3 Example of function application 

 

For both the Matlab and Python implementations, an example script is provided to demonstrate how 

the call function works. The corresponding script is called ‘testED2019’ and uses data from a shake-

table test of a 3-story RC disaster management center performed at E-Defense in 2019 (see Yeow et 

a. (2021) for more information on the test program). A detailed description of the calculations 

performed within the example is provided in Section 9.0. 

 

2.3.1 Calling example on Matlab 

 

To call the example on Matlab, simply open the “testED2019.m” script, then select “run” under the 

“editor” tab near the top of the editor window. 

 

 

 

2.3.2 Calling example on Python 

 

To call the example on Python, firstly select “Add Configuration” at the top right of the window. 
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In the new window, select “add new run configuration” then “Python”  

 

 

Open “testED2019.py” in the script path, select the correct Python interpreter and working directory. 

Click “Apply” then “OK”  
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The example can now be run by selecting the green triangle at the top right of the main window. 
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3.0 CAPACITY CURVE EXTRACTION OVERVIEW 

 

The capacity curve extraction methodology follows that originally proposed by Kusunoki et al. (2018) 

with further modifications made by Yeow et al. (2022). The methodology follows 8 key steps as follows: 

1) Decompose total floor acceleration signals using the discrete wavelet transform method, 

2) Calculate the relative displacement and acceleration response of the decomposed signals, 

3) Derive the representative displacement and acceleration response, as well as the effective 

mass, for each decomposition level, 

4) Calculate key parameters for the representative acceleration-displacement relationship for each 

decomposition level, 

5) Select the decomposition levels which corresponds to the predominant mode of response based 

on the key parameters obtained in step (4), 

6) Reconstruct the signal considering only the selected decomposition levels, 

7) Derive the representative displacement and acceleration response for the reconstructed signal, 

and 

8) Extract out the capacity curve. 

 

Steps 1, 2 and 3 are described in greater detail in Sections 4, 5 and 6, respectively. Steps 5 and 6 are 

detailed in Section 7, while the remaining steps are covered in Section 8. A detailed example 

demonstrating the application of the methodology is provided in Section 9. 
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4.0 DISCRETE WAVELET TRANSFORM 

 

4.1 Overview 

 

A key aspect of the capacity curve extraction methodology is the removal of frequency components 

corresponding to higher mode effects or long-period noise. To achieve this, the hysteretic response at 

a given frequency band is required to judge if it corresponds to the predominant response mode. This 

can be obtained by decomposing the floor acceleration signals into different frequency bands, followed 

by condensing the multi-degree-of-freedom (MDOF) response into a representative single-degree-of-

freedom (SDOF) response for each individual frequency range. This section will cover the signal 

decomposition process. 

 

Mathematical transforms are commonly adopted to decompose signals. A commonly applied approach 

is Fourier transforms which uses sine waves. However, since these sine waves are typically of infinite 

length and constant amplitude, the signal is only transformed in the frequency domain. Another method 

is the Wavelet Transform which uses wavelets instead. As wavelets are functions of finite length that 

begins and ends at zero, these are better able to capture localized changes in the signal.  

 

There are two main types of wavelet transforms: (i) discrete (DWT), and (ii) continuous (CWT). The key 

difference between the two approaches is that the CWT approach uses finer discretization of frequency, 

whereas the DWT approach halves the frequency with each decomposition level. While the CWT 

method does provide more detailed information in the frequency domain, the higher number of frequency 

bands does create added complexity when determining range of frequencies to remove. Instead, the 

DWT method was adopted into the methodology. There is still potential in using the CWT method, but 

research is ongoing. 

 

This section will briefly describe the DWT method in layman’s terms. Users interested in more detailed 

theoretical background on the DWT are encouraged to refer to literature. 

 

4.2 Mother wavelets 

 

The first step in performing DWT is the selection of a “mother wavelet” which will be the basis of the 

wavelet shape used for sampling from the signal. There are several different wavelet families (e.g., 

Symlets, Daubechies, Meyer, etc). Within each family, the number of vanishing moments, N, can be 

specified. A mother wavelet can be selected by specifying the wavelet family and N. For example, on 

Matlab, “sym10” refers to the Symlet family with N = 10.  
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Examples of various mother wavelets are shown in Figure 4-1. Here, a larger N usually results in a 

more complex and wider wavelet shape to enable it to represent higher-order polynomial behavior. On 

one hand, a smaller N would be better able to capture extremely localized changes in a signal. On the 

other, there is a possibility that such sudden changes may be due to noise rather than it being important 

information on the building response, and that using a wider sampling range might result in response 

which is more representative of the frequency range of interest. Given that the use of wavelets is already 

far better at capturing localized changes in the signal, and that the purpose of this method was to remove 

noise error, a wider window was desired for defining the mother wavelet, though not too wide that no 

localized changes are captured. Based on this, ‘sym10’ was adopted for calibrating the capacity curve 

extraction method and is the default wavelet used in the Matlab and Python scripts if the user does not 

specify another mother wavelet. Users are warned that the framework may not work as well if 

another mother wavelet other than ‘sym10’ is adopted. 

 

 

Figure 4-1. Examples of wavelet shape 

 

For more information on other wavelet families, please refer to the link below. Note that while the 

descriptions in the provided link were for Matlab, Python also works in a similar fashion so the theory 

would still be applicable. 

https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html 

 

4.3 Child wavelets 

 

Once a mother wavelet is selected, the wavelet’s width is scaled and translated along the time-axis to 

create child wavelets for sampling the signal. With each subsequent decomposition level, the wavelet’s 

width is doubled. An example of this is shown in Figure 4-2. 

https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html
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Figure 4-2. Examples of wavelets for different decomposition levels 

 

4.4 Signal decomposition 

 

For the first decomposition level, wavelets of the same shape as the mother wavelet with unscaled width 

was used for sampling the original signal. From this process, “detail coefficients”, which are coefficients 

associated with the wavelet function, are obtained. The signal reconstructed using the detail coefficients 

contains high-frequency components of the original signal which was “filtered” out at this decomposition 

level. Additionally, “approximation coefficients” can be obtained to capture low-frequency information 

using scaling functions. To avoid confusing readers as to the details behind scaling functions and for 

simplicity purposes, signals reconstructed from approximation coefficients can be considered as the 

“residual signal”. Denoting g0(t) as the original signal, and f1(t) and g1(t) as the signals reconstructed 

from detail and approximation coefficients during the 1st decomposition level, respectively, this 

decomposition can be simply represented as: 

𝑔0(𝑡) = 𝑓1(𝑡) + 𝑔1(𝑡) (4-1) 

 

At the next decomposition level, the child wavelet’s width is doubled, and the DWT is performed on the 

residual signal from the previous decomposition level. Therefore, the ith decomposition level can be 

represented as follows: 

𝑔𝑖−1(𝑡) = 𝑓𝑖(𝑡) + 𝑔𝑖(𝑡) (4-2) 

 

Therefore, combining equations together gives the following after N decompositions were applied: 

𝑔0(𝑡) = 𝑓1(𝑡) + 𝑔1(𝑡) 

= 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑔2(𝑡) 

= 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + 𝑔3(𝑡) 

= 𝑓1(𝑡) + 𝑓2(𝑡) + ⋯ + 𝑓𝑁−1(𝑡) + 𝑓𝑁(𝑡) + 𝑔𝑁(𝑡) 

(4-3) 
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To illustrate Equation (4-3), six levels of decomposition were applied to the roof total acceleration signal 

recorded from a 2019 E-Defense shake table test of a 3-story reinforced concrete disaster management 

center subjected to the first 150% scaled input excitation. Further information on this project can be 

found at Yeow et al. (2022). The reconstructed signals are shown in Figure 4-3. Here, the recomposed 

signal using the first level detail coefficients, f1, had very small amplitudes compared to the original signal. 

