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S U M M A R Y
The present study investigates the tsunami generation process by using 3-D numerical sim-
ulations and the linear potential theory. First, we evaluate the relation between sea-bottom
elevation and sea-surface elevation as function of source size L, sea depth H and source dura-
tion T , based on 3-D numerical simulations. The surface elevation decreases with increasing
sea depth and source duration. The difference between the sea-bottom and the sea-surface
elevation appears when the source size is smaller than approximately 10 times the sea depth
for a short source duration. The linear potential theory can precisely predict the numerical
simulation results. Based on the theory, we can consider the tsunami generation as two spatial
lowpass filter processes, in which the cut-off wavenumbers are given by the sea depth and the
source duration. The criteria for small source size and short source duration are given as L
< 13H and T < L/(8c), respectively, where c is the phase velocity of the tsunami. We then
simulate the tsunami generation of the 1896 Sanriku tsunami earthquake, Japan. The simulated
sea-surface elevation is significantly different from the sea-bottom elevation, which suggests
the need for correction of the sea depth and source duration for the precise evaluation of the
initial water-height distribution. To include these effects in 2-D simulations, we can use the
impulse response function and add the fractional sea-surface uplift within the time step to the
sea surface, for each time step.
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1 I N T RO D U C T I O N

The sea-bottom deformation caused by a large earthquake uplifts
the sea surface, which acts as a tsunami source. In tsunami simu-
lations based on the 2-D long-wave theory, the initial water-height
distribution on the sea surface was often assumed to be identi-
cal to the sea-bottom deformation caused by the earthquake (e.g.
Ichinose et al. 2003). This assumption is widely accepted to be
valid when the sea depth is sufficiently shallow compared with
the tsunami wavelength and the sea-bottom deformation due to the
earthquake occurs within a short period of time. These assumptions
in the tsunami excitation can be applied to many tsunamigenic earth-
quakes occurring in subduction zones, especially for large interplate
events, with gently dipping faults. This is, however, not the case for
all tsunamigenic earthquakes. For example, outer-ridge events are
often characterized by a steep dip angle, which results in the defor-
mation of the sea bottom within a small area, which then results in
a small-wavelength tsunami on the sea surface (Saito & Furumura
2009). Another example may be a tsunami earthquake. Tsunami
earthquakes are sometimes characterized by very long source dura-
tions of more than several dozens of seconds (e.g. Kanamori 1972).

The tsunami generation process has been theoretically investi-
gated, based on the linear approximation method. Analytical so-
lutions can be derived for the spatial and temporal distribution of
the tsunami, by solving linear equations for potential water flow
with appropriate boundary conditions in a constant sea depth (e.g.
Takahashi 1942; Hammack 1973; Kervella et al. 2007). We here-
inafter refer to the theoretical method as linear potential theory.
The linear potential theory indicates that the initial water-height
distribution, in general, is not identical to the sea-bottom eleva-
tion, but depends strongly on the sea depth and the duration of the
sea-bottom deformation. Also, Kajiura (1970) theoretically inves-
tigated the effect of the source duration on the tsunami generation
from the viewpoint of the energy partition between compressional
wave energy and tsunami energy.

Current computers, which are very powerful, enable tsunamis to
be simulated in 3-D space without using the approximations used
in the long-wave theory and the linear potential theory (Ohmachi
et al. 2001; Saito & Furumura 2009). The 3-D simulations are
suitable for investigating the tsunami generation process because
it explicitly calculates the vertical flow of the fluid caused by the
sea-bottom elevation. Kakinuma & Akiyama (2006) successfully
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simulated through numerical simulations the experimental data ob-
tained by Hammack (1973). 3-D numerical methods have advan-
tages over the linear potential theory. For example, the 3-D sim-
ulation can deal with the generation and propagation processes in
realistic bathymetry, whereas the linear potential theory is usually
limited to the constant sea depth.

The present study investigates the tsunami generation process due
to the elevation of the sea bottom, based on both the 3-D tsunami
simulation and the linear potential theory. First, we illustrate the
tsunami excitation caused by the sea-bottom elevation, with the
visualization of water flow calculated by the 3-D numerical simu-
lation. We also conduct tsunami generation simulations for various
models of different sea depth, source size and source duration. Then,
we interpret the simulation results using the linear potential theory.
We show that the tsunami generation can be considered as two spa-
tial low-pass filter processes in which the cut-off wavenumbers are
given by the sea depth and the source duration. The criteria for small
source size and long source duration are also proposed based on the
linear potential theory. Finally, we simulate the tsunami generation
using the 1896 Meiji Sanriku tsunami earthquake, as example of an
actual earthquake.

