- 3.7.2 歪蓄積過程のモデル研究
- (1) 業務の内容
- (a) 業務題目 歪蓄積過程のモデル研究
- (b) 担当者
- 平原和朗(名古屋大学大学院環境学研究科 教授) 兵藤守(名古屋大学大学院理学研究科) 橋本学(京都大学防災研究所 教授) 川崎一朗(京都大学防災研究所 教授)
- 飯尾能久(京都大学防災研究所 助教授)

(c) 業務の目的

推定された静的断層モデルを利用して、深部断層構造や地殻構造にもとづいた不均質構造モデルにより、活断層などへの歪蓄積過程についてのモデル研究を行う.加えて、断層面上の摩擦特性を探るため、 歪・傾斜観測データ等から非地震性すべり検出を試みる。

- (d) 5ヵ年の年次実施計画
- 平成 14 年度 西南日本三次元有限要素モデルの構築と予備的計算、プレスリップおよびサイレント・ア ースクエイクのモデル化および過去の事例の収集・整理
- 平成 15 年度 西南日本三次元有限要素モデルによるシミュレーション、プレスリップおよびサイレン ト・アースクエイクのモデル化、日本列島下の地殻の粘弾性構造と変形に関する研究(地 形・重力データに基づく解析)
- 平成 16 年度 西南日本三次元有限要素モデルによるシミュレーション、プレスリップおよびサイレン ト・アースクエイクのモデル化、日本列島下の地殻の粘弾性構造と変形に関する研究(単 純化モデルによる力学的シミュレーション)
- 平成 17 年度 構造データを取り入れた西南日本三次元有限要素モデルの構築とこれによるシミュレー ション、プレスリップおよびサイレント・アースクエイクのモデル化、日本列島下の地 殻の粘弾性構造と変形に関する研究(力学的シミュレーション)
- 平成 18 年度 構造データを取り入れた西南日本三次元有限要素モデルの構築とこれ西南日本三次元有 限要素モデルによるシミュレーション、プレスリップおよびサイレント・アースクエイ クのモデル化、日本列島下の地殻の粘弾性構造と変形に関する研究(力学的シミュレー ション)
- (e) 平成 14 年度業務目的

(2) 平成14年度の成果

(2-1)南海トラフ巨大地震サイクルにおける内陸活断層での破壊応力変化

平原和朗(名古屋大学大学院環境学研究科)

hirahara@eps.nagoya-u.ac.jp

兵藤守(*名古屋大学大学院理学研究科)

hyodo@es.jamstec.go.jp

(*現 地球シミュレータセンター)

(a)業務の要約

構造探査結果等に基づいた地殻及び上部マントル粘弾性構造モデルを構築し、これに前述の準静的断 層モデルを導入して、断層における歪集中過程モデルを開発する。

3次元的に複雑な形状で沈み込むフィリピン海プレートを含む、西南日本の3次元不均質粘弾性有限 要素モデルを構築し、最近300年間の南海トラフ巨大地震サイクルのシミュレーションを行い、陸側プ レートすなわち、内陸における粘弾性応答を計算した。まず、フィリピン海プレートの沈み込みと1707 年宝永、1854年安政、1944年・1946年昭和の東南海・南海地震の地震時すべりに対する粘弾性応答に よる、内陸活断層におけるクーロン破壊応力(CFF)の時間的変動(CFF)を計算した。実際には東西 圧縮による起震応力場のもとに内陸地震は発生しているので、この東西圧縮率をGPS 観測によるひずみ 速度から推定し、各内陸活断層でクーロン破壊応力に焼き直し、先に計算した CFF に加えて、全 CFF を計算した。

内陸活断層で発生した時期と CFF の時間変動を比較したところ、1995 年兵庫県南部地震では、 CFF が極大を取る時期に発生時期が対応していて、1946 年南海地震発生 50 年後に兵庫県南部地震が発生したのは、粘弾性による遅れ応答によるものと理解される。しかしながら、他の断層ではあまり良い一致は見られなかった。

今後、このプロジェクトで得られる詳細な内陸における地殻構造をモデルに組み込むこと、マントル ウェッジでの粘性率の見積もり、さらに巨大地震の地震時すべりを実際のものに近づけることで、モデ ルの改善を図れば、発生時期の予測が困難であると言われる内陸活断層における地震発生時期に、何ら かの制約を設けることも可能であると期待される。

(b)業務の実施方法

はじめに

四国沖から東海にかけての南海トラフでは、フィリピン海プレートの北西進に伴う、西南日本下への 沈み込みにより、歴史的にマグニチュード8クラスの巨大地震が、90~150年の間隔で繰り返し発生し、 西南日本広域に大きな被害を引き起こしてきた(図1)。また、西南日本の活断層では、千年以上の繰り 返し間隔で大地震が発生している。この内陸活断層での大地震による被害はある程度局所的ではあるが 大都市圏で発生すると、南海トラフ巨大地震とは異なり足元で起きる地震であるため、1995年兵庫県南 部地震のように比較的短周期の強震動による甚大な被害を引き起こす。

南海トラフ沿い巨大地震の発生間隔は90~150年と比較的短く、発生時期ならびに発生場所もある程度の予想はつく。しかしながら、数多く存在する内陸活断層のどの断層がいつ地震を発生させるかにつ

いては、その繰り返し間隔が千年以上と長いこともあって、非常に困難な問題である。ところが、この 内陸地震の発生を南海トラフの巨大地震の発生と関連つけて考えると、ある程度内陸地震の発生につい てその時期を特定できる可能性がある。

本研究は、こういった観点にたって、南海トラフにおけるフィリピン海プレートの沈み込みと巨大地 震の発生による内陸活断層におけるクーロン破壊応力の変化を調べ、過去に地震が発生した時期とこの 破壊応力変化を比べることにより、各活断層における内陸地震発生の時期について何らかの制約を加え ようとするものである。

図1 古文書()・遺跡の液状化の発掘()から得られた南海・駿河・相模トラフ沿いのプレート境界地震のセグメンテーションと時系列[石橋・佐竹(1998)より引用]。
 上の地図における白抜きの矩形は西南日本の主要な活断層を示している。太い破線は、新潟神戸変動帯 NKTZ[Sagiyaet al.(2000)]を示している。

これまでの研究

歴史地震のデータから、南海トラフ沿い巨大地震の発生前 40・50 年から発生後数十年にかけて、西 南日本内陸での地震活動が活発化することが知られている(Hori and Oike、1996)。この南海トラフ沿 い巨大地震と内陸地震の相関を説明するメカニズムとして、内陸活断層が定常的に東西圧縮を受けてい る状態に、南海トラフ沿い巨大地震サイクルが摂動を与えることに起因するといったモデルが提唱され ている(例えば、Hori and Oike,1999)。しかしながら、以上は弾性媒質を仮定したモデルであり、沈み 込み帯に特有の強い不均質性および粘弾性的性質が考慮されていない。また、実際の南海トラフの地震 サイクルを長期間にわたってモデルに当てはめ、過去において発生した内陸地震について検討した研究 はない。

