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1. Gain size variations and seismic anomalies beneath oceanic lithosphere and subducting slabs 

 

Introduction 

The importance of grain size variations in the Earth's 

mantle was realized over two decades ago (e.g., Karato 

1984). Grain size variations affect the dynamic 

processes, including the rate of secular cooling of the 

planet (Solomatov 2001), the structure of mantle 

plumes (Korenaga 2005), slab weakening (Riedel and 

Karato 1997), chemical mixing (Hall et al. 2003; So-

lomatov and Reese 2008), subduction initiation (Ber-

covici and Ricard 2008) and fluid transport (Wada et 

al. 2011). Grain size variations also affect the seismic 

attenuation and seismic velocities (Minster and Ander-

son 1981; Karato 1993, 2008; Faul and Jackson 2005; 

Jackson and Faul 2010). Here we report some prelimi-

nary results regarding grain size evolution and its ef-

fect on seismic velocities below the oceanic lithos-

phere. The lithosphere-asthenosphere boundary (LAB) 

region is especially interesting because there are im-

portant seismic constrains on this region (Kawakatsu et 

al 2009) and also, as we show below, the grain size 

variations are expected to be the largest there. 

 

Stresses due to lithospheric thickness variation 

 

Previous analyses of the rheology and grain size varia-

tions within the lithosphere and asthenosphere consi-

dered one-dimensional, constant shear stress channel 

flow models (Podolefsky et al 2004, Behn et al 2009). 

We use fully dynamic models (Solomatov and Moresi 

2000; Honda 2009). One of the major differences from 

the previous models is that the viscous stresses in the 

lithosphere and the subducting slab vary by several 

orders of magnitude (Figs. 1 and 2). 

 

 

Fig.1: Temperature field in the presence of sublithos-

pheric small-scale convection. Note large variations in 

the lithosphere-asthenosphere boundary which is 

represented by a white region separating the cold 

(blue) lithosphere and hot (red) asthenosphere. These 

variations are the main source of stresses in the LAB 

region. 

 

Fig.2: Horizontally averaged temperature and viscous 

stress profiles in the upper part of the convective man-

tle. The dashed line indicates an approximate limit of 

applicability of stress calculations because of more 

complex rheologies (especially brittle fracture and 

elasticity) than the simple viscous behavior assumed 

here. 

 

Grain size variation 

The grain size in the steady-state dynamic recrystalli-

zation regime varies inversely with stress (Karato 

2008), and thus the stress variations produce corres-

pondingly large variations in the grain size. Recent 

modifications of scaling laws for dynamic recrystalli-

zation (de Bresser et al 1998; Shimizu, 1998, 2008, 

2011; Austin and Evans 2007) suggest that the grain 

size may depend not only on stress but also exponen-

tially on temperature, although the magnitude and even 

the sign of this effect depends on the poorly con-

strained rheological parameters. With all the uncertain-

ties, it nevertheless seems likely that steep grain size 

gradients form in the sublithospheric region, especially 

in the vicinity of the lithosphere-asthenosphere boun-

dary (Fig. 3). Grain size variations in the 

asthenospshere are relatively small and depend 

somewhat on the assumed parameters, especially the 

pressure dependent viscosity. The shallow part is not 

well constrained because of the complex mechanical 

behavior at low temperatures and high stresses. Thus, 

the most reliable estimates are, perhaps from about 50 

km to 200 km. Those depend largely on the magnitude 

of lithospheric thickness variations. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Grain size variations in the convective subli-

thospheric region. The dashed line indicates an approx-

imate limit of applicability of grain size calculations. 

The grain size gradient depends largely on stress varia-

tions which in turn depend largely on the amplitude of 

lithospheric thickness variations. The temperature ef-

fect (de Bresser et al 1998; Shimizu, 1998, 2008, 2011; 

Austin and Evans 2007)  is relatively small and cer-

tainly not dominant as in models which assumed con-

stant stress (Podolefsky et al 2004, Behn et al 2009). 

 

 

Fig.4: Two-dimensional grain size variations below the 

oceanic lithosphere for three different values of activa-

tion energy for grain growth (activation energy for 

creep is 510 kJ/mol). The spacing of color bands is 

logarithmic and corresponds to one order of magnitude 

variation in grain size. 