2 T S U NA M I G E N E R AT I O N B Y
T H R E E - D I M E N S I O NA L S I M U L AT I O N

2.1 Governing equations for tsunami simulation

The tsunami is a gravity wave, which can be simulated by solving the
water motion equations with the boundary conditions at the surface.
The incompressible water motion is described by the following 3-D
Navier–Stokes equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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(1)

in the Cartesian coordinates shown in Fig. 1, where the z-axis is
in the vertical direction and the x- and y-axes form a horizontal
plane. Velocity components along the x-, y- and z-axes are u, v and
w, respectively. The pressure and density of the water are p and ρ,
respectively. The parameter ν is the kinematic viscosity coefficient,
the value of which is very small (ν = 10−6 m2 s–1) for sea water.
The gravitational acceleration g is 9.8 m s–2.

The continuity equation is given by

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2)

for incompressible water. A free surface at rest is given as z = 0,
and the sea bottom is given as z = −H , where H is the sea depth.
The fluctuation of the sea surface at time t, in the case of a tsunami,
is given by z = η(x , y, t). The kinematic boundary condition at the
sea surface is given by

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w for z = η (x, y, t) . (3)

The pressure at the surface is set to be zero, p(x , y, η) = 0, as
a dynamic condition. The above non-linear equations describe the
motion of tsunamis.

Figure 1. Coordinate system for tsunami equations.

2.2 Tsunami generation simulation

We assume an isotropic distribution of the sea-bottom elevation to
obtain a clear perspective for tsunami generation as a function of
source size. The final vertical elevation at the sea bottom is assumed
to be given by a Gaussian function as

d (x, y) = d0 exp

⎡
⎢⎣− x2 + y2(

L/
2

)2

⎤
⎥⎦ . (4)

The distribution is characterized by two parameters, namely, d0

and L , where d0 is the maximum height in the deformation at the
bottom and L is the source size characterizing the horizontal spatial
scale of the deformation area. The elevation of the sea bottom
is assumed to occur with a constant elevation speed during the
source duration T . The corresponding boundary condition at the
sea bottom is included in eq. (1), as the vertical velocity component
at the gridpoint of the sea bottom, as follows:

w (x, y, −H ) =
{

d (x, y)
/

T for 0 < t ≤ T,

0 for t > T .
(5)

Note that when we relate the sea-bottom deformation of eq. (5)
with kinematic seismic fault models, eq. (5) includes finite duration
of rise time but not rupture propagation; the rupture starts simulta-
neously on the fault. The vertical flow caused by eq. (5) uplifts the
sea surface to produce the initial water-height distribution above the
source region.

The three-component velocity and the tsunami height described
by eqs (1)–(5) are calculated by the finite-difference method (FDM)
based on the technique developed by Hirt et al. (1975). The details
of the 3-D FDM simulation and the parallel computing procedure
are described in Saito & Furumura (2009).

2.3 General view of tsunami generation and propagation

We conduct 3-D FDM simulations of the Navier–Stokes equations
to show examples of tsunami generation and propagation caused by
sea-bottom deformation. The sea-bottom deformation is character-
ized by the parameters of d0 = 1 m, L = 40 km and T = 60 s in eqs
(4) and (5). The source size of L = 40 km roughly corresponds to
an M 7 earthquake.

Fig. 2 shows cross–sections of the water height at the surface
(upper panel) and the water flow distribution from the sea bottom
to the sea surface (lower panel) for various elapsed times from the
origin time. The tsunami generation process can be classified into
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Figure 2. Cross-sections of tsunami generation and propagation for elapsed times of (a) 10, (b) 30, (c) 60, (d) 65, (e) 100 and (f) 180 s from the sea-bottom-
deformation starting time. The surface height distribution along the x-axis is plotted in the upper panels, and the velocity distribution is shown in the lower
panels for each elapsed time. The results are calculated with 3-D numerical tsunami simulation for sea-bottom deformation characterized by d0 = 1m, L =
40 km and T = 60 s.

three stages. At the time before the source process time (T < 60 s),
the sea-bottom elevation produces vertical flow of water over the
source region (Figs 2a–c). As time passes, the horizontal velocity
increases, as the tsunami propagates away from the source region.
In the second stage, as the source rupture ends (T = 60 s), and
the vertical velocity provided by the sea bottom disappears. The
collapse of the uplifted surface accelerates (Fig. 2d), which causes
descending flow. In the third stage (Figs 2e and f), or in the time dur-
ing which the tsunami propagates away from the source region, the
horizontal velocities becomes dominant over the vertical velocity
throughout the depth range. The distribution of horizontal velocity

is almost invariant in depth (Fig. 2f). Such a velocity distribution
pattern is assumed in the tsunami propagation model, based on the
long-wave theory (e.g. Stoker 1958).