Politz and Sacks(1997)は、昭和東南海・南海地震による 1995 年兵庫県南部地震発生への影響を粘弾 性構造を含めて議論している。しかしながら、彼らは、弾性リソスフィアー粘弾性アセノスフィアから なる成層構造を仮定しており、沈み込むフィリピン海プレートといった不均質構造を考慮していないこと、昭和の東南海・南海地震のみを扱っていることなどから、不十分なモデルであると考えられる。

解析方法

本研究では、まず、上部マントルの粘弾性的性質、沈み込むフィリピン海プレートの3次元形状を考慮し、西南日本の3次元不均質粘弾性有限要素モデルを構築し、3次元有限要素法ソフトウェアである GeoFEM (Iizuka et al., 2002)を用い、過去300年にわたる南海トラフ沿い巨大地震サイクルを運動 学的に与えることにより、西南日本内陸の変動を計算する。次に、過去において実際に発生した内陸地 震の断層に注目して、クーロン破壊応力の計算を行う。その際、GPS 観測によるひずみ速度観測をデー タにして、東西圧縮応力を見積もり CFF に付け加える。

沈み込むフィリピン海プレートの構造を含んだ3次元粘弾性有限要素法モデル

図2(a)に本研究で構築した、有限要素メッシュの平面図を示す。モデル空間は、水平方向に1400km × 1030km で、深さ方向には地表面から深さ 200km までの西南・中部日本を含む領域を考慮した。メッシュの総要素数、総節点数は、それぞれ、21600、24339 であり、メッシュの平均サイズは、数十 km である。メッシュ分割は、プレート境界面では細かく、境界に近づくにつれ徐々に粗くなっている。沈み込むフィリピン海プレートの三次元形状は過去の研究で得られている微小地震の震源分布により決定されたプレート形状を滑らかにつなぐことによって構築した。図2(b)の断面図に示すように(1)地殻・(2)フィリピン海プレート・(3)上部マントルの三つの構造を考慮した。地殻・フィリピン海プレートは厚さ30km の完全弾性体、上部マントルは Suito and Hirahara(1999)による東北地方下の上部マントル緩和時間の推定値を参考に、緩和時間5年のマクスウェル粘弾性体である場合と倍の粘性率の場合を考えた。以上の地下構造の物性値は、表1に示してある。モデルの境界条件としては、面の平行方向にのみ変位を許す、ローラーコンディション、を仮定した。

図2フィリピン海プレートの三 次元構造を含んだ西南・中部日 本の三次元有限要素メッシュ。 (a)地表面における有限要素メ ッシュ。黒の点線はモデル内に おけるプレート境界面を示す。 (b)メッシュの北西方向におけ る断面の例。(1)~(3)の弾性定 数は表1に示してある。

図 2 (b)

南海トラフ沿いのプレート沈み込み速度

四国沖~紀伊半島西部の南海地震に対応するプレート境界については、Miyazaki and Heki(2001)による PH(フィリピン海)-AM(アムール)のオイラーベクトルから、予測される速度ベクトル(6~7cm/yr 程度)をバックスリップ(Savage,1983)として与える。GeoFEMにおいては、バックスリップを表すディスローケーションは分割節点法を用いている(Melosh and Raefsky, 1981)。固着領域は図3のプレート境界面の影をつけた領域であるとした。濃い影の部分は、フルカップリング、薄い影の部分は、遷移層であるとして、リニアーにカップリングが減少すると仮定した。

また、紀伊半島東部~駿河湾のプレート境界については、GPS 速度場の解析から PH-AM のオイラー ベクトルから予測される沈み込み速度より、伊豆半島におけるフィリピン海プレートと中部日本の衝 突・伊豆マイクロプレート (IMP)の内部変形(Sagiya,1999; Mazzotti et al.,1999)により、紀伊半島東 部から駿河トラフでは、プレート沈み込み速度がフィリピン海プレート自体より、かなり減じられてい ることがわかっている。このため、Mazzotti et al.(1999)による、IMP-CJP(中部日本)のオイラーベクト ルから予測される速度ベクトルを東南海・東海地震の断層面に対応する紀伊半島~駿河湾のプレート境 界面にバックスリップとして与える。予測される速度ベクトルは、紀伊半島沖で3~4cm/yr、 駿河トラ フでは2~3cm/yr 程度にまで減少する。また、特に駿河湾では、四国沖に比べて西向き成分が卓越す る。

図3 本研究においてシミュ レーションに用いた南海・駿河 トラフ沿いでのプレート沈み 込み速度(赤の矢印)。また(a) から(e)は、本研究で扱う内陸断 層を示す。影をつけた部分は固 着域を表し、濃い部分はフルカ ップリングを表す。

南海トラフ巨大地震のすべり量

本研究では、プレート間カップリングが地震サイクル全般にわたって変化しないと仮定し、南海・ 駿河トラフにおいて 1700 年以降発生した巨大地震(図1の点線で示す矩形部分)を重ね合わせること により、過去 300 年間(西暦 1700 年~2000 年)の地震サイクルシミュレーションを行う。

昭和の地震については断層モデルが報告されているが、宝永・安政の地震についてはすべり量がわかっていない。そこで Shimazaki and Nakata(1980)による時間予測モデルにより、地震時すべり量の見 積もりを行った。次期東海・南海地震は 2046 年に発生すると仮定して、安政の東海地震、昭和の地震 のすべり量を決定した。昭和の地震に見られるように、地震波解析から不均質なすべり分布が報告され ているが、ここでは固着域にわたって一様に時間予測モデルから決定されるすべり量を与えた。

クーロン破壊応力

本研究では、プレート運動に伴う内陸断層上での破壊の判断基準として、クーロン破壊応力(Coulomb Failure Function)の変化(以下では、 CFFと略す)を用いる。クーロン破壊応力とは、ある断層面 上での、せん断応力と、断層強度の差として定義される[例えば、King et al.(1994)]。

つまり、断層面での期待されるすべり方向のせん断応力を 、法線応力(ひっぱり方向を正)を ⁿ、 内部摩擦係数を μ、間隙水圧および断層の凝縮力を P、 ₀とおくと

439

$$CFF = \tau - \{\tau_0 - \mu(\sigma_n - P)\}$$
(1)

とかける。この断層が近傍での地震発生等により、応力変化を受けたとき、CFFの変化量(CFF)は、 間隙水圧変化が法線応力変化に比例すると仮定すると

$$\Delta CFF = \Delta \tau + \mu' \Delta \sigma_n \tag{2}$$

とかくことができる。但し $\mu' = (1 - \alpha)\mu$ であり、これは有効摩擦係数と呼ばれる。 CFF が正なら、 注目する断層での地震発生が促進され、負の場合起こりにくくなると解釈できる。有効摩擦係数の値に ついて過去の研究では、 0.2~0.5 程度の値が CFF のパターンと余震分布の関係をうまく説明すると している。ここでは 0.3 を採用している。

(c)業務の成果

解析結果と考察

弾性体での応答とは異なり、粘弾性体での応答は、地震サイクルの間で複雑に変化する。従って対応 する CFF も地震サイクル中複雑に変化する。シミュレーションにより得られた CFF を、1891 年濃 尾地震(図3(a)) 1995 年兵庫県南部地震(図3(e)) 断層について、図4に示す。

