電磁気観測 岡本篤郎 夏目祐紀 山河和也 上嶋誠 小山崇夫

Introduction 電磁気観測で分かること

- 電磁気観測→地盤の比抵抗を調べる!
- 地下構造に関する情報が得られる
 (比抵抗が下がる→地盤が水を含んでいる可能性がある、など)

Introduction 電磁気観測で分かること

- 電磁気観測→地盤の比抵抗を調べる!
- 地下構造に関する情報が得られる
 (比抵抗が下がる→地盤が水を含んでいる可能性がある、など)

余談

・比抵抗と抵抗の関係 → 密度と質量の関係のようなもの

観測データ

データ所得_{Step1.C1から電流を流す}

データ所得_{Step2.C2から電流を流す}

データまとめ

データまとめ

1次元モデル 深さ方向に構造を与えて計算 水平構造なしと仮定

1次元多層モデル

比抵抗 ρ ₁	厚み h ₁
比抵抗 p ₂	厚み h ₂
	• • •
比抵抗 ρ _n	半無限

浅間山黒豆河原

方法 観測機器設置

電極を全て等間隔に配列・Wenner配置

見かけ比抵抗 (Wenner配置の場合) $\rho = 2\pi a \frac{V}{I}$

a:電極の間隔(m) V:電圧(mV) I:電流(mA)

方法 電極番号 vs 抵抗值

1組の配置での測定が終わるごとに抵抗値(V/I)が出現

間隔が広がると 抵抗値が減少

方法 観測地点

0番電極:北緯36度25分25.8秒,東経138度32分59.7秒,標高1475 m 40番電極:北緯36度25分27.7秒,東経138度33分15.6秒,標高1435 m

Results of 2016 Resistivity Survey of Mount Asama

■ ▶ < 클 ▶ < 클 ▶ ≧
 ● < ○ < ○
 1/16

Analytical Solution (2 Layer Model)

$$\rho_{a} = \rho_{1} \left[1 + 4\Sigma_{n} \frac{\left(\frac{\rho_{2}/\rho_{1}-1}{\rho_{2}/\rho_{1}+1}\right)^{n}}{\sqrt{1 + 4n^{2}(d/r)^{2}}} - 2\Sigma_{n} \frac{\left(\frac{\rho_{2}/\rho_{1}-1}{\rho_{2}/\rho_{1}+1}\right)^{n}}{\sqrt{1 + n^{2}(d/r)^{2}}} \right]$$

Digital Linear Filter Method (*n* layer model)

Given a Hankel transform $\phi = \frac{1}{2\pi} \int T(\lambda) J_0(\lambda r) d\lambda$

The kernel $T(\lambda)$ can obtained numerically though recursion

$$T(\lambda) = T_1, T_i = \frac{T_{i+1} + \rho_i \tanh(\lambda h_i)}{1 + T_{i+1} \tanh(\lambda h_i)/\rho_i}, T_n = \rho_n$$

Using a set of *n* abscissae $\lambda_i = \frac{1}{r} 10^{a+(i-1)s}$, the Hankel transform can be discretized to

$$\phi = \frac{I}{2\pi r} \Sigma_i T(\lambda_i) W_i$$

where W_i are filter weights.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ▶ ④ ♥ ♥

Raw Data

Raw data is resistance as a function of electrode position.

Multiple sets of such data was extracted for a set of different electrode spacings.

Results 1a

Fix position of one potential electrode and expand along the array.

Plot the measured resistivity as a function of electrode spacing.

Forward Direction: expansion around P1=13

Reverse Direction: expansion around P2=27

Results 1b

2 layer model non linear inversion using Python.

Forward: $\rho_1 = 7960\Omega m$, $\rho_2 = 3190\Omega m$, d = 14m. Reverse: $\rho_1 = 7800\Omega m$, $\rho_2 = 3880\Omega m$, d = 19m.

Results 2a

For each set of data corresponding to one electrode spacing, find the average/median resistivity.

Plot the average/median resistivity as a function of electrode spacing.

Results 2b

Using all 260 data points, fitting through trial and error.

Model parameters: $\rho_1 = 8000 \Omega$ m, $\rho_2 = 3500 \Omega$ m, $\rho_3 = 10000 \Omega$ m, $d_1 = 8$ m, $d_2 = 25$ m.

Results 2c

Excluding data points larger than 15 k Ω m.

Model parameters: $\rho_1 = 8000 \Omega m$, $\rho_2 = 3500 \Omega m$, $\rho_3 = 5000 \Omega m$, $d_1 = 8m$, $d_2 = 15m$.

Results 2d

Exluding data points larger than 9.5 k Ω m.

Model parameters: $\rho_1 = 8000 \Omega$ m, $\rho_2 = 3500 \Omega$ m, d = 10m.

Select for analysis only the electrodes 10, 20, 30.

Calculate average measured values of the selected electrodes and the electrodes next to them.

Turning point observed in graph at 40 - 60 m bsl, with minimum resistance of 2000 Ω m.

Might indicate a boundary between two layers.

12 / 16

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

Comparison with Seismic Wave Group of 2013

Modelled 2 layer model with thickness of order 10 m agrees well with values obtained by Seismic Wave Group (Okano, Yabe, Nishikawa and Profs. Shiobara, Mochizuki and Miyake, 2013)

≣ י¢ פי 13 / 16

Other Possible Analyses

Lateral electrical profiling can be done using the same data.

However, lateral electrical profiling is still limited to 1 dimension. Electrical imaging should be used to obtain a 2 < E 臣 < 一型 dimensional pseudosection. 14/16

 $Q \land$

Prospects

Minimum electrode spacing of 10 m, maximum electrode spacing of 130 m.

Corresponding penetration depths of 5 m and 65 m respectively.

590

★ E ► ★ E ► E

Prospects

Very noisy data with extremely large measured values in excess of 10000 Ω m due to small (mA) currents and large contact resistances.

Model solutions are non-unique due to current refraction. Need to compare results with other measurements e.g. borehole drilling.

Figure : N-S resistivity profile of Mount Asama¹

¹K. Aizawa et al. Journal of Volcanology and Geothermal Research 173 (2008) 165-177