2.4 Tsunami generation variation with various model
parameters

We conduct 3-D tsunami simulations to obtain quantitative re-
lations between the water-height distribution at the surface and
the sea-bottom elevation. Fig. 3 compares the water-height
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Figure 3. Initial water-height distribution for various sea depths—H = 1, 2,
4 and 6 km. The sea-bottom deformation is given by the Gaussian function
of d0 = 1 m, L = 20 km and T = 10 s in eqs (4) and (5). Numerical
simulation results are plotted by symbols, and the values obtained from the
linear potential theory are plotted by the solid curve.

distributions for a common source of d0 = 1 m, L = 40 km and T =
10 s with respect to various sea depths of H = 1, 2, 4 and 6 km.
The cross-sections calculated by the simulations with different sea
depths are plotted by different symbols. The water-height distri-
bution is measured at the time when the sea-bottom deformation
ends. We hereinafter refer to the water-height distribution as the
initial water-height distribution. The maximum height in the initial
water-height distribution decreases, and the width of the distribution
increases with increasing sea depth. The maximum water-height for
a shallow sea (H = 1 km, plotted by squares in Fig. 3) is 0.97 m,
which is approximately the same as that of the sea-bottom elevation
(d0 = 1 m). However, the maximum water-height for a deep sea
(H = 6 km, plotted by inverted triangles in Fig. 3) is significantly
smaller (0.62 m) than that of the sea-bottom elevation and has a
relatively wider distribution.

Fig. 4 shows cross-sections of the initial water-height distribution
for a common source of d0 = 1 m and T = 10 s with respect to
various source sizes, L = 80, 40 and 20 km. The depth H is set
to be 4 km throughout this simulation. The water height at the sea
surface decreases with decreasing source size L. For the result of
the wide source model (L = 80 km; plotted by squares in Fig. 4), the

Figure 4. Initial water-height distribution for various source size, L = 80,
40 and 20 km, at the sea depth of H = 4 km. The sea-bottom deformation
is given by the Gaussian function of d0 = 1 m and T = 10 s in eqs (4)
and (5). Numerical simulation results are plotted by symbols, and the values
obtained from the linear potential theory are plotted by the solid curve.

Figure 5. Maximum height at the surface with respect to source size L
normalized by the sea depth H for a source duration T of 10 s. Numerical
simulation results are plotted by symbols, and the values obtained from the
linear potential theory are plotted by the solid curve.

Figure 6. Water-height variation with respect to the elapsed time normal-
ized by the source duration T . The height is measured at the centre of the
source region (x = 0, y = 0). Numerical simulation results are plotted by
symbols, and the values obtained from the linear potential theory are plotted
by the solid curve.

maximum water height (0.98 m) is almost as high as the sea-bottom
elevation. However, the maximum water height for the small source
model (L = 20 km) is less than approximately 80 per cent (0.77 m)
of the sea-bottom elevation.

We then conduct a set of tsunami generation simulations for
T = 10 s, using various source sizes of L = 20, 40, 80 and 120 km
and sea depths of H = 1, 2, 4 and 6 km. We obtain a simple relation
for the maximum height of the initial water-height distribution as a
function of source size relative to the sea depth (L/H ; symbols in
Fig. 5). All plots of the simulated water-height for different source
sizes and sea depths follow a simple curve, and the maximum height
increases with increasing normalized source size L/H . This relation
indicates that when the source size L is larger than approximately
10 times the sea depth, the initial water-height distribution is almost
identical to the sea-bottom deformation.

Then, we investigate the effect of the source duration on the ini-
tial water-height distribution. Fig. 6 shows the water height at the
centre (x = 0 and y = 0) as a function of time t, normalized by
the source duration (t/T). The water height increases linearly with
increasing time and takes its maximum value at time t = T . After
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the sea-bottom elevation ends (t > T), the water height gradually
decreases with increasing time. For the large source (L = 80 km),
the initial water-height distributions are approximately identical
to the sea-bottom elevation distribution. However, a small source
(L = 20 km) cannot uplift the water height efficiently. Slowly uplift-
ing the sea bottom, which is characterized by a long source duration
(T = 60 s), does not produce an initial water-height distribution as
high as that produced by a quickly uplifting sea bottom, which is
characterized by a short source duration (T = 10 s). In the case of
a small source size (L = 20 km), the maximum amplitudes of the
tsunami are 0.44 and 0.77 m for the source durations of T = 60
and 10 s, respectively, which is much smaller than the sea-bottom
elevation (d0 = 1 m).

3 L I N E A R P O T E N T I A L T H E O RY F O R
T S U NA M I G E N E R AT I O N

To interpret the tsunami generation process and the simulation re-
sults obtained in the previous section, we employ the linear potential
theory. Assuming small amplitude and irrotational flow, this theory
uses velocity potential and approximates the non-linear equations
to linear equations (e.g. Takahashi 1942; Ward 2001; Kervella et al.
2007).