PH の進行方向に対して、1981 年濃尾地震断層の走向は平行、1995 年兵庫県南部地震断層は垂直で ある。1995 年兵庫県南部地震断層においては、法線方向の応力変化が顕著であり、地震時に大きな張力 が働き、粘弾性的遅れ応答でさらに張力が続くが、フィリピン海プレートの固着の影響でやがて圧縮力 の方が卓越してくる。このように、張力は地震後数十年でピークになる。その時に内陸地震が最も発生 しやすい状態になる。 前述したように、実際の内陸地震は東西圧縮場の起震応力場で発生している。この応力場の発生要因 には色々な説がありいまだはっきりしていないので、本研究では、GPS 観測によって得られたひずみ速 度から、圧縮応力の蓄積率を見積もった。実際には、図1の新潟 神戸変動帯(NKTZ)と呼ばれるひ ずみ集中帯でのひずみ速度(10⁻¹⁷/年)を用いた。これから CFF を計算し、前述の PH の沈み込みと 地震すべりによる CFF に加えると図5のような CFF が得られる。

図5から分かるように1995年兵庫県南部地震の場合には、地震の発生時期に CFF の極大になって いて、 CFF からは最も地震が発生しやすい時期に発生したと言え、 CFF の変動を追うことにより、 その発生は予測できた地震と言える。

 図5 内陸断層における CFF。(a)1981 年濃尾地震、(b)1927 年丹後地震、(c)1948 年鳥取地震、(d)1948 年福井地震、(e)1995 年兵庫県南部地震の各断層(位置は図3の(a)-(e))に対応している。赤・青の曲線はそれぞれ = 1x10¹⁹、2x10¹⁹(Pa・s)の場合の CFF、黒の直線は東西 圧縮応力による CFF、また、図には各断層で実際に発生した地震に対応する時間の位置にドットで印を付けてある。

しかしながら、 CFF は時間的、空間的に大きく変動し、他の断層については CFF の変動と地震 の発生時期が必ずしも良く対応しているとは言えない。

(d) 結論ならびに今後の課題

西南日本の3次元粘弾性有限要素法モデル(図2)を構築し、図5に示したように、フィリピン海プ レートの沈み込みとM8クラスの巨大地震の発生(1707年宝永、1854年安政、1944年・1946年東南 海・南海地震) それに東西圧縮場から推定されるものを加え、内陸活断層におけるクーロン破壊応力変化(CFF)を計算した。

1995 年兵庫県南部地震については、 CFF のピーク時に地震が発生しており、1946 年昭和の南海地 震の 50 年後に粘弾性の遅れ応答により地震が発生したと言える。しかしながら、他の内陸地震断層に ついては、 CFF と地震発生時にあまり良い対応が見られるとは言えない。特に、内陸で最大の地震と いわれる 1891 年濃尾地震の発生が説明できないのは問題であろう。このように現状のモデルでは、可 能性はあるが、フィリピン海プレートの沈み込みと巨大地震の発生が内陸地震の発生をコントロールし ていると言えるかどうかははっきりしない。

ただし、現状のモデルはかなり簡単化した第一近似的なモデルであり、今後以下の点を検討し、修正 していけば実際の地震発生を説明できるモデルができる可能性があると思われる。

1)粘性率

ここで採用した粘性率では、マックスウェル時間(/G)は5年、10年であるが、弾性体である地殻 とフィリピン海プレートがあることにより系全体の緩和時間は百年程度で、地震サイクルと同程度の時 間となり、粘性率により、地震サイクル中の地表上下変動はかなり影響を受ける。ここでは、地震サイ クルにおける水平変動や上下変動の時間変動についてシミュレーション結果を示していないが、GPS に より観測された現在の水平変動速度はよく再現されているが、上下変動率はあまりよく再現できていな い。これは以下のカップリングや地震時すべり量にも大きく依存しており単独で粘性率を変動データか ら単独で精度良く見積もることはできないが、他のデータ、たとえば内陸地震の余効変動データから推 定できる可能性がある。

2) プレート間カップリング・南海トラフ巨大地震のすべり量

本研究で用いたフィリピン海プレートとアムールプレートのプレート間カップリングモデルは、弾性 体モデルで現在の GPS 観測を満たす、Miyazaki and Heki(2001)を用いていて、時間的にカップリング は一定であるとしている。実際には、プレート間カップリングは時間変動している可能性がある。これ は長期にわたる上下変動データを粘弾性モデルでインバージョンしてプレート間カップリングの時間変 化を精度良く推定することにより改善が期待される。また、南海トラフの巨大地震震源域のアスペリテ ィー分布の詳細も 1944 年東南海、1946 年南海地震に対して、地震波形記録・津波・地殻変動データを もとに研究が進められている。地震時のすべりおよび余効すべり分布をモデルに組み込めば各断層での CFF の精度は大きく向上すると期待される。

3) 西南日本内陸地殻構造モデル

図 2(b)に示したモデルの断面図から分かるように、本研究では均質な一層からなる完全弾性地殻モデ ルを採用している。内陸地震は上部地殻で発生しており上部地殻と下部地殻では構造が異なり、上部地 殻は弾性体でモデル化できるが、下部地殻は粘弾性としてモデル化する必要がある。また、地殻(上部・ 下部)の厚さは地域ごとにかなり異なっており、内陸活断層周辺での詳細な地殻構造(特にその粘弾性 構造)は、 CFFに大きな影響を与えるので、詳細なモデル化が必要である。また、準静的応力蓄積過 程を明らかにして断層での局所的な応力集中すなわち破壊の開始点を明らかにするためにも詳細な構造 モデル構築が急務である。本プロジェクトで明らかにされるであろう、近畿大都市圏における詳細な構 造探査に期待される。弾性構造がまず明らかにされるであろうが、なんとか粘弾性構造に結びつく構造 探査を期待したい。