In contrast, the amplitudes of the recomposed signal using detail coefficients at the 5th and 6th 

decomposition level, f5 and f6, had large amplitudes, while the residual signal at the end of the 6th 

decomposition level g6, was small. This demonstrates that the predominant frequency component of the 

building’s response corresponds to that filtered out during the 5th and 6th decomposition levels. 

 

 

Figure 4-3. Demonstration of signal decomposition using RF acceleration signal of 2019 E-

Defense shake table test of 3-story disaster management center (150%-1) 

 

4.5 Maximum number of decomposition levels 

 

Matlab and Python have functions to determine the maximum number of decomposition levels which 

can be applied. These consider the number of datapoints and the shape and order of the selected 

wavelet. If an even higher decomposition level was considered, the length of the wavelet would be 

longer than the remaining number of coefficients, resulting in the coefficients for the next decomposition 

level to be incorrect.  

 

It should be noted that the maximum number of decomposition levels is generally smaller than that 

proposed by Kusunoki et al. (2018) which was as follows: 

Reconstructed from 

detailed coefficients 
Reconstructed from 

approximation coefficients 
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𝑛𝑙𝑒𝑣𝑒𝑙  = 𝑙𝑜𝑔2(𝑛𝑑𝑎𝑡𝑎) (4-4) 

 

Where nlevel is the maximum decomposition level which can be considered and ndata is the length of the 

signal. This approach is based on the fact that the number of coefficients half with each decomposition 

level. However, it did not take into account the length of the wavelet shape itself which the Matlab and 

Python implementation does, and thus the additional decomposition levels can be ignored. 
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5.0 MDOF RESPONSE AT EACH DECOMPOSED LEVEL 

 

5.1 Overview 

 

From Section 4, the total floor acceleration signals were decomposed using the DWT method. However, 

in order to obtain the capacity curve, the relative acceleration and displacement response are also 

required. This section briefly covers the calculation of the relative response. 

 

5.2 Calculation of relative response 

 

Let’s denote 𝑋𝑖𝑗 and 𝑋̈𝑖𝑗 as the jth decomposition level’s ith floor total displacement and acceleration 

response, respectively, while 𝑥𝑖𝑗 and 𝑥̈𝑖𝑗 are the corresponding relative response. 𝑋̈𝑖𝑗 was obtained 

from Section 4 using the DWT method. Knowing this information, we can simply obtain the total floor 

displacement as follows: 

𝑋𝑖𝑗(𝑡) = ∬ 𝑋̈𝑖𝑗(𝑡). 𝑑𝑡2 (5-1) 

 

Once 𝑋𝑖𝑗 and 𝑋̈𝑖𝑗 have been obtained, the relative response can be computed as follows: 

𝑥𝑖𝑗(𝑡) = 𝑋𝑖𝑗(𝑡) − 𝑋0,𝑗(𝑡) (5-2) 

𝑥̈𝑖𝑗(𝑡) = 𝑋̈𝑖𝑗(𝑡) − 𝑋̈0,𝑗(𝑡) (5-3) 

 

Note that due to the double integration process, baseline correction may be required for Xij(t) and/or 

xij(t). In both the Matlab and Python implementation of this process, a simple linear detrend was adopted. 
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6.0 MDOF TO SDOF RESPONSE CONVERSION 

 

6.1 Overview 

 

This section describes the background and theory behind condensing the multi-degree-of-freedom 

(MDOF) response of the building down to an equivalent single-degree-of-freedom (SDOF) response. 

 

6.2 Basic modal analysis theory 

 

From modal analyses, the vector of relative displacements, {x}, can be represented as the sum of the 

sth mode shape, {Φs}, and amplitude, ys, as follows: 

{𝑥} = ∑ {𝛷}𝑠. 𝑦𝑠

𝑀

𝑠=1
= [𝛷]. {𝑦}𝑠 (6-1) 

 

Where [Φ] is a matrix containing the {Φs} vectors, {𝑦}𝑠 is a vector containing ys values, and M is the 

number of modes. Note that the sth mode contribution to the relative displacements, {x}s, can be 

expressed as: 

{𝑥}𝑠 = {𝛷}𝑠. 𝑦𝑠 (6-2) 

 

The equation of motion for buildings subjected to seismic excitation is: 

−[𝑀]{𝑟}𝑋̈𝑔 = [𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} (6-3) 

 

Where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {r} is the influence 

vector and 𝑋̈𝑔 is the total ground acceleration. 

 

It should also be noted that the mode shapes have orthogonality properties. In other words: 

{𝛷}𝑤
𝑇 [𝐾]{𝛷}𝑣 = {𝛷}𝑤

𝑇 [𝑀]{𝛷}𝑣 = 0 when w ≠ v (6-4) 

 

By substituting Equation (6-1) into Equation (6-3), multiplying both sides by [Φ]T, and making use of 

the orthogonal properties highlighted in Equation (6-4), we end up with M equation of motions as 

follows: 

−{𝛷}𝑠
𝑇[𝑀]{𝑟}𝑋̈𝑔 = {𝛷}𝑠

𝑇[𝑀]{𝛷}𝑠. 𝑦̈𝑠 + {𝛷}𝑠
𝑇[𝐶]{𝛷}𝑠. 𝑦̇𝑠 + {𝛷}𝑠

𝑇[𝐾]{𝛷}𝑠. 𝑦𝑠 (6-5) 

 

 and then dividing by {Φs}T[M]{Φs}, the following equation of motion can be obtained for each mode: 

−𝛽𝑠𝑋̈𝑔 = 𝑦̈𝑠 + 2ℎ𝑠𝜔𝑠𝑦̇𝑠 + 𝜔𝑠
2𝑦𝑠 (6-6) 
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Where β is the participation factor which is computed as: 

𝛽𝑠 =
{𝛷}𝑠

𝑇[𝑀]{𝑟}

{𝛷}𝑠
𝑇[𝑀]{𝛷}𝑠

 (6-7) 

 

If one denotes that ys = βsDs, Equation (6-6) can be simplified further to: 

−𝑋̈𝑔 = 𝐷̈𝑠 + 2ℎ𝑠𝜔𝑠𝐷𝑠 + 𝜔𝑠
2𝐷𝑠 (6-8) 

 

Equation (6-8) is essentially the equation of motion for a single-degree-of-freedom oscillator with unit 

mass and a natural frequency of ωs. When converting the MDOF response to an equivalent SDOF 

system, Ds will be the representative displacement of the system relative to the base of the building, 

while the representative total acceleration of the system is 𝐷̈𝑠 + 𝑋̈𝑔. If the system is undamped (i.e., hs 

= 0), then –(𝐷̈𝑠 + 𝑥̈𝑔) is equivalent to the base shear of the system assuming unit mass. 