3.1 Linear potential theory

We assume that the final sea-bottom deformation is given by d(x,
y) and that the corresponding boundary condition for the vertical
velocity at the bottom is given by

wB (x, y, −H ) = d (x, y) χ (t) , (6)

where the function χ (t) depends only on time and satisfies the
following:∫ ∞

−∞
χ (t) dt = 1, (7)

and has the dimension of the inverse of time. Using eq. (6) as
the bottom boundary condition in the linear potential theory, the
sea-surface η (x, y, t) is given by

η(x, t) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
dk exp (ik · x)

×
∫ t

−∞
dτ χ (τ ) cos γ (t − τ )

1

cosh k H
d̂ (k) , (8)

where k is the wavenumber vector given by k = kx ex + ky ey and

k =
√

k2
x + k2

y and the parameter γ is given by

γ ≡ k
√

gH

√
1

k H
tanh k H . (9)

The d̂(k) in eq. (8) is the 2-D spatial Fourier transformation given
by

d̂ (k) =
∫ ∞

−∞

∫ ∞

−∞
dxd (x) exp (−ik · x). (10)

Eq. (8) was originally derived by Takahashi (1942) in cylindrical
coordinates and was also obtained by Kervella et al. (2007) using
a complex integral range with respect to time (Laplace transform).
The present study uses the Cartesian coordinates and real integral
range of time (Fourier transform) in eq. (8). An outline of the
derivation of the linear potential theory is provided in Appendix A.

Figure 7. Phase velocity with respect to the wavelength λ normalized by
the sea depth H .

When the velocity of the sea-bottom uplifting is constant (eq. 5),
eq. (8) is simplified as

η (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ξ (x, t)

T
for 0 < t < T

ξ (x, t) − ξ (x, t − T )

T
for t ≥ T

, (11)

where the function ξ (x, t) is given by

ξ (x, t) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
dk exp (ik · x)

sin γ t

γ

1

cosh k H
d̂ (k).

(12)

Since eq. (8) indicates that the sea surface η can be considered
as the sum of the 2-D plane waves of the wavenumber k, and the
parameter γ is the angular frequency, the phase velocity of the
tsunami as a function of the wavenumber is given by

c (k) = γ

k
= c0

√
1

k H
tanh k H ≈ c0

{
1− 1

6
(k H )2

}
when k H << 1,

(13)

where c0 ≡ √
gH is the phase velocity of the tsunami obtained

by the linear long-wave theory, in which the tsunami wavelength is
assumed to be much longer than the sea depth (e.g. Stoker 1958).
The phase velocity c is plotted in Fig. 7 as a function of the tsunami
wavelength. The phase velocity increases gradually with increasing
wavelength and approaches the value of c0.

3.2 Comparisons with 3-D numerical simulations

From eqs (11) and (12) with the Gaussian-function source (4), we
calculate the spatial temporal variation of the sea-surface fluctuation
for comparison with the numerical simulation results in Figs 3–
6. The solutions based on eqs (11) and (12) are plotted by solid
curves, and the numerical simulation results are plotted by symbols.
All of the figures show excellent agreement between the solutions
of the linear potential theory and the 3-D numerical simulations.
This agreement is reasonable because the linear approximation is
assumed to be valid when the tsunami height (∼1 m) is much smaller
than the sea depth (∼1000 m).
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Figure 8. Functions (a) 1/cosh(Hk) and (b) sin(LT k)/(LT k).

3.3 Tsunami generation as a filtering process

We interpret the tsunami generation process based on the linear
potential theory. Substituting t for T in eqs (11) and (12), we obtain
the relation between the initial water-height distribution and the
sea-bottom deformation as follows:

η(x, T ) = ξ (x, T )

T
= 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
dk

× exp(ik · x)
1

cosh k H

sin γ T

γ T
d̂(k)

= F−1

[
1

cosh k H

sin γ T

γ T
d̂ (k)

]

= F−1

[
1

cosh k H

sin LT k

LT k
d̂ (k)

]
, (14)

where F−1 [· · ·] is the 2-D inverse Fourier transform with respect
to wavenumber k. In addition, LT is a characteristic distance given
by LT = cT , where c is the phase velocity given by eq. (13). The
distance LT is the tsunami propagation distance during the source
duration T .

The factor (1
/

cosh k H ) sin LT k
/

LT k is considered to be a short-
wavelength cut filter for the distribution of sea-bottom elevation
d̂(k), which leads to a smooth initial water-height distribution η(x,
T ). The factor (1

/
cosh k H ) sin LT k

/
LT k can be decomposed into

two parts: the former is related to the sea depth H as 1/.cosh Hk,
and the latter is related to the source duration T as sin γ T /γ T .

Fig. 8(a) shows a short-wavelength cut filter 1/.cosh Hk as a
function of Hk. This filter is characterized by a corner wavenum-
ber kH = 0.5/.H , when we define the corner wavenumber as
1/cosh HkH = 0.9. This filter eliminates the small-scale varia-
tion in the initial water-height distribution, in which the wavenum-
ber is larger than the corner wavenumber kH . Roughly speaking,
small-scale spatial variation of the sea-bottom deformation having
a wavelength smaller than 13H ( = 2π /kH ) disappears in the initial
water-height distribution due to this filtering effect. This has been
shown by the 3-D simulation results (Figs 3 and 5). We hereinafter
refer to the filter 1/cosh Hk as the depth filter.