442

(e) 引用文献

- Hori, T. and K. Oike: A statistical model of temporal variation of seismicity in the Inner Zone of Southwest Japan related to the great interplate earthquakes along the Nankai trough, J. Phys. Earth, 44, 349-356, 1996.
- Hori, T. and K. Oike: A physical mechanism for temporal variation in seismicity in the Inner Zone of Southwest Japan related to the great interplate earthquakes along the Nankai trough, Tectonophysics, 308, 83-98, 1999.
- 3) 石橋克彦,佐竹健治: 古地震研究によるプレート境界巨大地震の長期予測の問題点 -日本付近のプレ ート沈み込み帯を中心として-,地震2,50,1-21,1998.
- 4) lizuka, M. D. Sekita, H. Suito, M. Hyodo, K. Hirahara, D. Place, P. Mora, O. Hazama and H. Okuda: Parallel simulation system for earthquake generation: fault analysis modules and parallel coupling analysis, Concurrency Computat : Pract. Exper., 14, 499-519, 2002.
- 5) King, G.C.P., R.S. Stein and J. Lin: Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935-953, 1994.
- 6) Mazzotti, S., P. Henry, X. Le Pichon and T. Sagiya: Strain partitioning in the zone of transition from Nankai subduction to Izu-Bonin collision (Central Japan): implications for an extensional tear within the subduction slab, Earth Planet. Sci. Lett., 172, 1-10, 1999.
- 7) Melosh, H.J. and A. Raefsky: A simple and efficient method for introducing faults into finite element computation, Bull. Seismol. Soc. Am., 71, 1391-1400, 1981.
- 8) Miyazaki, S. and K. Heki: Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4,305-4,326, 2001.
- 9) Sagiya T.: Interplate coupling in the Tokai District, Central Japan, deduced from continuous GPS data, Geophys. Res. Lett., 15, 2315-2318, 1999.
- 10) Sagiya T., S. Miyazaki and T. Tada: Continuous GPS and Present-day Crustal Deformation of Japan, Pure Appl. Geophys., 157, 2303-2322, 2000.
- Savage, J.C.: A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984-4996, 1983.
- 12) Shimazaki, K. and T. Nakata: Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett. 7, 279-282, 1980.
- 13) Pollitz, F. F. and S. Sacks: The Kobe, Japan, Earthquake: A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes, Bull. Seism. Soc. Am., 87, 1-10, 1997.

(f) 成果の論文発表・口頭発表等

1) 論文発表

著者	題名	発表先	発表年月日
	なし		

2) 口頭発表、その他

発表者	題名	発表先、主催、発表場所	発表年月日
なし	なし		

(g) 特許出願、ソフトウエア開発、仕様・標準等の策定 なし

飯尾能久 (京都大学防災研究所)

iio@rcep.dpri.kyoto-u.ac.jp

(a)業務の要約

有馬-高槻-六甲断層系周辺における約 100 年間の地殻水平歪データの解釈を試みた。断層系の北側に 存在すると推定される detachment 上に約 100 年間に 2-4m のすべりを与えないと、観測データを説明出 来ないことが分かった。このすべり量は常識的には大きすぎるため、detachment の深さなどを検討する 必要がある。

(b) 業務の実施方法

はじめに

有馬-高槻-六甲断層系周辺における地殻水平歪データ(図1、国土地理院、1985;1986)の解析を行った。 図中赤で囲った範囲が、約100年に1x10⁻⁵より大きな南北伸張歪を示した領域である。明石海峡と、六 甲断層系および有馬高槻断層系の近傍に南北の伸びの大きな領域がみられる。このデータは兵庫県南部 地震発生前約100年の歪の分布を示しており、断層の準静的モデル構築のために大変重要である。

図1 有馬-高槻-六甲断層系周辺における地殻水平歪データ

これまでの研究

飯尾(1996)は、有馬-高槻-六甲断層系の北側の下部地殻内に存在する detachment 上のすべりにより、 地殻水平歪データを解釈可能であることを定性的に示した。片尾(1994)により、S 波の反射点分布が有 馬-高槻-六甲断層系の北側の下部地殻内に得られている。この反射点分布は一続きの反射面を見ている ものであり、低角の断層、detachment を反映していると仮定する。また、応力場に関して、地震発生 域最下部と同様に、下部地殻内においても、最大水平圧縮応力が東西、最小水平圧縮応力が南北、中間 主応力が上下であると仮定する(Iio, 1996)。すると、反射面の走向は東西であるため、最大水平圧縮応 力は面内のため無視され、上下方向の応力が南北方向の応力より大きくなり、detachment は正断層と して働く。つまり、図2に示したように、北下がりの detachment 上で、上盤側が北側にすべることと なる。これにより、detachment の南端、有馬-高槻-六甲断層系周辺には、南北方向の伸びが発生するこ とが期待される。

図 2 有馬-高槻-六甲断層系の北側に拡がる,傾斜角 10 度, 上端の深さ 20km の detachment.

解析方法

図 2 に示すように、有馬-高槻-六甲断層系の北側に、傾斜角 10 度、上端の深さ 20km の detachment を仮定し、Okada(1985)により、有馬-高槻-六甲断層系周辺の歪場を計算した。

(c) 業務の成果

解析結果と考察

detachment 上に 1m の北落ちのすべりを与えた場合の結果を図3に示す。有馬-高槻-六甲断層系近傍 において、5x10⁻⁶の程度の南北伸張歪が見られる。観測された約100年間の歪は、1-2x10⁻⁵程度であり、 観測データを説明するためには、約100年間に2-4mのすべりが必要となる。この値は2-4cm/年という プレートの相対運動速度に匹敵する量であり、常識的には大きすぎる。以下のような可能性が考えられ る。(1) detachment の上端の深さが浅く、地震発生域内でもすべりが発生している。(2)detachment は下部地殻内ではなく、地震発生域より浅い部分に存在する。(3)上部地殻の断層近傍の弾性常数が小さ く、下部地殻内の detachment のすべりによる歪が増幅されている。

図3 detachment のすべりによる南北伸張歪(x10⁻⁵)

(d) 結論ならびに今後の課題

有馬-高槻-六甲断層系の北側に存在する可能性のある detachment 上のすべりにより、有馬-高槻-六甲 断層系周辺における地殻水平歪データの解釈を試みた。detachment 上に約 100 年間に 2-4m のすべりを 与えないと、観測データを説明出来ないことが分かった。このすべり量は常識的には大きすぎるため、 detachment の深さなどを検討する必要がある。

謝辞 防災科学技術研究所・岡田義光氏に、歪を計算するプログラムを提供していただいた。

- (e) 引用文献
- 1) 飯尾能久:兵庫県南部地震の発生過程 断層の固着とディタッチメントのすべり ,地震 2 , 49, 103-112, 1996.
- 2) lio,Y.: Depth-dependent change in the focal mechanism of shallow earthquakes: Implications for brittle-plastic transition in a seismogenic region, J. Geophys. Res., 101, 11209-11216, 1996.
- 3) 片尾 浩: 近畿地方の微小地震活動域直下に存在する顕著な地殻内反射面,地球惑星関連学会合同大

会予稿集,122,1994.

- 4) 国土地理院: 近畿地方の地殻変動, 地震予知連絡会会報, 34, 346-357, 1985.
- 5) 国土地理院: 近畿地方の地殻変動, 地震予知連絡会会報, 34, 333-354, 1986.
- 6) Okada,Y.: Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc.Am., 75, 1135-1154, 1985.

(f) 成果の論文発表・口頭発表等

特になし.