 

Seismic velocities 

Grain size variations affect seismic velocities and at-

tenuation (Karato 1993; Faul and Jackson 2005; Jack-

son and Faul 2010), and thus the large grain size gra-

dients generate correspondingly large seismic velocity 

gradients at the base of the lithosphere (Figs. 5,6). The 

decrease of the  grain size in the direction from the 

mantle into the slab effectively serves as a melt barrier 

and may facilitate formation of a partially molten re-

gion below the lithosphere. This may at least partially 

contribute to the origin of the observed sharp lithos-

phere-asthenosphere boundary (Kawakatsu et al. 

2009). 

 

Fig.5: Seismic velocity and attenuation below the 

oceanic lithosphere. The relationships between seismic 

velocities, attenuation and grain size are from (Jackson 

and Faul 2010). These relationships give a significant-

ly lower sensitivity of seismic velocities to grain size 

than the earlier model (Faul and Jackson 2005) be-

cause of the elimination of non-physical grain-size 

dependence of unrelaxed (that is “normal” or at infinite 

frequencies) shear modulus which was originally 

present in (Faul and Jackson 2005). 

 

Fig.6: Comparison between seismic velocity anomalies 

without grain size variations and with self-consistent 

grain size variations (color change corresponds to 1% 

velocity difference; blue corresponds to large grain 

size, red - small grain size). 

 



To see how the seismic image of a subducting slab is 

affected by grain size variations, we apply the same 

procedure to the subducting slab (Figs. 7, 8). Although 

there is some effect, it is probably small.  

 
Fig.7: Temperature field in a three-dimensional model 

of subduction (courtesy of M. Morishige).  

 

 
 

Fig.8: Seismic velocity anomalies for constant grain 

size (left) and self-consistently calculated grain size 

(right) in the subducting slab. 

 

 

 

 

Conclusions 

The grain size variations in the lower part of the 

lithosphere is largely controlled by stresses associated 

with varying lithospheric thickness. These variations 

are due to thernal thinning of the lithosphere by 

sublithospheric small-scale convection (including 

plumes). The recently proposed temperature 

dependence has a relatively small effect on the grain 

size. Grain size can be “seen” in seismic attenuation in 

low Q regions such as asthenosphere. The effect on 

seismic velocties in the asthenosphere and subducting 

slabs is relatively mild and would probably be hard to 

distinguish from other effects such as water and 

melting. 
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2. Localized subcritical convective cells in temperature-dependent viscosity fluids 

 

Introduction 

 

Although most studies of thermal convection on Earth 

focus on well-developed, often very high Rayleigh 

number convection, low Rayleigh number convection 

is important for the understanding of the dynamics of 

small planetary objects, especially Mercury (Redmond 

and King 2007; King 2008) and icy satellites (McKin-

non 1999; Barr and Pappalardo 2005; Barr and 

McKinnon 2007; Mitri and Showman 2008). 

 

Low Rayleigh number convection in temperature-

dependent viscosity fluids is complicated by the exis-

tence of subcritical solutions, that is at Rayleigh num-

bers below the critical Rayleigh number (Stengel et al. 

1982; Richter et al. 1983; White 1988; Bottaro et al. 

1992; Capone and Gentile 1994; Solomatov and Barr 

2006, 2007).  Although convection below the critical 

Rayleigh number may sound confusing, it might be 

worth emphasizing that, by definition, this number 

predicts the onset of convection for infinitesimal per-

turbations.  When the amplitude of the perturbations is 

large finite-amplitude perturbations, steady-state or 

other types of non-decaying motions can exist even 

below the critical Rayleigh number (subcritical con-

vection).  This was shown theoretically (Segel and 

Stuart 1962; Segel 1965; Busse, 1967), observed in 

laboratory experiments (Stengel et al. 1982; Richter et 

al. 1983; White 1988) and studied numerically (Solo-

matov and Barr 2006; 2007).  A schematic illustration 

of the bifurcation diagram for temperature-dependent 

viscosity convection is shown in Fig. 1. 