 

6.3 Modifications to estimate representative displacements 

 

From the previous section, we identified that Ds is the representative displacement relative to the base 

for an equivalent SDOF system. For the sth mode of response, the relative displacements {x}s, can be 

related to Ds as follows: 

{𝑥}𝑠 = {𝛷}𝑠. 𝑦𝑠 

= 𝛽𝑠. {𝛷}𝑠 . 𝐷𝑠 

=
{𝛷}𝑠

𝑇[𝑀]{𝑟}

{𝛷}𝑠
𝑇[𝑀]{𝛷}𝑠

. {𝛷}𝑠. 𝐷𝑠 

(6-9) 

 

We can make use of the relationship that {x}s/ys = {Φs} and simplify Equation (6-9) to: 

{𝑥}𝑠 =
({𝑥}𝑠

𝑇/𝑦𝑠)[𝑀]{𝑟}

({𝑥}𝑠
𝑇/𝑦𝑠)[𝑀]({𝑥}𝑠/𝑦𝑠)

. ({𝑥}𝑠/𝑦𝑠). 𝐷𝑠 (6-10) 

 
=

{𝑥}𝑠
𝑇[𝑀]{𝑟}

{𝑥}𝑠
𝑇[𝑀]{𝑥}𝑠

. {𝑥}𝑠. 𝐷𝑠 
 

 

Rearranging Equation (6-10), we get: 

𝐷𝑠 =
{𝑥}𝑠

𝑇[𝑀]{𝑥}𝑠

{𝑥}𝑠
𝑇[𝑀]{𝑟}

 (6-11) 

 =
∑ (𝑚𝑖. 𝑥𝑖,𝑠

2 )𝑁𝐹
𝑖=1

∑ (𝑚𝑖. 𝑥𝑖,𝑠)𝑁𝐹
𝑖=1

  

 

Where i represents the floor level and NF is the number of floors. 
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We can see from Equation (6-11) that Ds is only a function of floor mass and the sth mode floor 

displacements relative to the ground. As such, if {x}s can be obtained and if we have a good estimate of 

floor mass, we can calculate the corresponding representative displacement of the sth mode.  

 

6.4 Modifications to estimate representative accelerations 

 

From Section 6.2, we established that 𝐷̈𝑠 + 𝑥̈𝑔 is the representative acceleration for the equivalent 

SDOF system corresponding to the sth mode. If one assumes that the sth mode SDOF system is 

undamped (i.e., hs = 0), then the representative acceleration and displacement can be related by 

rearranging Equation (6-8) as: 

−(𝐷̈𝑠 + 𝑋̈𝑔) = 𝜔𝑠
2. 𝐷𝑠 (6-12) 

 

If the system does not have unit mass, the sth
 mode base shear demand can be computed as: 

𝑉𝑑𝑒𝑚𝑎𝑛𝑑,𝑠 = 𝑀𝑒𝑓𝑓,𝑠. (𝐷̈𝑠 + 𝑋̈𝑔) (6-13) 

 

Where Meff,s is the effective mass of the sth mode of response. Meanwhile, the sth mode base shear 

resistance is: 

𝑉𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑠 = [𝐾]. {𝑥𝑠} 

= 𝛽𝑠. [𝐾]. {𝛷}𝑠. 𝐷𝑠 

= 𝛽𝑠. [𝑀]. {𝛷}𝑠. 𝜔𝑠
2. 𝐷𝑠 

= −𝛽𝑠. [𝑀]. {𝛷}𝑠. (𝐷̈𝑠 + 𝑋̈𝑔) 

= −
{𝛷}𝑠

𝑇[𝑀]{𝑟}

{𝛷}𝑠
𝑇[𝑀]{𝛷}𝑠

. [𝑀]. {𝛷}𝑠. (𝐷̈𝑠 + 𝑋̈𝑔) 

(6-14) 

 

By equating that Vdemand,s = -Vresistance,s, we can obtain Meff,s as: 

𝑀𝑒𝑓𝑓,𝑠 = −𝑉𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑠/(𝐷̈𝑠 + 𝑋̈𝑔) 

=
{𝛷}𝑠

𝑇[𝑀]{𝑟}

{𝛷}𝑠
𝑇[𝑀]{𝛷}𝑠

. [𝑀]. {𝛷}𝑠 

=
({𝑥}𝑠

𝑇/𝑦𝑠)[𝑀]{𝑟}

({𝑥}𝑠
𝑇/𝑦𝑠)[𝑀]({𝑥}𝑠/𝑦𝑠)

. [𝑀]. ({𝑥}𝑠/𝑦𝑠) 

=
(∑ (𝑚𝑖 . 𝑥𝑖,𝑠)𝑁𝐹

𝑖=1 )
2

∑ (𝑚𝑖. 𝑥𝑖,𝑠
2 )𝑁𝐹

𝑖=1

 

(6-15) 
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To derive an expression for 𝐷̈𝑠 + 𝑥̈𝑔, we can express the second to last line of Equation (6-14) as a 

sum of forces at each floor level and expand it as follows: 

𝑉𝑑𝑒𝑚𝑎𝑛𝑑,𝑠 = ∑ (𝛽𝑠. 𝑚𝑖 . 𝛷𝑖,𝑠. (𝐷̈𝑠 + 𝑋̈𝑔))
𝑁𝐹

𝑖=1
 

(6-16) 
 

= ∑ (𝛽𝑠. 𝑚𝑖 . 𝛷𝑖,𝑠. 𝐷̈𝑠)
𝑁𝐹

𝑖=1
+ ∑ (𝛽𝑠. 𝑚𝑖 . 𝛷𝑖,𝑠. 𝑋̈𝑔)

𝑁𝐹

𝑖=1
 

= ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
+ ∑ (𝑚𝑖 . 𝛽𝑠. 𝛷𝑖,𝑠. 𝑋̈𝑔)

𝑁𝐹

𝑖=1
 

 

From the second to last line of Equation (6-14), we can see that by dividing both sides of the equation 

by ∑ (𝛽𝑠. 𝑚𝑖 . 𝛷𝑖)
𝑁𝐹
𝑖=1 , we can obtain an expression for 𝐷̈𝑠 + 𝑋̈𝑔. The calculation is as follows: 

𝐷̈𝑠 + 𝑋̈𝑔 =
∑ (𝑚𝑖. 𝑥̈𝑖,𝑠)𝑁𝐹

𝑖=1 + ∑ (𝑚𝑖 . 𝛽𝑠. 𝛷𝑖,𝑠. 𝑋̈𝑔)𝑁𝐹
𝑖=1

∑ (𝑚𝑖 . 𝛽𝑠. 𝛷𝑖,𝑠)𝑁𝐹
𝑖=1

 (6-17) 

 
=

∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)𝑁𝐹
𝑖=1

∑ (𝑚𝑖. 𝛽𝑠. 𝛷𝑖,𝑠)𝑁𝐹
𝑖=1

+ 𝑋̈𝑔 

= [
1

∑ (𝑚𝑖. 𝛽𝑠. 𝛷𝑖,𝑠)𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
1

𝛽𝑠

.
1

∑ (𝑚𝑖 . 𝛷𝑖,𝑠)𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
{𝛷}𝑠

𝑇[𝑀]{𝛷}𝑠

{𝛷}𝑠
𝑇[𝑀]{𝑟}

.
1

∑ (𝑚𝑖. 𝛷𝑖,𝑠)𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
({𝑥}𝑠

𝑇/𝑦𝑠)[𝑀]({𝑥}𝑠/𝑦𝑠)

({𝑥}𝑠
𝑇/𝑦𝑠)[𝑀]{𝑟}

.
1

∑ (𝑚𝑖 . (𝑥𝑖,𝑠/𝑦𝑠))𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
{𝑥}𝑠

𝑇[𝑀]{𝑥}𝑠

{𝑥}𝑠
𝑇[𝑀]{𝑟}

.
1

∑ (𝑚𝑖 . 𝑥𝑖,𝑠)𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
∑ (𝑚𝑖. 𝑥𝑖,𝑠

2 )𝑁𝐹
𝑖=1

∑ (𝑚𝑖. 𝑥𝑖,𝑠)𝑁𝐹
𝑖=1

.
1

∑ (𝑚𝑖 . 𝑥𝑖,𝑠)𝑁𝐹
𝑖=1

. ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

= [
∑ (𝑚𝑖 . 𝑥𝑖,𝑠

2 )𝑁𝐹
𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖,𝑠)𝑁𝐹
𝑖=1 )

2 . ∑ (𝑚𝑖 . 𝑥̈𝑖,𝑠)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔 

 

 

From Equation (6-17), we can see that 𝐷̈𝑠 + 𝑋𝑔 is a function of floor mass, sth mode displacements and 

accelerations relative to the base, and the total ground acceleration.  

