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SUMMARY 
The pseudospectral method is a high-accuracy numerical modelling technique which 
requires less memory and CPU time than traditional numerical modelling techniques, 
such as finite difference. However, full 3-D modelling is still computationally intensive. 
As we must compromise between realism and computational efficiency, we have 
developed a 2.5-D pseudospectral scheme for calculating 3-D elastic wavefields in 
media varying in two dimensions. To demonstrate the feasibility of the scheme described 
in this paper, we use data from a refraction survey carried out in 1984 by the Explosion 
Seismology Group in the southeastern foothills of the Hidaka Mountains, Hokkaido, 
Japan. 
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1 INTRODUCTION 

The pseudospectral method is an attractive alternative to high- 
accuracy finite-difference methods that are typically used for 
numerical modelling of 2-D and 3-D wavefields in hetero- 
geneous media. Since Kosloff & Baysal (1982) applied the 
pseudospectral method to find the time-domain solution of 
the seismic wavefield, many numerical techniques have been 
developed for effectively applying it to actual models: an 
absorbing boundary (Cerjan et al. 1985; Kosloff & Kosloff 
1986; Berg, If & Skovgaard 1990) or a wraparound elimination 
technique (Furumura & Takenaka 1995); stable differentiation 
for discontinuous data (Furumura & Takenaka 1992); and 
mapping techniques to incorporate irregular grid spacing or 
curved interfaces (e.g. Fornberg 1988; Tessmer & Kosloff 1994; 
Carcione 1994). For the pseudospectral method, as well as for 
the finite-difference method, it is straightforward to incorporate 
anelastic (Witte & Richards 1986; Witte 1989) and anisotropic 
effects in the scheme. 

The main advantage of the pseudospectral method is that it 
requires several orders of magnitude less computer memory 
and computation time than other numerical modelling 
schemes, such ‘as finite difference or finite element. In the 
pseudospectral method, the field variables are expanded in 
terms of Fourier interpolation polynomials, and the numerical 
differentiation of the variables is analytically performed in the 
Fourier domain (wavenumber domain). This accurate spatial 
differentiation can reduce memory and computation time by 
several orders of magnitude as compared with other numerical 
methods such as the finite-difference or finite-element method. 

* On leave at: Research School of Earth Sciences, Australian National 
University, Canberra ACT 0200, Australia. 

For example, for 2-D and 3-D modelling, the memory require- 
ments for the pseudospectral method are about 1/8 and 1/64 
of that for the fourth-order finite-difference scheme, respectively 
(Daudt et al. 1989). 

However, even using the pseudospectral method, 3-D elastic 
modelling has been very expensive because of large memory 
requirements, so its applications have been restricted to 2-D 
elastic wavefields (Kang & McMechan 1990) or 3-D acoustic 
wavefields (Chen & McMechan 1993). 2-D elastic modelling 
is sometimes conducted for gaining qualitative understanding 
of wave propagation (e.g. Chen & McMechan 1992; Furumura, 
Takenaka & Okabe 1993), but the implicit assumption in 2-D 
modelling, where the source extends infinitely in the out-of- 
plane direction (i.e. a line-source), results in waveforms and 
amplitudes which are significantly different from those for a 
3-D point-source. 3-D acoustic modelling may provide an 
approximate P wavefield for an explosion source (P-wave 
source) in a reflection or refraction survey. However, it may 
not be adequate because it cannot include the contribution 
from conversion between P and S waves. 

Recently, 3-D elastic modelling by the pseudospectral 
method has been performed using a supercomputer (Reshef 
et al. 1988), and parallel computers or workstation clusters 
(Furumura, Kennett & Takenaka 1995) with sophisticated 
codes suitable for each machine architecture. Their pioneering 
work may indicate the arrival of the age of 3-D modelling for 
elastic wavefields using the pseudospectral method. However, 
these calculations took a long time, even for very small models. 
Thus, we believe that it will be a dozen years or so until the 
3-D modelling for elastic wavefields can be routinely 
implemented for realistically large-size models. 

An economical approach that does not require the same 
level of 3-D modelling is to examine the 3-D response of a 
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model where the material parameters vary only in 2-D 
geometry. Such a configuration having a 3-D wavefield in a 
2-D medium is sometimes called the ‘2.5-D problem’ (e.g. 
Eskola & Hongisto 1981). Fortunately, the structures in geo- 
physically interesting regions can sometimes be approximated 
by models in which the heterogeneity patterns are 2-D. Also, 
most seismic experiments, such as refraction surveys, have 
been arranged to retrieve 2-D structures under the array of 
receivers. Therefore, 2.5-D modelling can give reasonable 
synthetics for actual cases of interest. 

2.5-D modelling has been implemented for seismic wave 
simulation using several approaches: asymptotic ray theory 
(Bleistein 1986; Bleistein, Cohen & Hagin 1987; Stockewell 
1995); the finite-difference method for acoustic wavefields (e.g. 
Song & Williamson 1995) and elastic wavefields (e.g. Okamoto 
1993); the indirect boundary method (e.g. Luco, Wong & De 
Barros 1990); and the discrete wavenumber boundary-integral 
equation method (Takenaka, Kennett & Fujiwara 1996). Such 
2.5-D schemes can be easily implemented on current com- 
puters, since they require storage of almost the same size as 
the corresponding 2-D calculations. 

The aim of the present paper is to propose a 2.5-D pseudo- 
spectral scheme for calculating 3-D elastic wavefields in 2-D 
media. A Fourier transform in the medium-invariant direction 
is issued to reduce the problem of solving the 3-D equation to 
that of solving multiple 2-D equations. The 3-D wavefield is 
synthesized by using an inverse Fourier transform from the 
wavenumber domain. This can give the waveforms for receivers 
located out of plane. Since the equations in the 2.5-D scheme 
are a simple extension of the corresponding 2-D equations, 
they can be efficiently calculated using numerical techniques 
developed for 2-D pseudospectral modelling. 