 

Subcritical convection is poorly understood.  Soloma-

tov and Barr (2006, 2007) gave estimates of the abso-

lute minimum critical Rayleigh number below which 

all convective motions decay and put some constraints 

on how the onset of convection depends on the initial 

finite-amplitude perturbations.  Here we report a new 

type of convective planform for temperature-dependent 

viscosity convection - a spatially localized non-

decaying convective cell which is only stable in the 

subcritical region.  Previous studies showed that in the 

vicinity of the critical Rayleigh number, the convective 

planform occupies the entire fluid layer and it usually 

takes a form of hexagons, squares or rolls or a mixture 

of these patterns (Chandrasekhar 1961; Busse 1967; 

Richter et al. 1983; White 1988).  Localized structures 

were observed in other systems far from equilibrium 

(Thual and Fauve 1988; van Saarloos and Hohenberg 

1992).  What follows below is probably the first report 

of spatially localized convective cells for purely ther-

mal convection, with localization being caused by 

temperature-dependent viscosity. 

 
Fig. 1: Schematic illustration of the bifurcation dia-

gram for temperature-dependent viscosity convection 

in Ra-Nu axes.  The point Ra=Racr, Nu=1 is a subcriti-

cal pitchfork bifurcation.  The point Ra=Ra*cr, 

Nu=Nu*cr is a saddle-node bifurcation.  The Rayleigh 

number Racr is the usual critical Rayleigh number pre-

dicted by the linear theory.  The Rayleigh number 

Ra*cr is the absolute minimum critical Rayleigh num-

ber.  At Ra > Racr, the conductive solutions, Nu=1, are 

unstable to infinitesimal perturbations.  Between 

Ra=Ra*cr and Ra=Racr the conductive solutions are 

stable to infinitesimal perturbations but unstable to 

finite amplitude perturbations.  Stable steady-state fi-

nite-amplitude convection solutions are located on the 

solid line with stable subcritical solutions are located 

between Ra*cr and Racr.  Unstable steady-state finite-

amplitude solutions are located on the heavy dashed 

line (the unstable subcritical branch) which connects 

the two bifurcation points.  At Ra < Ra*cr all convec-

tive motions eventually decay. 

 

Model 

 

Two-dimensional calculations are performed in a box 

of depth d and length l.  Three-dimensional calcula-

tions are performed in a box of depth d and equal 

width and length l.  In all cases, the upper and lower 

boundaries are maintained at constant temperatures 

and the vertical boundaries are thermally insulated.  

The boundaries are either free-slip or no-slip, as de-

scribed below.  The non-dimensional temperatures of 

the upper and lower boundaries are 0 and 1 respective-

ly.  The non-dimensional equations of thermal convec-

tion in the Boussinesq approximation and for infinite    



Prandtl number are solved with Citcom (Moresi and 

Solomatov 1995). 

 

The viscosity function is either exponential or su-

per-exponential.  Exponential function is a Frank-

Kamenetskii approximation to the Arrhenius viscosity 

of rocks, which is valid in the limit of very large vis-

cosity contrasts (Morris 1982; Morris and Canright 

1984; Ansari and Morris 1985; Fowler 1985; Reese et 

al. 1999).  The viscosity contrast between the bounda-

ries is 10 orders of magnitude. This is at least 4 orders 

of magnitude higher than the transition to the stagnant 

lid regime (Solomatov 1995; Moresi and Solomatov 

1995) and thus it ensures a well-developed stagnant lid 

regime. This also creates a significant interval of Ray-

leigh numbers where the subcritical convection exist.  

The super-exponential function represents the viscosity 

of golden syrup (Richter et al. 1983). This viscosity 

law is chosen so that the numerical results can be 

tested in future laboratory experiments.  The exponen-

tial viscosity models are calculated with free-slip 

boundary conditions while the super-exponential vis-

cosity models are calculated with no-slip boundary 

conditions. In both cases, the vertical boundaries are 

free-slip. 

 

Results 

 

Subcritical localized cell solutions for exponential 

viscosity in 2D and 3D are shown in Figures 2 and 3, 

respectively.  The region of stability of 3D localized 

cells is shown in Nu-Ra axes in Fig. 4.  Subcritical 

localized cell solutions for super-exponential viscosity 

in 2D and 3D are shown in Figs. 5 and 6, respectively.  

The region of stability of 3D localized cells is shown 

in Fig. 7.  An interesting difference from the exponen-

tial viscosity case (free-slip boundaries) is that in the 

super-exponential case (no-slip boundaries) an array of 

very weak secondary convective cells (rolls in 2D and 

tori in 3D) form next to the main cell.  Also, 3D loca-

lized cell solutions appear to be stable at Rayleigh 

numbers which are slightly lower than those obtained 

in 2D calculations. 