(g) 特許出願、ソフトウエア開発、仕様・標準等の策定なし

川崎一朗(京都大学防災研究所)

kawasaki@rcep.dpri.kyoto-u.ac.jp

(a) 業務の要約

過去10年の間に日本列島周辺で見出された、発生場所、発生時期、断層面解、モーメントがインバ ージョンから決まるサイレント地震のまとめを行ない、フィリピン海プレート上面の摩擦のセグメンテ イションという視点から問題点を整理した。

(b) 過去のサイレント地震のまとめ

南関東のサイレント地震

表1の(S1)から(S8)は、1990年代に、日本列島周辺で見出されたサイレント地震である。そのほか、1996年の2つの日向灘地震の余効すべり(A1)、(A2)と、参考までに、(K)1923年関東大地震が示されている。太平洋プレートの境界面で起こった銚子沖の(S5)と(S6)を除いて、他はすべて、フィリピン海プレートの境界面上の事件である。

		Mw	Mo/Moa	Do	То	Reference
		/ Mwa	10 ¹⁸ Nm	m	Day	
К	1923 Kanto	7.9	700	3.5	0.0008	Wald & Sommerville
		-7.9	-800			(1995)
S 1	~1970 Chiba	6.5	7.6	0.4	-	Fujii (1993)
S 2	1989 Tokyo Bay	5.9	0.75	0.02	~ 1	Hirose et al.(2000)
S 3	1996 Boso	6.0	1	0.1	~ 5	Sagiya (2003)
S 4	1997 Bungo Channel	6.6	11	0.18	~ 300	Hirose et al.(1999)
S 5	1999 Choshi-oki	5.6	0.33	0.03	~ 5	Nakagawa et al. (2000)
S 6	2000 Choshi-oki	6.1	1.7	0.17	2~3	Hirose et al.(2001)
S 7	2001 ~ 2002 Tokai	6.6	8.4	0.15	~ 400	Kimata et al.(2002)
S 8	2002 Boso	6.5	~ 10	0.1	~ 10	GSI (2002)
A 1	1996 Hyuga-nada(a)	6.8	17	0.1	~ 50	Yagi (2002)
A 2	1996 Hyuga-nada(b)	6.8	20	0.1	~ 50	Yagi (2002)

表1 現在までに見いだされた、フィリピン海プレートのプレート境界のスロー・スリップ・イベント((A1) と(A2))のリスト。参考として、1923年関東大地震(K)も挙げてある。MW と MWA は、それぞれ、地震モーメントとスローキスリップキイベントとしてのモーメントマグニチュド。Mo と Moa も、それぞれ、通常の 地震モーメントとスローキスリップキイベントとしてのモーメント。Do は平均的すべり量。To は震源時間、または時定数。

図1の赤四角は、南関東周辺で見いだされた6つのサイレント地震、(S1)、(S2)、(S3)、(S5)、

(S 6)、(S 8)の推定断層面、青はこの地域で過去数世紀の間に起こった主要巨大地震で、そのほか、1923
 年 Mw7.9 関東大地震のアスペリティ(Wald and Somerville, 1996)、1703年元禄関東地震の断層モデル(村上・都司, 2002)、1938年 Mw7.7 塩屋沖巨大地震群の断層モデル(Abe, 1977)が示されている。

Silent earthquakes in the south Kanto district

図1 赤色は、1989年12月東京湾サイレント地震(Mw5.9相当、時定数約1日)、1996年5月房総半島サ イレント地震、1999年3月銚子東方沖サイレント地震(Mw5.6相当、時定数数日)、2000年3月銚子東方沖 サイレント地震(Mw5.6前後、時定数数日)、青は、1923年 Mw 7.9 関東大地震のアスペリティ(Wald and Somerville, 1995)、それ以外は、1703年元禄関東地震の断層モデル(村上・都司, 2002)、1938年 Mw7.7 塩屋沖巨大地震群の断層モデル(Abe, 1977)。

幾つかのサイレント地震については、多少詳しく説明しておこう。

1960年~1965年の水準測量に、千葉周辺でのみ、通常のトレンドと異なる変化があった。Fujii(1993) は、これをフィリピン海プレート上面のサイレント地震(S1)と見なして低角逆断層型の断層モデルを 求めた。データの制約上、時定数は分からない。

1989年12月9日、防災科学技術研究所の東京湾周辺の傾斜計記録に、ほぼ1日かかって、5x10⁻⁸の オーダーの準静的ランプ型傾斜ステップが生じた。中でも、深さ 2750mの深層ボーリング坑の府中 (FCH)の記録は非常にノイズレベルが低く、ランプ型傾斜ステップが明瞭である。深さ 3510mの深層ボ ーリング坑の岩槻(IWT)と95mの浅層観測坑の愛川(AKW)がそれに次ぐ。広瀬・他(2000)は、この傾斜 ステップの大きさのインバージョンから、東京湾直下、フィリピン海プレート上面の、Mw5.9 に匹敵す るモーメントを解放する断層モデルを求めた。断層面は北に傾くがほとんど水平(~13度) 上盤のス リップの方向は~北27度西で、相模トラフからフィリピン海プレートが西東の方向に低角で沈み込ん でいるというテクトニックセッティングと調和的である。

鷺谷(1998)は、GPS 変位から求められたフィリピン海プレート上面のバックスリップの分布を求めた。

それによると、東京湾直下から相模トラフの部分ではプレート境界は完全にカップリングしており、東京湾北部直下より北方の深い部分では、プレート境界は安定すべりが卓越している。1989年12月の東京湾サイレント地震は、安定すべりと不安定すべりの遷移帯で起こったことが分かる。

重要な知見の1つは、サイレント地震のすべり域は、より浅部の歴史的巨大地震とオーバーラップしていないことであろう。問題は、これらのサイレント地震が、歴史的巨大地震とどのような関係にある かだが、現在の時点では何も分かっていない。

1年の間隔で発生した(S 5)と(S 6)の断層面は、互いに隣り合い、オーバーラップしない。1996 年 と 2002 年の房総サイレント地震は、すべり域はほとんどオーバーラップしているように思われる。す べり面がオーバーラップするのかしないのかは、サイレント地震を起こすプレートセグメントの摩擦の 不均質を理解する上で非常に重要である。

東海サイレント地震

2001年の春から、浜名湖を中心として数 10km の範囲の GPS 観測点が、定常的な西北西の運動方向から南東の方向にずれ始めた。GPS 変位のインバージョンによると、フィリピン海プレート面上のすべりの中心部分は浜名湖直下である (Kimata, 2002)。

精密暦2000年9月11日-2003年1月23日まで

図2 すべり量と分布面積から換算した 2001-2002 年東海サイレント地震のモーメントの時間変化図。Mw は、モーメントから換算した等価モーメントマグニチュド(本文では Mwa)。一時期は、サイレント地震の モーメントが加速しているように見えたので、さらに加速して東海地震になるのではないかと恐れられた。年 末に向かって定常状態に戻りはじめたが、2002 年に入って再び拡大したのち、後半からは再び落ち着いたよ うに見える。

図2は、すべり量と分布面積から換算したモーメントの時間変化図である。一時期は、サイレント地 震のモーメントが加速しているように見えたので、さらに加速して東海地震になるのではないかと恐れ られた。年末に向かって定常状態に戻りはじめたが、2002年に入って、異常の中心が掛川の方に移動し ながら再び徐々に拡大しており、現在のサイズは Mw6.8 相当程度である。重要な問題は、サイレント 地震のサイズが、「なぜ一度減速したのか」、「再び拡大したことが何を意味しているのか」である。