Fig. 8(b) shows a short-wavelength cut filter sin LT k/LT k as a
function of LTk. This filter is characterized by a corner wavenum-
ber of kT = 0.8/LT , where LT is a characteristic length given by
the source duration T as LT = cT . The filter eliminates the small-
scale variation of the sea-bottom deformation having a wavenumber
larger than the corner wavenumber kT . Roughly speaking, small-
scale spatial variation of the sea-bottom deformation having a wave-

length smaller than 8LT ( = 2π /kT ) disappears in the initial water-
height distribution due to this filtering effect. We hereinafter refer
to this filter as the duration filter.

3.4 Three corner wavenumbers in the tsunami
generation process

In addition to the above two corner wavenumbers, kH and kT , we
introduce a corner wavenumber KS for the spectral contents of the
sea-bottom deformation. Using these three corner wavenumbers,
we classify the tsunamigenic earthquakes with respect to sea depth
H, source size L and source duration T (Table 1).

In the first type [(a) in Table 1] of tsunamigenic earthquake, the
sea-bottom deformation is characterized by the area being much
larger than the sea depth, L >> 13H , and a small source duration,
T << L/(8c). In this case, the relation among the depth filter, the
duration filter and the spectral contents of the sea-bottom defor-
mation is schematically illustrated in Fig. 9(a). In this case, since
neither the depth nor the duration filters affect the spectral contents
of the sea-bottom deformation, the resultant initial water-height dis-
tribution is approximately identical to the sea-bottom deformation
distribution. For example, large and shallowly dipping interplate
events that uplift large areas at the sea bottom are classified as this
type of tsunamigenic earthquake.

In the second type [(b) in Table 1] of tsunamigenic earthquake, the
sea-bottom deformation is characterized by a small area L < 13H or
the sea-bottom deformation contains significant large-wavenumber
components. In this case, the depth filter plays an important role to
remove large-wavenumber components of the sea-bottom deforma-
tion during the tsunami generation process (Fig. 9b). For example,
events with a large dip angle are classified as this type of tsunami-
genic earthquake because they produce sea-bottom deformation in
a small area. Events that occurred at very shallow depth are also
classified into this type of tsunamigenic earthquake because these
events cause steep sea-bottom deformations that are composed of
large-wavenumber components.

The third type [(c) in Table 1] of tsunamigenic earthquake is
characterized by the long source duration T > L/(8c). In this case, the
duration filter should be taken into account in the tsunami generation
process (Fig. 9c). For example, tsunami earthquakes, which are
sometimes characterized by long source duration, may be classified
into this type of tsunamigenic earthquake.
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Tsunami generation due to bottom deformation 883

Table 1. Classification of the tsunami source.

Source type Criteria of
wavenumber
domain

Criteria of space and
time domain

Corrections for initial
water-height
distribution

Examples of event
type

(a) Large source area,
short process-time

KS << kH , kT L >> 13H
T << L/(8c)

No need Large, interplate
events

(b) Small source area KS > kH L < 13H Sea depth correction
(e.g. Kajiura’s
equation)

Intraplate events,
shallow-depth
events

(c) Long source process
time

KS > kT T > L/(8c) Source duration
correction

Tsunami earthquakes

Figure 9. Schematic diagrams for filtering effect in the tsunami generation process for various cases: (a) large source area and short source duration; (b) small
source area and (c) long source duration. The spectral contents of the sea-bottom deformation are indicated by the shaded area with the corner wavenumber KS .
The filter associated with the sea depth is indicated by the coarse dashed curve with the corner wavenumber kH . The filter associated with the source duration
is indicated by the fine dashed curve with the corner wavenumber kT . The spectral contents removed by the filters are indicated by the light grey area.

4 S I M U L AT I O N O F T H E I N I T I A L
WAT E R - H E I G H T D I S T R I B U T I O N
F O R T H E 1 8 9 6 S A N R I K U T S U NA M I
E A RT H Q UA K E

This section considers the depth and source duration effects on
the initial water-height distribution by simulating the 1896 Sanriku
tsunami earthquake as an example of an actual event. The 1896
Sanriku tsunami earthquake was an interplate event occurring be-
tween the North American and the Pacific plates (Fig. 10) and was
considered to be a tsunami earthquake, which is characterized by
a large tsunami magnitude (Mt = 8.6) and a small surface-wave
magnitude (MS = 7.2; e.g. Abe 1979). The fault parameter was
estimated by Tanioka & Satake (1996) and Tanioka & Seno (2001)
from the tsunami records. The fault geometry is characterized by

a gently dipping fault plane of approximately 10◦–20◦ and the top
depth of the fault plane is estimated as 0 km in their studies.