 

 

 

 

 
 

Fig. 2: Streamlines for stable steady-state two-

dimensional solutions near the absolute minimum crit-

ical Rayleigh number.  (a) Aspect ratio a=0.41.  (b) 

Aspect ratio a>1.5. The solutions are indistinguishable 

from a=1.5 to the maximum tested aspect ratio a=6. 

 

 
Fig. 3: Top: An isosurface T=0.9 showing a subcritical 

convection planform consisting of a stable square array 

of convective cells in a 6x6x1 box with free-slip boun-

daries and exponential viscosity.  Bottom: A steady-

state localized convective cell at the same Rayleigh 

number.  Other subcritical localized solutions are very 

similar in their appearance. 

 

 

 

 

 



 
Fig. 4: Nusselt number as a function of Rayleigh num-

ber for localized cell solutions in a 6x6x1 box with 

exponential viscosity.  The solid circle shows the loca-

tion of the critical Rayleigh number.  The boundaries 

of the stability of localized solutions are approximately 

shown with vertical dashed lines. 

 

 

 

 

Fig. 5: Streamlines for stable steady-state solutions 

near the critical point for golden syrup (super-

exponential) viscosity and no-slip boundaries. The 

aspect ratios are (from top to bottom) a=1.5, 3 and 6. 

 

 

 
Fig. 6: Top: An isosurface T=0.75 showing a subcriti-

cal convection planform consisting of a stable square 

array of convective cells in a 6x6x1 box for super-

exponential viscosity (golden syrup) and no-slip boun-

daries.  Bottom: A steady-state localized convective 

cell at the same Rayleigh number.  Other subcritical 

localized solutions are very similar in their appearance. 

 

 
 

Fig. 7: Nusselt number as a function of Rayleigh num-

ber for localized cell solutions in a 6x6x1 box with 

super-exponential viscosity.  The solid circle shows the 

location of the critical Rayleigh number.  The bounda-



ries of the stability of localized solutions are approx-

imately shown with vertical dashed lines. 

 

Conclusions 

 

Numerical simulations of temperature-dependent 

viscosity convection reveal a new type of convective 

planform - a single, spatially localized convective cell.  

The cell has a shape of a symmetric circular dome with 

an upwelling at the center.  This solution is stable at 

subcritical Rayleigh numbers, that is below the critical 

Rayleigh number for linear onset of convection.  This 

type of convective solutions is in stark contrast with 

the usual, supercritical convection, where the convec-

tive cells form through the entire layer and the spacing 

between the cells is of the order of the layer thickness. 

The existence of stable localized subcritical cells raises 

some interesting questions.  If this type of solutions 

exists for relatively simple, temperature-dependent 

viscosity, it must exist for more complex viscosities 

such as grain-size dependent viscosity, power-law vis-

cosity and plastic yielding. Power-law viscosity con-

vection is particularly intriguing because it is subcriti-

cal at all Rayleigh numbers and therefore it must have 

a significantly larger span of the subcritical region 

where localized convection cells are stable. The inte-

raction between the cells is another interesting ques-

tion. Even though the interaction is extremely weak, 

the dynamics of cell interaction and pattern formation 

might be very complex as it is the case for other sys-

tems far from equilibrium (Cross and Hohenberg 

1993).  Numerical investigation of these problems will 

be computationally challenging because of the slow 

dynamics and the need for a high resolution because of 

the extreme viscosity variations. For example, the si-

mulations presented here had to be run tens and hun-

dreds of diffusion times.  This is several orders of 

magnitude longer than typical simulations of thermal 

convection (a fraction of diffusion time).  One of the 

implications of the existence of subcritical localized 

convective cells for planetary geodynamics is that a 

convective upwelling can be a localized phenomenon 

without any special conditions such as lateral hetero-

geneity or laterally varying heating.  Also, the spacing 

between the isolated cells can be arbitrarily large. It is 

controlled not by the thickness of the convective layer 

but by the initial conditions.  This type of convection 

may be responsible for various spatially localized tec-

tonic features such as coronas on Venus and chaos 

regions on Europa. 
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