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(a) 2B DM

We carried out two studies that relate the source characteristics of earthquakes as
related to the levels of strong ground motions.

In the first study, we tried to make direct estimates of the slip-weakening distance
from strong-motion data recorded very close to areas of large slip on a fault. The slip
weakening distance is an important parameter in describing the dynamic rupture of
earthquakes and represents the amount of fault slip over which the frictional level is
dropping to the dynamic friction level. The results of our study indicate that the
slip-weakening distance does not appear to have a strong dependence on the amount
of fault slip and has values of about 0.8 to 1.4 m for area of large ( 3 to 8m) fault slip.

In the second study we investigated the source of the very destructive 1977
Tangshan, China earthquake. Using teleseismic waveform data, we determined the
slip distribution for the earthquake. We found that two areas of large slip with about
5 m on the deeper portion of the fault near the hypocenter and a shallow area of
large slip of about 5 m northeast of the hypocenter. The shallow region of large slip is
located under Tangshan City and may be responsible for the severe damage there.
The moment magnitude of Mw7.4 is relatively small for the great amount of damage

produced by the earthquake.

(b) 2EH5 DRk

1) Estimates of Slip Weakening Distance from Near-Field Records

In this study we used the method of Mikumo et al. (2003)? to estimate the
slip-weakening distance from slip velocity and fault displacement waveforms.
Instead of using source time functions derived from subfault source inversions, we
directly use the observed velocity and displacement records recorded close to large
fault displacements. The assumption is that these strong sites move with the fault
and are a good approximation of the actual fault movements. For the portion of the
fault close to the station, these direct data may be more representative than the
results from complex source inversion. This method uses the fault displacement and
slip velocity time histories. The slip-weakening distance is shown as the amount of
slip that has occurred on the fault at the time of the peak in slip velocity (Fig. 1).
Using this simple method, we can estimate the slip-weakening distance from
appropriate near-field records..

The important aspect of this study is to choose data that can really be regarded
as representative of the near-field fault motions. For this to be the case, several

conditions must be satisfied. I )Data must be located close to the fault so that the
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near-field motion is dominant. II)There must be large slip, so the source effect is
dominant II)The site and propagation effects must be relatively small, In this study,
we used strong-motion data that was recorded within several (3 to 5) kilometers of a
surface fault that had at least several meters of offset during an earthquake. We
examined data from the 1999 Chi-Chi, Taiwan, 1999 Izmit, Turkey., and 2002 Denali,
Alaska earthquakes. We also looked at the Lucerne Valley record of the 1992
Landers, California earthquake, which was located close to the fault, but could not

be used because it was located relatively far from the area of large slip.
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Figure 1 Example of the estimate of the slip-weakening distance from the fault
displacement (top) and slip velocity (bottom) for station TCU068 from
the Chi-Chi, Taiwan earthquake.

The results of the estimates for the slip weakening distance are shown in Fig. 2.
There are four good estimates from the 1999 Chi-Chi, Taiwan earthquake, TCU075,
TCU067, TCU052, and TCU068 which correspond to fault displacements of 3 to 8
meters. For these four estimates there is a not a strong dependence of the
slip-weakening distance on the amount of fault slip, and the values are all between
about 0.8 and 1.3 m. We also included individual estimates from station SKR from
the 1999 Izimit, Turkey earthquake and the PS10 record of the 2002 Denali
earthquake (Ellsworth et al., 20042). Looking at all the estimates, there does not
seem to be a strong dependence of the slip-weakening distance on the amount of
fault slip and the slip-weakening distance for the range of slips from about 3 to 8
meters is about 0.8 to 1.5 meters.

