火砕流発生条件に対する火ロ形状の影響 3次元噴煙モデルの火口条件に関する考察

小屋口剛博・小園誠史・鈴木雄治郎

Problems to solve

Column dynamics

3-D simulation (this study)Bursik and Woods (1991)Kaminski and Jaupart (2001) etc.

Flow inside crater

Woods and Bower (1995) etc.

Flow in conduit

Wilson et al. (1980) CONFLOW (2000) Koyaguchi (2005) etc.

First problem: Flow inside crater

(e.g., Woods and Bower, 1995)

Effect of the crater shape on $r_{\rm ex}/r_{\rm c}$ ratio

$$\frac{r_{ex}}{r_c} \approx 1 + \frac{D \tan \theta}{r_c}$$

 $r_{\rm ex}/r_{\rm c}$ decreases as $r_{\rm c}$ increases for given θ .

Flow regimes on "magma discharge rate vs r_c diagram"

Velocity at the atmospheric P on "magma discharge rate vs r_c diagram"

Column collapse condition on "magma discharge rate vs r_c diagram"

Second problem: 1-D conduit flow model (e.g., Wilson et al., 1980)

Semi-analytical solution of 1-D steady conduit flow (Koyaguchi, 2005)

Pressure at the base of crater

derived from the asymptotic behavior of $L_{total} = L_b + L_g$

"Magma discharge rate vs r_c relationship" derived from 1-D conduit flow model

Column collapse condition on "magma discharge rate vs r_c diagram"

Column collapse with oblique shock wave above the crater 3-D simulations of eruption column dynamics Mass fraction of ejecta Pressure difference

Conclusions

•A comprehensive parameter study for the conduit-crater model allows us to determine the condition of column collapse on the magma discharge rate vs r_c diagram.

•For shallow craters (D=100 m), column collapse occurs at separate conditions with small (10⁶ kg/s) or large (10¹⁰ kg/s) magma discharge rates, whereas for deep craters (D=1000 m), column collapse with intermediate magma discharge rates (10⁸ to 10⁹ kg/s) is possible.

•Column collapse with intermediate magma discharge rates is induced by the decrease in magma chamber pressure during the waning stage of an explosive eruption. This type of column collapse is characterized by deceleration due to the compression at the oblique shock wave outside the crater.