 

6.5 Applicability to nonlinear cases 

 

Fundamental modal analysis theory was derived for linear elastically responding systems. This is 

reflected in the assumption that the stiffness and mass matrix are related via ωs
2 in the derivation of 
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equations. During inelastic response, the stiffness matrix can significantly decrease while the mass 

matrix stays constant, resulting in ωs
2 changing with time. However, this issue can be circumvented by 

using the relative response of the building and the total ground acceleration at a specific time in the 

calculations directly, as derived in Equations (6-11) and (6-17). Based on this, we can consider ωs
2 to 

be the secant slope to reach the representative displacement and acceleration coordinates Ds(ti) and 

(𝐷̈𝑠(𝑡𝑖) + 𝑋̈𝑔(𝑡𝑖)) at time t = ti , as shown in Figure 6-1. Thus, we can represent each point along the 

capacity curve as an equivalent linear elastic system even though nonlinear response had occurred. 

 

 

Figure 6-1. Equivalent linearization of SDOF response 

 

6.6 Representative response for each decomposition level 

 

From Equations (6-11) and (6-17), the relative floor displacement and acceleration response 

corresponding to the sth mode of response of the building is required to derive the representative 

displacement and acceleration response. Given that the building response was decomposed into 

different levels using the DWT method, rather than apply the modal analysis concepts to modes, they 

can be applied via decomposition levels instead to identify which decomposition levels correspond to 

the predominant mode of response.  

 

In order to apply modal analysis concepts to decomposition levels instead of modes, Equations (6-11) 

and (6-17) need to be adjusted accordingly. Let’s denote 𝑋𝑖𝑗 and 𝑋̈𝑖𝑗 as the jth decomposition level’s 

ith floor total displacement and acceleration response, respectively, while 𝑥𝑖𝑗  and 𝑥̈𝑖𝑗  are the 

corresponding relative response. We can obtain 𝑋̈𝑖𝑗 directly by applying DWT to recorded acceleration 

data as outlined in Section 4. For example, denoting the roof level as i = 4 for the E-Defense test floor 

acceleration recording shown in Figure 4-3, 𝑋̈4,5 would correspond to the reconstructed signal f5. Once 

𝑋̈𝑖𝑗 has been obtained, 𝑋𝑖𝑗, 𝑥𝑖𝑗, and 𝑥̈𝑖𝑗, can be obtained from Equations (5-1) to (5-3), respectively. 

Ds(t) 

−[𝑫̈𝒔(𝒕) + 𝑿̈𝒈(𝒕)] 

[Ds(tj), 𝑫̈𝒔(𝒕𝒋) + 𝑿̈𝒈(𝒕𝒋)] 

[Ds(ti), 𝑫̈𝒔(𝒕𝒊) + 𝑿̈𝒈(𝒕𝒊)] 

ωs(tj)2 

ωs(ti)2 
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A major difference between applying the concept at a modal level versus decomposition level is the 

treatment of the ground acceleration. In the original formation of the equation of motion in Equation 

(6-3), the relative response of the building was computed relative to the total ground response, Xg. As 

such, the total ground acceleration was used on the left-hand side of the Equation (6-3), and carried all 

the way to Equation (6-17). When using the results from DWT, all signals were decomposed, including 

the ground level. Thus, the relative response of the building within each decomposition level will be 

relative to the corresponding decomposed ground response. The difference between the two cases is 

shown in Figure 6-2. 

 

Figure 6-2. Difference in ground motion response between original signal and decomposed 

signal 

 

Based on Figure 6-2, the equation of motion can be rewritten as: 

−[𝑀]{𝑟}𝑋̈𝑔,𝑗 = [𝑀]{𝑥̈}𝑗 + [𝐶]{𝑥̇}𝑗 + [𝐾]{𝑥}𝑗 (6-18) 

 

If one assumes that there is only a single mode within each decomposed level, then: 

{𝑥}𝑗 = {𝛷}𝑗 . 𝛽𝑗 . 𝐷𝑗 (6-19) 

 

 

 

 

 

 

Original signal 

𝑋𝑔 

𝑋1 

𝑋2 

𝑋3 

𝑥1 

𝑥2 

𝑥3 

𝑋𝑔,𝑗 

𝑋1,𝑗 

𝑋2,𝑗 

𝑋3,𝑗 

𝑥1,𝑗 

𝑥2,𝑗 

𝑥3,𝑗 

Decomposed signal 
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Following the derivation steps in Sections 6.3 and 6.4, we can obtain the representative displacement 

and acceleration for each decomposition level as: 

𝐷𝑗 =
∑ (𝑚𝑖. 𝑥𝑖𝑗

2 )𝑁𝐹
𝑖=1

∑ (𝑚𝑖. 𝑥𝑖𝑗)𝑁𝐹
𝑖=1

 (6-20) 

𝐷̈𝑗 + 𝑋̈𝑔,𝑗 = [
∑ (𝑚𝑖 . 𝑥𝑖𝑗

2 )𝑁𝐹
𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2 . ∑ (𝑚𝑖 . 𝑥̈𝑖𝑗)
𝑁𝐹

𝑖=1
] + 𝑋̈𝑔,𝑗 (6-21) 

 

It should be noted that an alternate method could be to firstly obtain the relative floor responses and 

then apply DWT only to the relative response. From this approach, the undecomposed total ground 

acceleration 𝑋̈𝑔 would be used instead of 𝑋̈𝑔𝑗. However, one reason for applying DWT to the total 

ground acceleration as well was to remove both high and low frequency noise components. If unfiltered, 

this may result in a poor estimate of relative response. Further research would be required to evaluate 

if applying DWT only to relative response would result in a better estimate of representative 

accelerations. 

 

6.7 Large representative response near zero displacement 

 

From Equations (6-20) and (6-21), the relative response terms on the right-side of the equation requires 

a division by the sum of mixij. When the floor relative displacements are near zero, this can cause both 

the representative displacements and accelerations to become extremely large. 

