3.6.8 実験・理論,シミュレーション,地質学的手法に基づく火山の基礎研究

(1)噴火のダイナミクスの解明を目指した実験と理論研究

 マグマ破砕過程を「粘弾性流体の破壊現象」と位置づけ,定量的モデル化に向けた粘弾性構成方程式の構築と数値計算手法の開発を進めた.単純なマクスウェル型の粘弾性を示す光弾性物質を用いた変形・破壊実験に着手し,加速を伴う3次元の変形場の中で,流動から破壊へと遷移する様子を,光弾性を利用した弾性歪の可視化を含めて観察した.また,気泡の膨張に伴う流体の破壊と流動挙動について,この粘弾性流体と降伏強度より小さい応力下で弾性を示すジェル状流体の比較を行った.気泡への気体供給速度を増加すると,粘弾性流体は脆性破壊を生じたが,ジェル状流体は流動速度が増加した.これらの流体のレオロジーと,水蒸気噴火の噴出物である火山泥のレオロジーを比較したところ,火山泥はジェル状流体に近い性質を持っていることが分かった.マグマにおいても,結晶を含む低粘性マグマはジェル状流体に近いレオロジーが報告されている.これらの結果は,これまで弾性の存在と歪み速度のみに基づいて判定されていた火山物質の脆性破砕条件を見直す必要のあることを示唆している.

(2)火山噴煙ダイナミクスのシミュレーション研究

 爆発的火山噴火で見られる噴煙柱・火砕流の噴煙ダイナミクスと,火山灰輸送・堆積プロセスの解明を目指し,数値モデルの開発とそれを用いた大規模シミュレーション研究を数理系研究部門と連携して進めた.噴出条件や大気条件を変化させたパラメータスタディを実施するとともに,実際の噴火事例に関する噴煙挙動や堆積過程の再現を試みた.シミュレーション結果と人工衛星画像や堆積物分布などの観測データとの比較することで,噴火条件の迅速な推定方法を検討した.

 成層大気中の乱流モデルをベースとして,固体粒子を含む噴煙シミュレーションと火山雷の発生過程を調べる研究を,日本・アルゼンチン・インド・ドイツとの国際共同研究として実施した.2022年1月のトンガ海底火山大規模噴火の際に観測された,リング状の火山雷分布が,乱流による固体粒子の凝集効果によって説明することができ,雷の発生数や空間分布から複数回の爆発の発生を推定することができた.

(3)大規模噴火に関する研究

 南九州鬼界カルデラの活動履歴や7.3 ka鬼界アカホヤ噴火の推移を解明するための研究を進めている.とくに従来アカホヤ噴火の前駆的活動により形成された可能性が指摘されていた長浜溶岩(流紋岩質溶岩)やそれ以前の活動の実態を明らかにするために,2018年にボーリング掘削を実施した,それにより得られた試料の解析を進めた結果,長浜溶岩は深度11-190 m(水深130 mに相当)に存在し,その直下の深度190-230 mには貝殻を含む粗粒砂質層や複数枚のテフラ層を主体とした海成の地層が存在することがわかった.さらに下位(230 m以深)には斜長石斑晶に富む複数枚の安山岩質溶岩が存在する.長浜溶岩直下の砂層に含まれる複数の貝殻の14C年代測定を行ったところ,7000〜8300 cal BPの年代値が得られた.これにより,長浜溶岩の活動が鬼界アカホヤ噴火に先行する活動であったことがはじめて地質学的・年代学的に明らかになった.長浜溶岩およびその下位のテフラ層(12-15 ka)とアカホヤ噴火の岩石学的関係,大規模噴火に先行する溶岩流活動の役割など,巨大噴火を起こしたマグマシステムとその進化について研究を進めている.