4.1 Three-dimensional tsunami generation simulations

Fig. 11(a) shows the sea-bottom deformation calculated from the
fault parameters of Tanioka & Satake (1996). The deformation is
calculated by using the solution of Okada (1985), assuming a half-
space homogeneous medium. The fault area is 210 km in length
and 50 km in width. The dip angle is 20◦, and the rake angle is
90◦. The slip on the fault is 5.7 m. The slip in the shallow part
of the fault causes the sharp deformation at the sea bottom. The
maximum elevation of the sea bottom is 2.8 m. The corresponding
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Figure 10. Bathymetry around the source region of the 1896 Sanriku
tsunami earthquake. The large rectangle shows the fault location.

spectral amplitude in the x-component is also plotted in the right-
hand panel.

Using the sea-bottom elevation distribution in the boundary con-
dition of eq. (5), we calculate the initial water-height distribution
by the 3-D N–S simulation to show the effects of the sea depth
and the source duration on the tsunami generation. Since the source
duration of the 1896 Sanriku earthquake was unknown, we examine
the two cases—for short (T = 10 s) and long (T = 100 s) source
durations. A short source duration (T = 10 s) is typical for usual
earthquakes. On the other hand, the long source process time of
T = 100 s was reported in the 1992 Nicaraguan earthquake, as a
tsunami earthquake (Ide et al. 1993; Imamura et al. 1993). The
critical source process time L/8c introduced in the previous sec-
tion is approximately 30 s for this event. The left-hand panels in
Figs 11(b) and (c) show the simulated initial water-height distribu-
tion for short and long source duration models, respectively. For the
case of short source duration (T = 10 s), the maximum height of
the initial water-height is approximately 1.8 m, which is 66 per cent
of the sea-bottom elevation (2.7 m; Fig. 11(b)). This case is clas-
sified as type (b) in Table 1. The corresponding spectral amplitude
of the initial water-height distribution (black solid line) is plotted in
the right-hand panel, together with the depth (coarse dashed line)
and source duration (fine dashed line) filters. The depth filter elimi-
nates wavenumber components larger than approximately 0.1 km−1

from the sea-bottom deformation, whereas the duration filter does
not affect the sea-bottom deformation. The case of the long source
duration (T = 100 s) classified as type (c) in Table 1 is shown in

Fig. 11(c). The maximum tsunami height in this case is 1.4 m, which
is 54 per cent of the sea-bottom elevation and 81 per cent of that
for the case of short source duration (T = 10 s). The duration fil-
ter eliminates wavenumber components larger than approximately
0.05 km−1 from the sea-bottom deformation. The above two sim-
ulation results (Figs 11b and c) indicate that the sea depth and the
variation of the source duration can significantly affect the initial
water-height distribution in this event.

4.2 Conventional correction method in 2-D simulation for
implementing depth and duration effects

A correction method was employed in conventional 2-D tsunami
simulations for including the depth and duration effects in the
tsunami generation process. The effects of the sea depth can be
taken into account by an impulse response function,

G (x, y) = 1

2π

∫ ∞

0
dk J0

(
k
√

x2 + y2
)

k
1

cosh k H
, (15)

with respect to a point source of vertical velocity at the bottom (Ap-
pendix B). This equation is the same as eq. (39) in Kajiura (1963),
and it is hereinafter referred to as Kajiura’s equation. To include the
source duration effect, the sea-bottom elevation within the time step
is added to the sea surface, for each time step (e.g. Fujii & Satake
2008). Although some studies took into account both of these ef-
fects in the evaluation of the initial water-height distribution in 2-D
tsunami simulations (e.g. Tanioka & Seno 2001), many studies have
neglected one or the other of these effects. Figs 12(b) and (e) show
the water-height distribution evaluated by the conventional method
using eq. (15) and taking the source process times of 10 and 100 s
into account by the same method as Fujii & Satake (2008). These
simulation results show excellent agreement with the 3-D N–S sim-
ulation results (Figs 12a and d). The agreement indicates that the
conventional correction method used in the 2-D tsunami simulation
can be used to properly evaluate the initial water-height distribution.
On the other hand, the water height distributions calculated based
on the linear potential theory given by eq. (14) (Figs 12c and f) are
slightly different from the 3-D N–S simulation results. The differ-
ence is mainly due to the assumption of the constant sea depth (H =
4 km) in eq. (14). Although the difference would be very small com-
pared with those caused by other uncertainties, such as seismic fault
and subsurface structure models, the conventional method using eq.
(15) and including source duration effect (e.g. Fujii & Satake 2008)
are more appropriate in evaluating initial water-height distribution
than the direct use of eq. (14).