豊後水道サイレント地震

1996年10月と12月に、日向灘でMw6.8とMw6.7の地震が起こった。これらの地震には、Mw7.0 に匹敵するモーメントを数ヶ月かけて解放した余効変動が起こった(Yagi, et. al., 2001)。これらの日向 灘地震のあと、豊後水道で、時定数約1年、Mw6.8に匹敵するプレート間モーメントを解放するサイレ ント地震が起こった(Hirose et al., 1999: Ozawa et al., 2001)。日向灘で起こった事件では、サイレン ト地震と余効変動と地震アスペリティが明白に住分けていることが分かった。

(c) プレート境界面の粗さの推定

比例して増大する次の成長曲線がもとまる。

表1のようなサイレント地震の1つ1つが、動的破壊に至るのか、至らないのか、どのような時間的 変化を経て動的破壊に達するのか、それをコントロールしているのは何かが問題である。

重要なヒントを与えてくれるのが、Ohnaka and Shen (1999)の実験と思われる。かれらによると、 花崗岩サンプルに人工的にすべり面をつくり、力を加えて無理やりすべらせると、必ずと言っていいほ ど、「震源核」が小さな部分で始り、徐々に大きくなり、加速され、最後に動的破壊に至る。

Ohnaka and Shen (1999) は、様々な「粗さ」のすべり面で震源核を発生させ、加速の様子を調べた。 震源核が加速される様子はすべり面の「粗さ」によってまったく異なる。滑らかなすべり面では、震源 核は急速に加速され短い時間で動的破壊に至る。粗いすべり面では、震源核がゆっくり成長し動的破壊 に至るまで長い時間がかかる。

Ohnaka and Shen (1999) の重要な成果の1つは、震源核のサイズをすべり面の粗さを表すパラメー ター c で規格化すると、すべり面が粗い場合でも滑らかな場合でも乗る「震源核のモーメントの時間 に関する単一のべき状則」になることである。

Vn/Vs = 8.87 x 10²⁹ x (Ln/c)^{7.31} (1) 適当な幾つかの仮定を導入すると、(1)のべき状則から、震源核のサイズ Mon(t)が時間 t のルートに逆

 $M_{ON}(t) = M_{ON}(to) / (1 - (t-to)/TE)^{7.31}$ (2) ただし、to=現時刻、t=to以降の時刻、TE=Mon(t)が無限大になる時刻で Mon(to)の関数、Mon(t) =時刻tにおける震源核のモーメント、Mon(to)=時刻toにおける震源核のモーメントである。

吉田・加藤(2002)や加藤(2002)の数値シミュレイションを当てはめると、ひとたび減速したのは、遷 移帯にある最初のすべり域での拡大過程がすべり域の境界に達したか、摩擦の大きい隣のアスペリティ (図5参照。1944年東南海地震のアスペリティ)にぶつかって減速したと推定される。それが再増大し たのは、隣のアスペリティに染み出した震源核が、そのアスペリティの摩擦強度に従って再び拡大を始 めたことを意味するのであろう。大事なことは、プレート境界面の粗さや摩擦の大きさの不均質によっ て、減速されたり加速されたり、様々な動きをするということである。

逆に、式(2)を観測記録に当てはめ、すべり面の粗さ c を求めることが出来る。図3は、(A)1989 年 東京湾サイレント地震の観測波形と、(B) c を 1.5m、2m、2.5m と仮定した場合の府中の合成波形を 比較したものである。この比較からは、 c は $2m \pm 0.5m$ というゼロオーダーの近似値が得られる。図 4 は、1997 年豊後水道サイレント地震の観測波形と佐伯(SAIKI)の合成波形の比較である。この比較か らは、 c=6.5m \pm 1.5m というゼロオーダーの近似値がもとまる。現在のところ、この様なやり方が、 プレート境界面の粗さ c を求める唯一の方法である。

加藤(2002)は、逆に、サイレント地震のサイズと摩擦係数の関係を示す次式から a - b を見積も

ることができることを示した。

a-b=-cµL/(rcx n)

ただし、rc サイレント地震のサイズ、c = 7 / 24、µ 剛性率、L 特徴的すべり量、 n 有効法 線応力である。この式に基づいて、1989年東京湾サイレント地震や1998年豊後水道サイレント地震、 東海サイレント地震のすべり域のa - bを荒っぽく見積もれないだろうか。

(3)

大きな問題は、有効法線応力 n と特徴的すべり量 L が分からないことである。地震を引き起こ すテクトニックな初期応力はよく分からないが、水圧破壊法などから、30MPa(300bar)程度と思われ、 20km ~ 30km の深さの岩圧 600MPa ~ 900MPa より1桁小さく、地震を起こすのはむつかしい。それ に対して2つの考え方がある。

(1) 水によるポアプレッシャーが実効法線応力を下げている。

(2) 断層摩擦を支えているのは、小さなアスペリティで、そこでは 30MPa より桁違いに大きな破壊応力で、断層運動が起こっている。有効法線応力 n は岩圧と同じ程度と考えて差し支えない。

(1) か (2) かは分からないが、ここでは、有効法線応力 n は岩圧と同じ程度と仮定してみることに する。

特徴的すべり量 L もよく分からない。しかし、L を越えると動的破壊に至るので、サイレント地震のすべり量はLよりも小さいであろう。ここでは、あらっぽく、サイレント地震のすべり量をLと仮定する。

1989 年東京湾サイレント地震のばあい、rc~25km、µ=4x10^10 Nm、L~0.4m、 n~900MPa (深さ 30km)と仮定して、a - b ~ - 6x10^-4 となる。

1998 年豊後水道サイレント地震のばあい、rc~60km、µ=4x10^10 Nm、L~0.18m、 n~600MPa (深さ 20km)と仮定して、a - b ~ - 1.4x10^-4 となる。

2001 年東海サイレント地震は進行中であるが、かりに、rc~30km、µ=3x10^10 Nm、L~0.20m、 n~600MPa(深さ 20km)と仮定して、a - b ~ - 4x10^-4 となる。

この3つの見積もりは、室内すべり実験などから推定されている値(例えば、加藤尚之・平沢朋郎(1997), Kato and Hirasawa (1999)より1桁小さい。全体の傾向として、サイズが小さく時定数の小さい(高速) なものほどa - bの絶対値が大きい(室内実験でも見積もりに近い)。

図3 (A) 1989 年東京湾サイレント地震の歪波形と、(B) 式(2)によって計算した府中(FCH)びおける傾斜波形。(A)と(B)の比較から、すべり面のラフネスは、2.5m±0.5mと見積もられる。

図4 (A) 1997 年豊後水道サイレント地震のトレンドを差し引いた変位形と、(B) 式(2)によって計算した佐伯(SAIKI)における変位波形。ラフネスは、6.5m±1.5m。

もちろん、この見積もりは、「有効法線応力 n は岩圧と同じ」と「サイレント地震のすべり量をL」 という裏付けの無い荒っぽい仮定のもとでの単なる計算値である。実際のLが小さいと a - b の絶対 値は小さくなり、実際の n が1桁小さいと a - b の絶対値は室内すべり実験などから推定されて いる値と同じオーダーになる。

むしろ現在の段階で重要なことは、室内すべり実験などから推定されている値と1桁しか違わない範 囲で求まったことであろう。

(d) 結論ならびに今後の課題

表1のスロー・スリップ・イベント(赤)と、1944年東南海地震、1946年南海地震、1923年関東大 地震のアスペリティ(青)を同時にプロットしたのが図5である。