In order to check the effects of the wave propagation on the estimate of the
slip-weakening distance, we carried out some forward calculations. Using the
example of TCU068 for the Chi-Chi, Taiwan earthquake with a local velocity and Q

structure, we calculated point source Green sources for a grid of points near the
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station (Fig. 3). The grid is +/ - 5 km along strike and extends down dip from the
station from depths of 1 to 5 km The Green functions are also shown in Fig. 3 and
show that the largest amplitude dominate for sources within about 2 km of the
station. We next added a source time function to simulate the effect of constant
slip-weakening distance and constant rupture speed of 2.5 km/sec. Using the same
method that was used to analyze the data, we estimated the ‘slip-weakening
distance’ from the synthetic seismogram obtained by summing all the grid point
seismograms. The results of this test using various values for the slip weakening
distance, indicated that for this geometry we cannot resolve slip-weakening

distances less than about 1.5 m.
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Figure 2 Summary of all estimates of the slip-weakening distance from near-field
records. Chi-Chi,= 1999 Chi-Chi, Taiwan earthquake, Izmit= 1999 Izmit, Turkdy
earthquake, Denali= 2002 Denali, Alaska earthquake
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Figure 3 Grid (left) and Green functions (right) used for simulation calculations.
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These results suggest that the slip-weakening distance does not strongly depend on
the amount of fault slip. It appears that instead there may be a tresshold level over
which large slip occurs during damaging large earthquakes. The behavior of the
slip-weakening distance with slip on a fault is an important constraint on
understanding how large slip, and thus how strong ground motions, are produced

during a large earthquake.

2) Slip Distribution of the 1977 Tangshan Earthquake

The Tangshan earthquake (Ms 7.8) which occurred on July 27, 1976 at 19:42:54 in
the North China Basin region (39.560N 117.870E) was one of the most devastating
historical earthquakes in the world with reported deaths of 655,000 and great
destruction to the city of Tangshan. There have been previous studies of the source
which described the basic characteristics (e.g. Butler et al., 19893, Kikuchi and
Kanamori, 19864, Nabelek et al., 19875, Xie and Yao, 1991¢)), however, there is not
a clear figure of the slip distribution. In this study we re-examine the teleseismic
data to determine a slip distribution for the earthquake.

For the teleseismic body wave inversion, we used 14 stations that were well
distributed in azimuth at distances of 45 to 86 degrees . We used P waves that were
hand digitized from the long-period (15 sec seismometers and 100 sec
galvonometers) vertical components of the World Wide Standard Seismograph
Network (WWSSN).

The modeling was carried out using a fault area that was divided into 30 (10
horizontal x 3 vertical) subfaults, with dimensions of 10 km horizontally and 7 km
vertically. Focal mechanisms for the mainshock show nearly pure strike-slip
motion (e.g. Butler et al., 1979%), although from the aftershock pattern the fault for
the earthquake appears to have a change in strike near the hypocenter. This is also
consistent with the interpretation of Butler et al. (1987)3, that the earthquake
initiated on a fault with a strike of 20 degrees and then the large moment release
occurred with a change of focal mechanism that had a strike of 40 degrees. For our
fault model we used a geometry with two strike orientations. The southwestern
portion has a strike of 25 degrees and the northeast portion has a strike of 45
degrees. This is similar to the geometry used by Xie and Yao (1991)6). The dip of the
fault was assumed to be 90 degrees, which is consistent the focal mechanisms for the
earthquake.

The results of the waveform inversion produced the slip distribution shown in Fig.
4. The arrows show the amount and direction of the slip. There is a large amount of
slip near the hypocenter and to the southwest on the deeper portion of the fault, and
another area of shallow slip to the northeast of the hypocenter. Fig. 5 shows the
observed and model waveforms for the slip distribution. In general there is a fairly

good correspondence between the data and the synthetic waveforms. Although there
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are some problems in matching the amplitudes at stations NAI and TAU.

The slip amplitude of about 5 m for the shallow patch northeast of the hypocenter
is consistent with the geodetic observations (Xie and Yao, 1991)® which showed
displacements of about a few meters in the area. This shallow area of large slip is
located near the city of Tangshan and may be responsible for the severe damage that

occurred there.
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Figure 5 Data (solid lines) and model synthetics (dotted lines) for the modeling of the
1977 Tangshan earthquake.
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