 

To address this issue, it was proposed by Kusunoki et al. (2018) that the relative terms can be multiplied 

by the effective mass ratio, which is the ratio between the effective mass of the jth decomposition level, 

Meff,j, and the total mass of the superstructure. This is termed the “tentative” response. The tentative 

representative displacement, (Dj)*, and acceleration (𝐷̈𝑗 + 𝑋̈𝑔,𝑗)* and can be calculated as: 

(𝐷𝑗)
∗
 =

∑ (𝑚𝑖. 𝑥𝑖𝑗
2 )𝑁𝐹

𝑖=1

∑ (𝑚𝑖. 𝑥𝑖𝑗)𝑁𝐹
𝑖=1

.
𝑀𝑒𝑓𝑓,𝑗

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

 (6-22) 

 

=
∑ (𝑚𝑖. 𝑥𝑖𝑗

2 )𝑁𝐹
𝑖=1

∑ (𝑚𝑖. 𝑥𝑖𝑗)𝑁𝐹
𝑖=1

.
(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹

𝑖=1 )
2

∑ (𝑚𝑖. 𝑥𝑖𝑗
2 )𝑁𝐹

𝑖=1

.
1

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

 

=
∑ (𝑚𝑖. 𝑥𝑖𝑗)𝑁𝐹

𝑖=1

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

 

 

 

(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
∗
 = [

∑ (𝑚𝑖 . 𝑥𝑖𝑗
2 )𝑁𝐹

𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2 . ∑ (𝑚𝑖 . 𝑥̈𝑖𝑗)
𝑁𝐹

𝑖=1
] .

𝑀𝑒𝑓𝑓,𝑗

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

+ 𝑋̈𝑔,𝑗 (6-23) 

 

= [
∑ (𝑚𝑖 . 𝑥𝑖𝑗

2 )𝑁𝐹
𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2 . ∑ (𝑚𝑖 . 𝑥̈𝑖𝑗)
𝑁𝐹

𝑖=1
] .

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2

∑ (𝑚𝑖. 𝑥𝑖𝑗
2 )𝑁𝐹

𝑖=1

.
1

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

+ 𝑋̈𝑔,𝑗 

=
∑ (𝑚𝑖. 𝑥̈𝑖𝑗)𝑁𝐹

𝑖=1

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

+ 𝑋̈𝑔,𝑗 
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Kusunoki et al. (2018) suggested that the tentative response is used to determine which decomposition 

levels contribute to the predominant mode of response and to obtain the hysteretic response. Once this 

was obtained, the backbone curve can be extracted. The backbone curve values can then be corrected 

to obtain the actual representative capacity curve as follows.  

 

𝐷𝑗 = (𝐷𝑗)
∗
.
∑ 𝑚𝑖

𝑁𝐹
𝑖=1

𝑀𝑒𝑓𝑓,𝑗

 (6-24) 

 = (𝐷𝑗)
∗
.

∑ (𝑚𝑖. 𝑥𝑖𝑗
2 )𝑁𝐹

𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2 . ∑ 𝑚𝑖

𝑁𝐹

𝑖=1
  

 

𝐷̈𝑗 + 𝑋̈𝑔,𝑗 = [(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
∗

− 𝑋̈𝑔,𝑗].
∑ 𝑚𝑖

𝑁𝐹
𝑖=1

𝑀𝑒𝑓𝑓,𝑗

+ 𝑋̈𝑔,𝑗 (6-25) 

 = [(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
∗

− 𝑋̈𝑔,𝑗].
∑ (𝑚𝑖 . 𝑥𝑖𝑗

2 )𝑁𝐹
𝑖=1

(∑ (𝑚𝑖 . 𝑥𝑖𝑗)𝑁𝐹
𝑖=1 )

2 . ∑ 𝑚𝑖

𝑁𝐹

𝑖=1
+ 𝑋̈𝑔,𝑗  
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7.0 DECOMPOSITION LEVEL SELECTION 

 

7.1 Overview 

 

Once the tentative representative displacement and acceleration response of each decomposition level 

had been obtained following Section 6.7, the properties of each tentative acceleration-displacement 

relationship are used to select the decomposition levels which contribute to the predominant mode of 

response. This section will provide a summary of how this process is done. Further information on the 

calibration of the methodology can be found in Yeow et al. (2022). 

 

7.2 Key parameters calculation 

 

The first step is to calculate the value of key parameters for each individual decomposition level 

response. There are five key parameters: 

• Peak absolute tentative representative displacement, 

• Peak absolute tentative representative acceleration, 

• Mean effective mass ratio, 

• Best-fit linear slope to tentative representative acceleration-displacement response, and 

• Cumulative kinetic energy. 

 

The peak absolute tentative representative displacement and acceleration of each individual 

decomposition level response are computed as follows: 

(𝐷𝑗)
𝑚𝑎𝑥

∗
 = 𝑚𝑎𝑥|(𝐷𝑗)

∗
| (7-1) 

(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
𝑚𝑎𝑥

∗
 = 𝑚𝑎𝑥|(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)

∗
| (7-2) 

 

The mean effective mass ratio cannot simply be calculated considering the entire length of the signal. 

This is because in cases where there is a long duration of ambient noise before and after the strong 

portion of the shaking, the mean effective mass ratio may be more reflective of the building’s response 

during those portions rather than during the strong component of the earthquake. Instead, we firstly 

calculated the cumulative Arias Intensity, IA, throughout the entire signal shown in Equation (7-3), where 

td is the duration of the signal. Then, the times corresponding to 5% and 75% of maximum IA, t1 and t2, 

respectively, as shown in Equations (7-4) and (7-5). Finally, the mean effective mass ratio was 

calculation considering the duration range between t1 and t2 following Equation (7-6). Note that for the 

implementation of Equation (7-3) in the functions, only the term in the integral was considered. This is 

because the terms outside the integral are constant, so t1 and t2 would correspond to the same time 

regardless of whether the constants were included in the calculation. 
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𝐼𝐴,𝑗(𝑡) =
𝜋

2𝑔
∫ (𝑋̈0,𝑗(𝑡))

2
𝑡𝑑

0

𝑑𝑡 (7-3) 

𝐼𝐴,𝑗(𝑡1) = 0.05𝐼𝐴,𝑗(𝑡) (7-4) 

𝐼𝐴,𝑗(𝑡2) = 0.75𝐼𝐴,𝑗(𝑡) (7-5) 

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗 =
∫ 𝑀𝑒𝑓𝑓,𝑗(𝑡)

𝑡2

𝑡=𝑡1
. 𝑑𝑡

∑ 𝑚𝑖 .𝑁𝐹
𝑖=1 (𝑡2 − 𝑡1)

 (7-6) 

 
=

∫ (
(∑ (𝑚𝑖 . 𝑥𝑖,𝑗(𝑡))𝑁𝐹

𝑖=1 )
2

∑ (𝑚𝑖 . 𝑥𝑖,𝑗
2 (𝑡))𝑁𝐹

𝑖=1

)
𝑡2

𝑡=𝑡1
. 𝑑𝑡

∑ 𝑚𝑖 .
𝑁𝐹
𝑖=1 (𝑡2 − 𝑡1)

 
 

 

The best-fit linear slope was computed using in-built first-degree “polyfit” functions in Matlab and Python. 

This is essentially a linear regression, which can be performed manually using the following equation, 

where Kfit,j is the best-fit linear slope for the jth decomposition level response, k represents the kth data 

point and ndata is the total number of datapoints. 

𝐾𝑓𝑖𝑡,𝑗 = −
∑ [((𝐷𝑗)

𝑘

∗
− 𝑚𝑒𝑎𝑛(𝐷𝑗)

∗
) . ((𝐷̈𝑗 + 𝑋̈𝑔,𝑗)

𝑘

∗
− 𝑚𝑒𝑎𝑛(𝐷̈𝑗 + 𝑋̈𝑔,𝑗)

∗
)]𝑛𝑑𝑎𝑡𝑎

𝑘=1

∑ ((𝐷𝑗)
𝑘

∗
− 𝑚𝑒𝑎𝑛(𝐷𝑗)

∗
)

2
𝑛𝑑𝑎𝑡𝑎
𝑘=1

 (7-7) 

 

The final parameter is the cumulative kinetic energy, Cekj. To derive this value, we require the 

representative relative velocity of the system. This can be obtained by differentiating the representative 

displacements as follows: 

𝐷̇𝑗(𝑡) =
𝑑(𝐷𝑗(𝑡))

𝑑𝑡
 (7-8) 

 
=

𝑑 ((𝐷𝑗(𝑡))
∗
.