アスペリティは、Tanioka and Satake(2001a)による、1944 年東南海地震の前に行われた水準測量と 1946 年南海道地震の後に行われた水準測量の差のインバージョンによって得られたすべり分布(太破線 がすべり量1m、太実線が2m)(Sagiya and Thatcher, 1999)と、津波波形のインバージョンによっ て得られたすべりの分布、Kikuchi et al.(2003)によるアスペリティ、震度分布から復元した 1944 年東 南海地震のアスペリティ(神田・他, 2002)を併せ、3種類のデータを大局的に満足するように推定し たもので、任意性は大きい。

図5 フィリピン海プレート東北端のサイレント地震の分布。赤のシンボルが表1に記載されているサイレント地震のすべり領域をプロットしたものである。深さ 30km 前後の、カップリング域と定常滑り域の遷移帯の赤のシンボルがサイレント地震を、海溝と遷移帯の間の青いシンボルが、M8クラスの巨大地震の地震アスペリティを示す。

1944 年東南海地震の場合、アスペリティの推測の仕方の曖昧さにもかかわらず、3つの異質なデータから復元されたすべり量分布を比較して、次のことが確実に言えるのではないだろうか。 (Asperty 1)熊野灘に、すべりの大きさ3m以上の、強震動も津波も起こしたアスペリティがある。 Kikuchi et al.(2003)の結果と調和的。

(Asperity 2)渥美半島から沖合にも、すべりの大きさ1m程度の、強震動も津波も起こした、(Asperity 1)に比べてやや弱いアスペリティがある。ただし、Kikuchi et al.(2003)の結果ではこの部分は見えない。

Kimata(2002)の断層モデルと比較して、2つのシナリオが考えられる。

(1) 東海サイレント地震は Asperity 2の中で生じ、拡大している。

(2) 東海サイレント地震は、Asperity 2 の北側で生じ、一度は Asperity 2 の境界で減速したが、今度 は Asperity 2 の中で再度拡大を始めた。

摩擦の物理という視点からこの問題を考えるときには、(1)か(2)かは重要な分岐点と思われるが、 残念ながら、データの分解能不足は充分でなく、どちらか決めるのは困難である。

1946年南海地震の場合も、津波波形のインバージョンによるすべりの分布図(Tanioka and Satake, 2001b) 水準測量データのインバージョンによるすべり分布(Sagiya and Thatcher, 1999) 震度分布 から復元したアスペリティ(神田・他, 2002) 地震波形から推定した3つの主要アスペリティの位置(橋本・菊地, 1999)を参考に推定したものである。これから次のことが言えるのであろう。

(1) 潮岬沖、紀伊水道、土佐湾に、強震動を出し、津波を起こした、すべり量3m以上の主要アスペリティ分布している。

(2) 土佐湾のアスペリティのすべり量は、津波データから見て5m以上、水準測量データから見て1
 0m以上にも達し、誤差の範囲を考えても以上に大きい。その原因として、(1)分岐断層説(Cummins et al., 2001)、(2) elastohydrodynamic lubrication (Brodsky and Kanamori, 2001)による runaway stress drop などがあるように思われる。

図5の今までの発見事例に関する限りでは次のこと言えそうである。

(1) スロー地震やサイレント地震では、「日」から「月」、「年」のあらゆる時定数の事件が現実に起こっている。

(2)顕著な余効すべりは太平洋プレート上面に多い。

(3) フィリピン海プレート上面で、安定すべりと不安定すべりの遷移帯 (Ito et al., 2000)。1999年3 月と2000年3月の銚子東方沖サイレント地震は例外。

(4) 通常の大地震の主要エネルギーを解放したすべり部分(アスペリティ)と、スロー地震やサイレント地震のすべり域はオーバーラップしない。

(5) 1923 年関東大地震や 1944 年東南海地震、1946 年南海道地震のアスペリティのすべり量は3m程度かそれ以上だが、サイレント地震のすべり量は数10cmのオーダーで、1桁小さい。

(6) 主要地震アスペリティはすべて30km より浅く、サイレント地震は主として深さ30km 前後で 起こっている。

これらの知見にも関わらず、非常に不思議なのは、日本海溝沿いでは、これらの事件によって解放されたモーメントのすべてを足し合わせても、カップリングが100%としたときに予想される量に比べて全然足りない。三陸はるか沖の場合(Kawasaki et al., 2001)は例外である。特に福島県沖から茨城県沖にかけての、GPSデータから考えると強くカップリングしていると判断せざるを得ないのに、1938年塩屋沖地震群を除いて、ここ数100年、Mw8クラスの巨大地震は知られていない。これらの辻褄を合わせるためには、今後、大サイレント地震が起こるとしか思えない。

今までに提案されたプレート境界の摩擦強度やカップリング係数を求める方法は下記の通りである。 (1) サイレント地震の波形から粗さ cを決める。ただし、サイレント地震が安定すべりと不安定すべり の遷移帯であると、この方法で決めた c は通常の粗さではない。

(2) サイレント地震のサイズからa - bを決める。ただし、特徴的すべり量1や法線応力を知る必要がある。

(3) afterslip の時間変化からa - bを決める。日本のプレート境界地震の余効すべりにはまだ試みられていない。

(4) 繰り返し地震(相似地震)の頻度からすべりの時空間分布を求める。

(5) b 値の空間分布とカップリングを対応させる。

(6) 余震の起こり方からa - bの正負を分類する。

しかしながら、a - bの絶対値を決めるのはむつかしいが、当面の焦点は、非地震性すべり域や地震 アスペリティの時空間分解能を上げることである。境界はシャープなのか、a - bが徐々に変化するの か、ステップ状に変わるのかで、震源核の拡大の様子が変わるであろう。分解能を上げることによって、 すべり面の粗さ cを求めることが出来る。

時空間分解能を上げるのに本質的に重要なのは、カーネルの空間分布の異なるデータを併用すること、 具体的には、GPS による水平変位、Hi-net の傾斜計記録による地殻傾斜(上下変位の水平座標による 微分)、超伝導重力計記録などの同時インバージョンをすることであろう。

断層面の摩擦強度の分布は、遠くから見ると(far-field のデータを使うと)どうしても境界のぼやけた像になる。どれだけ境界のピントの合った像を描けるかが重要である。従って、震源近傍のデータが 重要である。

別の視点から言うと、プレート境界面のアスペリティ分布が焦点という意味で、強震動予測と直前予 知は双子の兄弟ということが出来るかもしれない。

(e) 引用文献

- 1) Abe, K: Tectonic implication of the large Shioya-oki earthquake of 1938, Tectonophysics, 41, 269-289, 1977.
- 2) Brodsky, E. E., and Kanamori, H.: The Elastohydrodynamic Lubrication of Faults, J. Geophys. Res., 106, B8, 16357-16374, 2001.
- 3) Cummins, P. R., Hori, T., and Kaneda, Y.: Splay fault and megathrust earthquake slip in the Nankai trough, Earth Planets Space, 53, 243-248, 2001.
- 4) Fujii, Y.: Vertical crustal movement in the Boso peninsula, South Kanto, Japan, as deduced from the adjustment of a geodetic network with signals, Tectonophysics, 218, 309-322, 1993.
- 5) 橋本徹夫, 菊地正幸: 地震記録から見た 1946 年南海地震の震源過程, 月刊地球, 南海地震 次の巨 大地震に備えて - , 24, 16-20, 1999.
- 6) 広瀬一聖,川崎一朗,岡田義光,鷺谷威,田村良明:1989年12月東京湾サイレント・アースクェイ クの可能性,地震2,53,11-23,2000.
- 7) Hirose, H., K. Hirahara, F. Kimata, N. Fujii and S. Miyazaki: A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan, Geophys. Res. Lett., 26, 3237-3240, 1999.
- 8) 廣瀬仁:繰り返し発生する房総半島 slow slip?,日本地震学会講演予稿集 2001 年度秋季大会,P140, 2001.