5 D I S C U S S I O N A N D C O N C LU S I O N S

We evaluated the relation between the sea-bottom elevation and the
sea-surface elevation as a function of the source size L, sea depth
H and duration T , based on the 3-D tsunami simulation. When
the source size L is much larger than the sea depth H , the initial
water-height distribution is approximately the same as the bottom
deformation. This situation is often assumed in conventional studies.
However, the water height, in general, decreases with increasing sea
depth H and the duration T (Figs 3, 4, 5 and 6). When the duration
is short enough, the difference between the initial water-height dis-
tribution and the sea-bottom deformation appears when the source
size is smaller than approximately 10 times the sea depth (Fig. 5).

The linear potential theory can predict the above simulation
results quantitatively. Furthermore, based on the linear potential
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Figure 11. (a) Sea-bottom deformation and initial water-height distribution for the source process times of (b) 10 s and (c) 100 s in the 1896 Sanriku tsunami
earthquake. The left-hand panels in (b) and (c) are the initial water-height distribution calculated with 3-D numerical simulations. The right-hand panels in (b)
and (c) show the spectral amplitude in the x-component (black solid curve), estimated from the simulation results together with the spectral amplitude of the
sea-bottom deformation (grey bold curve). The amplitude of the depth and duration filters are plotted by coarse and fine dashed curves, respectively.

theory, tsunami generation process can be considered as a filter-
ing process in the wavenumber domain. The spatial spectrum of the
initial water-height distribution is obtained by applying the two low-
pass filters on the spatial spectrum of the sea-bottom deformation.
A corner wavenumber is given by 0.5H−1, and the other wavenum-
bers are given by 0.8 c−1 T−1, in terms of the phase velocity c and
the duration T . This indicates that the effect of the sea depth should
be taken into account when the source size L is smaller than 13H ,
and the source duration T , when the source duration is longer than
L/(8c) in the tsunami generation.

The tsunami generation process of the 1896 Sanriku tsunami
earthquake is simulated as an example of actual event. The ini-
tial water-height distribution is significantly different from the sea-
bottom deformation; the maximum height of the surface is ap-

proximately 66 per cent of the maximum height at the bottom. In
addition, the initial water-height distribution depends significantly
on the source duration. It is necessary to include the effects of both
the sea depth and the source duration for precise reproduction of the
initial water-height distribution from the sea-bottom deformation in
the 1896 Sanriku event. From the comparisons between the 3-D and
2-D tsunami generation simulations, we confirmed that to imple-
ment the depth and duration effects in 2-D tsunami simulation, we
can use the impulse response function (eq. (15)) to include the effect
of the sea depth and add the fractional sea-surface uplift within the
time step to the sea-surface, for each time step, to include the finite
source duration.

This study has investigated the effects of the source duration on
the tsunami generation, assuming that the sea-bottom deformation
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Figure 12. Initial water-height distribution for the source duration T of 10 s (a–c) and 100 s (d–f). (a) and (d) are numerically simulated by 3-D Navier–Stokes
equations; (b) and (e) are numerically simulated by 2-D linear long-wave (LLW) equations with eq. (15); and (c) and (f) are calculated based on eq. (14).

is characterized by eq. (5). We may consider that the sea-bottom
deformation is caused by a seismic fault with finite rise time T but
does not include the rupture propagation. Some studies investigate
the tsunami generation considering the finite rupture velocity, based
on the linear potential theory (e.g. Ben-Menahem & Rosenman
1972; Ward 2001). Because those studies use some approximations
to obtain analytical solutions, it would be important to examine
the validity based on the 3-D simulations. Furthermore, it would
also be important to study the tsunami generation process in real
bathymetry, including both finite rise time and rupture velocity.

The comparisons of 3-D and 2-D simulation results in this study
confirm the validity of the conventional technique in 2-D simula-
tions. Since 2-D simulation is much more efficient than 3-D sim-
ulation with respect to computational cost, at present, it would be
better to use the 2-D method in practice. However, steadily in-
creasing computer power and parallel computing techniques using
a large number of processors will enable us to conduct large-scale
3-D simulations in far less computational time. In addition, the
3-D simulation naturally simulates all of the wave phenomena in
not only the generation process but also the propagation process.
For example, wave dispersion, which is not simulated by the lin-
ear long-wave equations, would occur in the tsunamis propagation
(Saito & Furumura 2009). Hence, it would also be important to
develop efficient tsunami computation methods in 3-D.
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A P P E N D I X A : T S U NA M I G E N E R AT I O N
F O R F I N I T E S O U RC E D U R AT I O N :
L I N E A R P O T E N T I A L T H E O RY