∑ 𝑚𝑖
𝑁𝐹
𝑖=1

𝑀𝑒𝑓𝑓,𝑗(𝑡)
)

𝑑𝑡
 

 

 

The issue with Equation (7-8) is that Meff,j(t) can be near-zero are small relative floor displacements, 

which can result in significantly large values of representative velocity. However, if we make a crude 

assumption that that the mass ratio does not vary significantly and can be approximated by Mratio,j, we 

can simplify the equation as follows:
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𝐷̇𝑗(𝑡) 
=

𝑑 ((𝐷𝑗(𝑡))
∗
.

1
𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

)

𝑑𝑡
 

(7-9) 

 =
1

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

.
𝑑((𝐷𝑗(𝑡))

∗
)

𝑑𝑡
  

 =
1

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

. (𝐷̇𝑗(𝑡))
∗
  

 

The above equation allows for the representative velocity to be approximated by the mean mass ratio 

and the tentative representative velocity. The latter is easier to obtain since the tentative representative 

displacements, (Dj)*, are used in the evaluations rather than the actual representative displacement, Dj.  

 

The kinetic energy at a given point in time for an equivalent SDOF system is: 

𝐸𝑘(𝑡) =
1

2
𝑀𝑒𝑓𝑓,𝑗(𝑡). (𝐷̇𝑗(𝑡))

2
 (7-10) 

 

We can simplify this by again assuming that the effective mass does not vary significantly with time, and 

can thus be represented by the product of Mratio,j and the sum of floor masses. By making this assumption 

and substituting Equation (7-9) into Equation (7-10), we obtain: 

𝐸𝑘(𝑡) =
1

2
𝑀𝑟𝑎𝑡𝑖𝑜,𝑗. ∑ 𝑚𝑗

𝑁𝑢𝑚𝐹

𝑖=1
. (

1

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

. (𝐷̇𝑗(𝑡))
∗
)

2

 (7-11) 

 =
∑ 𝑚𝑗

𝑁𝑢𝑚𝐹
𝑖=1

2
.
((𝐷̇𝑗(𝑡))

∗
)

2

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

.  

 

Thus, the cumulative kinetic energy is calculated as: 

𝐶𝑒𝑘𝑗 = ∫ 𝐸𝑘(𝑡)
𝑡𝑑

𝑡=0

. 𝑑𝑡 (7-12) 

 =
∑ 𝑚𝑖

𝑁𝑢𝑚𝐹
𝑖=1

2
.
∫ ((𝐷̇𝑗(𝑡))

∗
)

2𝑡𝑑

𝑡=0
. 𝑑𝑡

𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

.  

 

Unlike the calculation for Mratio,j, there is no need to limit the integral duration to between t1 and t2. This 

is because the relative velocity before t1 and after the system reaches steady-state response becomes 

near-zero, and thus would have little bearing on the actual cumulative kinetic energy. Furthermore, the 

calibration of the decomposition level selection was based on the entire signal duration. If the user 

chooses to shorten the integral duration to between t1 and t2, they will need to check whether additional 

calibration is required. Also, note that since the sum of floor masses and the ½ factor is the same 

regardless of which decomposition level was computed, these terms could be excluded in the 

calculations. This is because the actual value of Cekj is not of importance. Rather, the relative size of the 
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cumulative energies is essential to determine which decomposition levels to select to reconstruct the 

signal. 

 

7.3 Selection of initial decomposition level 

 

Once the key parameters were determined, the next step is to select an initial decomposition level. This 

initial decomposition level should be part of the final combination and will be used to determine which 

other decomposition levels should be selected or excluded from the final combination. 

 

Yeow et al. (2022) proposed the following steps: 

1) Normalize (𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
𝑚𝑎𝑥

∗
 by the largest value out of all decomposition levels, 

2) Disqualify all decomposition level with a normalized (𝐷̈𝑗 + 𝑋̈𝑔,𝑗)
𝑚𝑎𝑥

∗
 less than 0.25 from being 

selectable as the initial decomposition level, 

3) Out of the remaining decomposition levels, select the one with the largest Cekj as the initial 

decomposition level. 

 

Steps 1 and 2 were performed to remove decomposition levels which correspond to long-period noise 

components. These components typically have large relative displacements which could result in large 

Cekj, which could interfere with step 3. However, these have very small accelerations, and thus can be 

eliminated from by applying the tolerance in step 2. 

 

Step 3 was performed to ensure that the initial decomposition level does not correspond to higher modes. 

This is because higher modes generally have smaller relative velocities, and thus would have smaller 

Cekj. Since the long-period noise components were already removed, the decomposition level with the 

largest Cekj would correspond to the predominant mode of response. 

 

7.4 Selection of highest decomposition level 

 

When selecting the highest decomposition level to be included when reconstructing the signal, we can 

make use of the property that long-period noise components would have small accelerations. 

Furthermore, if the best-fit slope is too different from that of the initial decomposition level, then it is 

unlikely to be representative of the predominant mode of response. Based on these concepts, Yeow et 

al. (2022) proposed that the highest decomposition level which satisfies the following condition will be 

selected as the highest decomposition level to be included in the final combination: 

 

0.01 ≤
𝐾𝑓𝑖𝑡,𝑗 . (𝐷̈𝑗 + 𝑋̈𝑔,𝑗)

𝑚𝑎𝑥

∗

𝐾𝑓𝑖𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . (𝐷̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑋̈𝑔,𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
𝑚𝑎𝑥

∗  (7-13) 
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7.5 Selection of lowest decomposition level 

 

To determine the lowest decomposition level to select for the final combination, we can make use of the 

fact that higher rank displacement response would likely be smaller than that of the predominant mode 

of response. Furthermore, the effective mass of higher modes would likely be smaller than that of the 

predominant mode of response. Based on these factors, Yeow et al. (2022) proposed that the lowest 

decomposition level which satisfies the following two conditions is selected as the lowest decomposition 

level to add to the final combination: 

 

0.05 ≤
(𝐷𝑗)

𝑚𝑎𝑥

∗

(𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑚𝑎𝑥
∗

 (7-14) 

0.65 ≤
𝑀𝑟𝑎𝑡𝑖𝑜,𝑗

𝑀𝑟𝑎𝑡𝑖𝑜,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 (7-15) 

 

7.6 Reconstruction of floor response 

 

Denoting jmax and jmin as the highest and lowest decomposition level identified from Sections 7.4 and 

7.5, respectively, the combined floor total acceleration, relative acceleration and relative displacements 

can be obtained as: 

𝑋̈𝑖,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑡) = ∑ 𝑋̈𝑖𝑗(𝑡)
𝑗𝑚𝑎𝑥

𝑗=𝑗𝑚𝑖𝑛
 (7-16) 

𝑥̈𝑖,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑡) = ∑ 𝑥̈𝑖𝑗(𝑡)
𝑗𝑚𝑎𝑥

𝑗=𝑗𝑚𝑖𝑛
 (7-17) 

𝑥𝑖,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑡) = ∑ 𝑥𝑖𝑗(𝑡)
𝑗𝑚𝑎𝑥

𝑗=𝑗𝑚𝑖𝑛
 (7-18) 

 

Note that total floor displacements are not required in any representative response calculation and can 

thus be ignored. 
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8.0 DERIVATION OF HYSTERETIC RESPONSE 

 

8.1 Overview 

 

At the end of Section 7, we have obtained the reconstructed signals considering only the predominant 

mode of response. From this, we can obtain the hysteretic response and extract out the capacity curve. 