- 9) Ito, T., S. Yoshioka and S. Miyazaki: Interplate coupling in northeast Japan deduced from inversion analysis of GPS data, Earth Sci. Planet. Lett., 176, 117-130, 2000.
- 10) 神田克久,武村雅之,宇佐美龍夫: 震度データを用いた震源断層からのエネルギー放出分布のイン バージョン解析,地震投稿中,2002.
- 11) 加藤尚之,平沢朋郎:プレート境界で発生する余効すべりの数値シミュレイション,地震2,51, 241-250,1997.
- 12) Kato, N. and Hirasawa, T.: Nonuniform and unsteady sliding of a plate boundary in a great earthquake cycle : A numerical simulation using a laboratory-derived friction law. PAGEOPH 15, 93-118, 1999.
- 13) 加藤尚之: 摩擦パラメータの不均質性による複雑な地震サイクル,地球惑星科学関連学会2002年合同大講演予稿集, J076-003, 2002.
- 14) Kawasaki, I., Asai, Y. and Tamura, T.: Space-time distribution of interplate moment release including slow earthquakes and seismo-geodetic coupling in the Sanriku-Oki region along the Japan trench, Tectonophysics, 330, 267-283, 2001.
- 15) Kikuchi, M, Nakamura, M., and Yoshikawa, K.: Source rupture process of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from long-period seismograms, submitted to EPS, 2003.
- 16) Kimata, F, Hirahara, K., and Fujii, N.: Interplate coupling changes in the Tokai region, Japan, estimated from the vertical movements by leveling and tide gauge during 1960-2002, AGU fall meeting, G61A-0978, 2002.
- 17) 国土地理院: 関東甲信地方の地殻変動: 地震予知連絡会会報, 69, 138-179, 2003.
- 18) 村上嘉謙,都司嘉宣:津波記録を考慮した元禄関東地震(1703年12月31日)の地震断層モデル,
 月刊地球,号外28,161-175,2002.
- 中川靖浩,原田沙智子,川崎一朗,鷺谷威:GEONET データから求められた 1999 年 2 月房総半島東 方沖サイレント地震:序報,地球惑星科学関連学会 2000 年合同大講演予稿集,Da009,2000.
- 20) Ohnaka, M. and L.-F. Shen: Scaling of the rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces, J. Geophys. Res., 104, B1, 817-844, 1999.
- 21) Ozawa, S., Murakami, M., and Tada, T.: Time-dependent inversion study of the slow thrust event in the Nankai trough subduction zone, southwest Japan, J. Geophys. Res., 787-802, 2001.
- 22) 鷺谷威: GPS 連続記録から推定されるフィリピン海プレート北端部におけるプレート間相互作用と テクトニクス,地震研究所彙報,79,275-290,1998.
- 23) Sagiya, T., and Thatcher, W.: Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan, J. Geophys. Res., 104, 1111-1129, 1999.
- 24) Sagiya, T.: Interplate coupling in the Kanto district, central Japan, and the Boso Peninsula silent earthquake in May 1996, submitted to PAGEOPH, 2003.
- 25) Tanioka, Y., and Satake, K.: Detailed coseismic slip distribution of the 1944 Tonankai earthquake estimated from tsunami waveforms, Geophys. Res. Lett., 28, 1075-1078, 2001a.
- 26) Tanioka, Y., and Satake, K.: Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake, Earth, Planets and Space, 53, 4, 235-241, 2001b.

- 27) Wald, D., J., and P. G. Somerville: Variable-slip rupture model of the great 1923 Kanto, Japan, Earthquake: geodetic and body-waveform analysis, B.S.S.A., 85, 159-177, 1995.
- 28) Yagi, Y., Kikuchi, M. and Sagiya, T.: Co-seismic slip, post-seismic slip, and aftershocks associated with two large earthquakes in 1996 in Hyuga-nada, Japan, Earth, Planets and Space, 53, 793-803, 2001.
- 29) 吉田慎吾,加藤尚之: 2つのブロックモデルにおける間欠的すべり,地球惑星科学関連学会 2002 年合同大講演予稿集, S040-003, 2002.

(f) 成果の論文発表・口頭発表等

1)論文発表

著者	題名	発表先	発表年月日
川崎一朗	サイレント地震	Science and Technology	2002 年
	大地震の前に繰り返し起こる	Journal, 11, 14-15.	9月1日
川崎一朗	スロー地震とサイレント地震	AREA Mook	2002 年
		地震がわかる,64-66.	11月10日
川崎一朗	スロー・スリップ・	月刊地球	2003年
	イベントの地学的意義	25, 75-79.	1月1日

2) 口頭発表, その他

発表者	題名	発表先,主催,発表場所	発表年月日
川崎一朗	スロー・スリップ・イベントのマ	日本測地学会第 98 回講演会	2002年
	ッピング	日本測地学会	10月29日
		金沢市観光会館	
川崎一朗	スロー・スリップ・イベントのす	日本地震学会 2002 年秋季大会	2002年
	べり域と地震アスペリティの住み	日本地震学会	11月13日
	分け	パシフィコ横浜会議センター	
Kawasaki, I.	Segregation of Source Areasof	American Geophysical Union	2002年
	Slow Slip Events and	2002 Fall meeting	12月7日
	Asperities of Major Seismic	American Geophysical Union	
	Events on the Subduction	Moscone Center, San Francisco,	
	Interface Around the	USA	
	Japanese Islands		

(g) 特許出願、ソフトウエア開発、仕様・標準等の策定

なし

(3)平成 15 年度業務計画案

西南日本三次元有限要素モデルを用いて、内陸活断層等における歪蓄積過程のシミュレーションを引

き続き実施する。また、平成14年度に作成した詳細モデルを用いて解析を行う。

プレスリップおよびサイレント・アースクエイクのモデル化研究を引き続き実施する。

日本列島下の地殻の粘弾性構造と変形についての研究を新たに開始する。これに従い、古本宗充(金沢大学理学部教授)田中敏行(核燃料サイクル開発機構東濃地科学センター研究員)工藤健(地震予知総合研究振興会東濃地震科学研究所研究員)が研究に参画する。