The tsunami generation process was formulated based on the lin-
ear approximation by Takahashi (1942), Hammack (1973), Ward
(2001) and Kervella et al. (2007). The basic frameworks of the for-
mulations in these studies are common, but the final equations differ
slightly. For example, Takahashi (1942) used cylindrical coordinates
and assumed a symmetrical source distribution, whereas others have
used Cartesian coordinates and assumed an arbitrary source distri-
bution (Ward 2001; Kervella et al. 2007). Hammack (1973) and
Kervella et al. (2007) used the Laplace transform, whereas the
Fourier transform was used in other studies (Takahashi 1942). Ward
(2001) assumed an instantaneous sea-bottom deformation, whereas
finite duration sea-bottom deformation was assumed in other stud-
ies (Takahashi 1942; Hammack 1973). In the following, considering
applicability and usability, we use Cartesian coordinates rather than
the cylindrical coordinates, the Fourier transform (integral over the
real axis) rather than the Laplace transform (integral over the imag-
inary axis) and a finite source duration rather than instantaneous
sea-bottom deformation to formulate the tsunami generation pro-
cess.

Assuming incompressible and irrotational flow, the velocity is
represented in terms of the velocity potential φ as u = ∇φ. The
velocity potential satisfies the Laplace equation:

∇2φ = 0. (A1)

Based on the linear approximation, the dynamic boundary con-
dition at the sea surface is given by[

∂φ

∂t
+ 2μφ

]
z=0

= −gη (x, y, t) for z = 0, (A2)

where μ is the artificial damping factor and will be taken as zero in
the calculation. The kinematic boundary condition at the sea surface
is given by

∂η

∂t
= w for z = 0. (A3)

From eqs (A2) and (A3), we obtain the boundary condition of φ

at the surface as

∂2φ

∂t2
+ 2μ

∂φ

∂t
+ g

∂φ

∂z
= 0 for z = 0. (A4)

The boundary condition at the bottom is given

w(x, y, z = −H ) = d (x, y) χ (t) . (A5)

We obtain the velocity potential that satisfies (A1), (A4) and (A5)
as

φ (x, y, z, t)

= 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dτ exp [−iω (t − τ )] χ (τ )

1

(2π )2

×
∫ ∞

−∞

∫ ∞

−∞
dkx dky exp

(
ikx x + iky y

) 1

k
W (ω, k, z) d̂

(
kx , ky

)
,

(A6)

where the function W is

W (ω, k, z) =
(
ω2 + 2μωi

)
sinh kz + gk cosh kz

(ω2 + 2μωi) cosh k H − gk sinh k H
(A7)

and d̂(kx , ky) is the 2-D spatial Fourier transform defined in eq. (10).
We consider the complex ω-plane in the integration with respect to
ω in eq. (A6) with eq. (A7), as follows:∫ ∞

−∞
dω exp [−iω (t − τ )]

iω − 2μ

(ω2 + 2μωi) cosh k H − gk sinh k H

= 2π

γ cosh k H
γ cos [γ (t − τ )] Hstep (t − τ ) , μ → 0, (A8)

where Hstep(t − τ ) is the step function.
Substituting eq. (A6) and (A8) into (A2), we obtain the sea-

surface fluctuation as

η (x, y, t) = − 1

g

[
∂φ

∂t
+ 2μφ

]
z=0

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkx dky exp

[
ikx x + iky y

]
×

∫ t

−∞
dτχ (τ ) cos γ (t − τ )

1

cosh k H
f̂
(
kx , ky

)
. (A9)

This is the same as eq. (8).

A P P E N D I X B : D E R I VAT I O N O F T H E
I M P U L S E R E S P O N S E O F T H E S E A
S U R FA C E

We consider the sea surface fluctuation when the sea-bottom up-
lift is given by d̄(x, y) = δ (x) δ (y) and the deformation occurs
instantaneously, T = 0, or the impulse response of the sea-surface
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G(x, t) with respect to a point source of vertical velocity at the
bottom. Note that we use d̄(x, y) instead of d(x , y), because the di-
mension is different. Here, d(x , y) has a dimension of length L, and
d̄(x, y) has a dimension of L−2. Considering that the 2-D Fourier
transform of d̄(x, y) = δ (x) δ (y) is 1, the response of the point
source with finite source duration T is given by

G (x, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk exp (ik · x)

sin γ t − sin [γ (t − T )]

γ T

× 1

cosh k H
Hstep (t). (B1)

Assuming that T approaches zero and considering the symmetry
of the source, we obtain

G (x, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk exp (ik · x) cos γ t

1

cosh k H
Hstep (t)

= 1

2π

∫ ∞

0
dk J0 (kr ) k cos γ t

1

cosh k H
Hstep (t). (B2)

where r =
√

x2 + y2. Eq. (B2) is the impulse response of the sea-
surface with respect to the point impulse vertical velocity at the
bottom. When we consider the sea-surface distribution at the time
of the deformation, t = 0, we obtain

G (r, 0) = 1

2π

∫ ∞

0
dk J0 (kr ) k

1

cosh k H
. (B3)

Eq. (B3) is the same as eq. (15) and eq. (39) in Kajiura (1963).
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