 

8.2 Tentative hysteretic response 

 

To obtain the tentative hysteretic response, one simply needs to reapply Equations (6-22) and (6-23). 

However, instead of using the response from the jth decomposition level, the combined response from 

jmin to jmax calculated from Equations (7-16) to (7-18) are used instead. 

 

It should be noted that the tentative hysteretic response was used instead of the actual values due to 

the issue of large values are near-zero relative displacement response still being present. 

 

8.3 Capacity curve extraction 

 

The capacity curve can be extracted two ways. In the first approach, the tentative hysteretic response 

is first derived following Section 8.2. Afterwards, the following algorithm was used: 

1) Set initial tentative representative displacement and acceleration of the capacity curve to be 

equal to that of the first datapoint of the tentative hysteretic response, 

2) Move to the next datapoint, 

3) If tentative representative displacement corresponding to the next datapoint is either smaller 

than the smallest displacement or larger than the largest displacement recorded for the capacity 

curve, add the datapoint to the capacity curve, 

4) Repeat steps (2) and (3) until all datapoints have been checked, 

5) Sort the extracted datapoints based on tentative representative displacements in ascending 

order, 

6) Apply Equations (6-24) and (6-25) to obtain the actual representative displacement and 

accelerations, respectively. 

 

Note that in some cases, step 6 may cause the actual representative displacements to be out of order. 

Outlier datapoints should be removed. However, it may be difficult to judge which datapoint is the outlier. 

This issue is addressed in the second approach, where the actual representative hysteretic response 

was considered explicitly as follows: 
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1) Apply Equations (6-20) and (6-21) to obtain the actual representative displacement and 

acceleration hysteretic response, 

2) Set the initial tentative representative displacement and acceleration of the capacity curve to be 

zero, 

3) Check the first datapoint, 

4) If the effective mass ratio of the datapoint is less than 0.5, move to the next datapoint. Otherwise, 

move to step 5. 

5) If the representative displacement corresponding to the next datapoint is either smaller than the 

smallest displacement or larger than the largest displacement recorded for the capacity curve, 

add the datapoint to the capacity curve then move to the next datapoint, 

6) Repeat steps (4) to (5) until all datapoints have been checked, 

7) Sort the extracted datapoints based on representative displacements in ascending order, 

 

While this approach addresses the issue of determining the outliner datapoints, it does introduce an 

extra criterion than any datapoint with an effective mass ratio less than 0.5 should be eliminated. This 

was based on experience with applying this methodology rather than via a rigorous study and may 

require some further verification. Also, this approach assumes that the initial displacement and 

acceleration starts at 0. This is reasonable from the point of view of evaluate building damage relative 

to the initial condition of the building prior to applying the excitation. In cases where the building had 

received prior damage, the entire representative displacement response history would need to be 

adjusted accordingly. 
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9.0 DETAILED EXAMPLE 

 

9.1 Example details 

 

In this example, we will consider the first application of the 150%-scaled excitation used in the 2019 E-

Defense test of a disaster management center. The structure is shown in Figure 9-1 while the 

recorded floor accelerations are shown in Figure 9-2. This example will use the Matlab 

implementation of the capacity curve extraction methodology. 

 

  

(a) (b) 

Figure 9-1. 2019 E-Defense test specimen; (a) layout of in-plane frame, and (b) photo 

 

 

Figure 9-2. Floor acceleration recording to 150%-1 excitation 
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9.2 Call function and inputs 

 

There are two required inputs and several optional inputs for the Matlab and Python implementation call 

functions.  

 

The required inputs are the total floor acceleration data and the timestep. The total floor acceleration 

data for this example is stored in the “ALAB-Center-150-1.txt” file. It has four columns representing the 

recorded data at 1F, 2F, 3F and RF going from the left-most column to the right-most column. The 

columns were separated using a tab delimiter. Each row represents the recording data step. This format 

matches that required by the Matlab and Python implementations so no further modification to the 

formatting was required. However, the unit of the data is in gals (cm/s2), so a 1/981 conversion was 

required since the implementation assumes that the unit of acceleration is in g. This data was imported 

using the following commands: 

 Matlab >> TotalAcc = importdata('ALAB-Center-150-1.txt')/981 

 Python >> TotalAcc = numpy.loadtxt('ALAB-Center-150-1.txt', 

      delimiter='\t')/981 

 

The timestep was 0.01 s and was constant throughout the recording. The Matlab and Python 

implementations do not currently consider cases with inconsistent timesteps. This was assigned to 

variable dT as follows: 

 dT = 0.01 

 

While there are numerous optional inputs, the two of greatest interest are the floor masses and the 

mother wavelet shape. The weight of 2F, 3F and RF were 740 kN, 720 kN and 520 kN, respectively. 

While this could be converted to mass by dividing everything by 9.81, it is not necessary. This is because 

in equations for calculating the representative response in Section 6 and for the effective mass ratio in 

Section 7, the terms which uses mass data always has it present in both the numerator and 

denominator. This means that the actual value of mass itself is not of importance, but rather that the 

mass distribution is correct. These values were thus assigned to variable Mass as follows: 

 Mass = [0, 740, 720, 520] Note: Mass = [0 , 740, 720, 520]/9.81 or [0, 1, 0.97, 0.70] or any 

other combination with identical proportion of masses with floor 

height are also acceptable 

 

The mother wavelet shape was set to the 10th order of the Symlet wavelet. This was because the 

calibration of the decomposition level selection criteria by Yeow et al. (2022) was derived based on this 

criterion. Thus, wname is assigned as follows: 

 wname = ‘sym10’ 
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All other optional inputs are for plotting purposes or exporting data and are thus not discussed here. 

Please refer to the sample script provided with the Matlab and Python implementations (named 

“testED2019.m” and “main.py”, respectively). 

 

To call the functions, the following was specified: 

 Matlab >> SelectedRanks = capcurvemaster(TotalAcc,dT,'Mass',Mass,… 

   'wname',wname); 

 

 Python >> SelectedRanks = capcurvemaster(TotalAcc, dT, Mass=Mass,  

   Wavelet=wname); 

 

9.3 Calculation steps 

 

The following section describes each calculation step in further detail. Note that while both Matlab and 

Python implementations produce similar results, the discrete wavelet transform calculation differs 

slightly which results in different values during intermediate steps. For the following calculation steps, 

the outputs from Matlab will be described. 

 

Step 1: Applying DWT 

 

The first step in the capacity curve extraction methodology is to apply DWT to the total floor acceleration 

signals from Figure 9-2. The “wmaxlev” function was used to determine that the maximum number of 

decomposition levels which can be considered is 10. Based on this, the “wavedec” function was applied 

to each floor acceleration signal using the “sym10” wavelet and considering 10 decomposition levels. 

The resulting decomposed total floor accelerations are shown in Figure 9-3. 
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Step 2: Obtaining relative MDOF response 

 

The next step was to obtain the relative MDOF response. This was done by applying the “cumtrapz” 

function twice to each decomposed total floor acceleration signal to obtain the total floor displacements 

and multiplying the resultant signals by the square of the time interval between each datapoint. The 

baseline was corrected by applying a linear detrend. The total floor displacement and acceleration 

response from 1F was then subtracted from all other floors to obtain the relative responses. The relative 

displacement and acceleration floor response are shown in Figure 9-4 and Figure 9-5, respectively. 
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Step 3: Decomposition level representative response 

 

Once the relative MDOF response had been obtained for each decomposition level, the tentative 

representative response can be calculated using Equations (6-24) and (6-25). The resulting tentative 

responses are shown in Figure 9-6. 

 

 

Figure 9-6. Tentative representative acceleration-displacement response for each 

decomposition level 

 

Step 4: Calculation of key parameters 

 

The peak representative displacement, peak absolute representative acceleration, mean effective mass 

ratio, best-fit linear slope and cumulative kinetic energy for each decomposition level was calculated 

using Equations (7-1), (7-2), (7-6), (7-7) and (7-12), respectively. The resulting values are shown in the 

following table: 
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Table 9-1. Key parameters for each decomposition level 

Rank (𝑫𝒋)
𝒎𝒂𝒙

∗
 (𝑫̈𝒋 + 𝑿̈𝒈,𝒋)𝒎𝒂𝒙

∗
 𝑴𝒓𝒂𝒕𝒊𝒐,𝒋 𝑲𝒇𝒊𝒕,𝒋 𝑪𝒆𝒌𝒋 

1 0.00 0.07 0.30 42.974 0.0 

2 0.01 0.16 0.41 5.786 0.4 

3 0.11 0.19 0.72 0.925 9.5 

4 0.98 0.34 0.80 0.192 236.4 

5 7.82 1.05 0.82 0.124 4952.0 

6 6.56 0.73 0.82 0.093 4473.0 

7 3.44 0.28 0.88 0.067 123.7 

8 2.38 0.16 0.87 0.046 29.6 

9 1.59 0.03 0.51 0.008 8.8 

10 0.30 0.01 0.80 0.006 0.2 

 

Step 5: Selection of decomposition levels 

 

The steps outlined in Sections 7.3 to 7.5 will be followed to determine the decomposition levels which 

should be combined to reconstruct the signal. The first step is to identify the initial decomposition level 

which forms the basis for the selection methodology. Firstly, the peak representative accelerations were 

normalized by the largest overall. This is shown in Table 9-2. From here, decomposition levels 1-3 and 

8-10 are immediately excluded from consideration for the initial decomposition level since its normalized 

value was less than 0.25. Of the remaining levels, the 5th decomposition level had the largest cumulative 

kinetic energy. As such, the 5th decomposition level was selected as the initial decomposition level. In 

this case, the 5th level had both the largest representative acceleration and cumulative kinetic energy. 

However, this will not always be the case, especially if the building has significant higher-mode 

response. 

 

Table 9-2. Determining initial decomposition level 

Rank (𝑫̈𝒋 + 𝑿̈𝒈,𝒋)𝒎𝒂𝒙

∗
 Normalized values 𝑪𝒆𝒌𝒋 

1 0.07 0.07 0.0 

2 0.16 0.15 0.4 

3 0.19 0.18 9.5 

4 0.34 0.32 236.4 

5 1.05 1.00 4952.0 

6 0.73 0.70 4473.0 

7 0.28 0.27 123.7 

8 0.16 0.15 29.6 

9 0.03 0.03 8.8 

10 0.01 0.01 0.2 
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The second step was to identify the highest rank to include in the final combination. Firstly, the peak 

representative accelerations were multiplied by the best-fit linear slope. The product is then normalized 

by that from the initial decomposition level (i.e., the 5th level). The corresponding values are shown in 

Table 9-3. From there, the 8th decomposition level is the highest level where the normalized value was 

greater than 0.01 and is thus the highest decomposition level considered in the final combination 

following the criteria in Equation (7-13). 

 

Table 9-3. Determining highest decomposition level 

Rank (𝑫̈𝒋 + 𝑿̈𝒈,𝒋)𝒎𝒂𝒙

∗
 𝑲𝒇𝒊𝒕,𝒋 (𝑫̈𝒋 + 𝑿̈𝒈,𝒋)𝒎𝒂𝒙

∗
. 𝑲𝒇𝒊𝒕,𝒋 Normalized by 5th level 

5 1.05 0.124 0.131 1.00 

6 0.73 0.093 0.068 0.52 

7 0.28 0.067 0.019 0.14 

8 0.16 0.046 0.007 0.06 

9 0.03 0.008 0.000 0.00 

10 0.01 0.006 0.000 0.00 

 

The final step is to identify the lowest rank to add to the final combination. Based on the conditions 

outlined in Equations (7-14) and (7-15), the lowest decomposition level with a normalized displacement 

and mean effective mass ratio equal to or greater than 0.05 and 0.65, respectively, is the lowest 

decomposition level to add into the final combination. Based on the normalized values shown in Table 

9-4, this would correspond to the 4th decomposition level. Based on the findings from Table 9-3 and 

Table 9-4, the 4th to the 8th decomposition level will be used to reconstruct the floor response signals. 

 

Table 9-4. Determining lowest decomposition level 

Rank (𝑫𝒋)
𝒎𝒂𝒙

∗
 Normalized (𝑫𝒋)

𝒎𝒂𝒙

∗
 𝑴𝒓𝒂𝒕𝒊𝒐,𝒋 Normalized 𝑴𝒓𝒂𝒕𝒊𝒐,𝒋 

1 0.00 0.00 0.30 0.37 

2 0.01 0.00 0.41 0.49 

3 0.11 0.01 0.72 0.87 

4 0.98 0.13 0.80 0.97 

5 7.82 1.00 0.82 1.00 

 

Step 6: Signal reconstruction 

 

Equations (7-16), (7-17) and (7-18) were applied to reconstructed the signal considering the 4th to the 

8th decomposition levels. The resulting floor total accelerations, relative accelerations and relative 

displacement signals are shown in Figure 9-7 to Figure 9-9, respectively. The original signal is also 
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shown in Figure 9-7, where the waveforms are similar though the reconstructed signal has smaller 

amplitude in some regions due to parts of the waveform being filtered out via the earlier steps. 

 

 

Figure 9-7. Reconstructed total floor accelerations 

 

 

 

Figure 9-8. Reconstructed relative floor accelerations 
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Figure 9-9. Reconstructed relative floor displacements 

 

Step 7: Derivation of tentative hysteresis curve 

 

Equations (6-22) and (6-23) were reapplied considering the reconstructed floor responses from step 6. 

The resulting tentative hysteretic curve is shown in Figure 9-10 as the “applied methodology” curve. 

This is compared against the “experimental data” curve. The latter was derived by using accelerations 

recorded from a different accelerometer located near that used to derive the capacity curve and from 

displacements obtained via laser transducer readings. Higher mode effects were removed using the 

continuous wavelet transform with a cut-off frequency of 7 Hz. While not a perfect match, both curves 

show very similar response. 

 

Figure 9-10. Tentative hysteretic response 
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Step 8: Derivation of tentative hysteresis curve 

 

Following Section 8.3, the capacity curve was extracted from the hysteretic response. This is shown in 

Figure 9-11 and was again compared against that extracted from experimental results. Similar to 

previous, both curves were not a perfect match, but are similar enough for assessing building damage. 

 

Figure 9-11. Extracted capacity curve 

 

9.4 Validation 

 

In addition to the validations shown in steps 7 and 8 in Section 9.3, The capacity curve extraction 

methodology was validated against large-scale shake-table tests performed at the E-Defense facility in 

Hyogo, Japan. These have been published by Yeow et al. (2022). 
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