In the following section, we give a brief summary of pseudo- 
spectral modelling for 3-D elastic wavefields. Next, we derive 
a 2.5-D pseudospectral scheme through transformation of the 
3-D equations. We also show another cost-effective 2.5-D 
pseudospectral scheme, which is derived for special force 
systems describing the sources. Then, in order to demonstrate 
the feasibility of 2.5-D pseudospectral modelling, we implement 
the 2.5-D scheme for forward modelling of the seismic refrac- 
tion experiment in the southwestern foothills of the Hidaka 
Mountains, Hokkaido, Japan, conducted by the Research 
Group for Explosion Seismology (hereafter called RGES) in 
1984 (RGES 1988). 

2 3-D PSEUDOSPECTRAL MODELLING OF 
ELASTIC WAVES 

For an isotropic linear elastic medium, the equation of motion 
in the 3-D rectangular system, where x and y are the horizontal 
coordinates and z is the vertical one, is given by 

.. aoxx auXy aoxr 
p U ,  = - + ~ + __ + f, , ax ay aZ 

.. aoXy aoyy aoyr 
p U y =  - + ~ + - +f,, ax ay aZ 

.. ag,, agyz ad,, 
pu ,  = - + ~ + __ +fz , ax ay aZ 
where op4 = o,,(x, y, z, t) (p, q = x, y ,  z) are the stress compo- 
nents at point (x, y, z )  at time t; f, =f,(x, y, z ,  t )  ( p  = x, y ,  z) is 
the body force; U p  = U,,(X, y, z, t )  are the second time deriva- 

tives of displacement (i.e. acceleration); and p = p(x, y, z) is the 
density. The wavefield radiated from a point source can be 
included in the equation by using its equivalent body force 
(e.g. see Aki & Richards 1980, chap. 3). Numerical modelling 
schemes such as the finite-difference and pseudospectral 
methods directly compute the discretized versions of the above 
equations, where the bounded computational domains are 
usually represented by grids with regular grid spacing. For 
marching time in the pseudospectral method an explicit scheme 
is used: the wavefield in the next time step is calculated by use 
of the current and previous wavefields. For example, the 
following second-order finite-difference time integration 
scheme is often used: 

+ U J x ,  y ,  z, nAt)At, (2) 

+ U,[x, y, z, (n + 1/2)At]At, ( 3 )  

where U p  and U p  ( p = x ,  y, z) denote particle velocity and 
displacement, respectively, and At is the time step. In this time 
integration scheme, a small At  is selected to reduce numerical 
dispersion which arises in the finite-difference approximation 
of the integration. To keep the dispersion error down to an 
acceptable level, the criterion of Daudt et a/. (1989), 

Max(Ax, Ay, Az) 
At < 0.26 

V Y  3 (4) 

is used, where V Y  is the maximum P-wave velocity in the 
model, Ax, Ay and Az denote constant grid spacings along 
the x-, y-  and z-directions, respectively, and Max(Ax, Ay, Az) 
is the largest among them. The strain components 
ep4 = e,,(x, y, z ,  t )  ( p ,  q = x, y ,  x) are calculated by the spatial 
differentiation of the displacement components as follows: 

1 au, au, 
epq = 5 (dq + lj,). (5) 

The stress and strain components are related through Hook’s 
law with the LamC‘s constants I = A(x, y, z) and p = p(x, y, z) 
as follows: 

up, = 4 e x x  + eyy + ezZ)bpq + 2pe,,, ( P ,  4 = x, Y,  4 ,  (6) 
where 6,, is the Kronecker delta. The solution of the full 
system of equations from (1) to (3), (5) and (6) is marched 
forward in time after initiation of a seismic disturbance. 

Since for the pseudospectral method the spatial differentiation 
in eqs (1) and (5) is performed analytically in the wavenumber 
domain, a larger grid spacing can be used than that of the 
finite-difference method (Fornberg 1987; Daudt et al. 1989). For 
the pseudospectral method only two grid points per shortest 
wavelength are theoretically sufficient in the spatial differen- 
tiation. The transformation between the physical and wave- 
number domains is performed along row and column of the 
variables to be differentiated using a 1-D fast Fourier transform 
(FFT). Usually the FFT for complex-valued data (complex- 
FFT) is used for the spatial differentiation in the pseudospectral 
method (e.g. Kosloff & Baysall982; Reshef et al. 1988). However, 
the differentiation can be performed more efficiently using the 
FFT for real-valued data (real-FFT), because both input and 
output of the transform are purely real-valued data. Note that 
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the differentiations performed using real FFTs based on sophisti- 
cated algorithms are a factor of two faster than performing the 
differentiations using the complex FFTs (Furumura, Takenaka 
& Ninomiya 1993). 

For the pseudospectral method, numerical techniques for 
applying the boundary conditions, such as a free surface and 
an absorbing boundary for a bounded computational region, 
have also been developed. The free surface can be simply 
incorporated into the calculation by adding a number of zeros 
prior to the vertical differentiations of the stress components, 
or, equivalently, because of the periodicity, below the bottom 
of the components. When a source is placed near the surface, 
a large discontinuity at the boundary causes a Gibbs’s phenom- 
enon in the vertical derivatives of the displacement. Since this 
causes an oscillating noise in the wavefield near the free surface, 
an alternative differentiation scheme for discontinuous data 
rsymmetric differentiation’ (Furumura & Takenaka 1992)] is 
exploited to suppress the oscillations. An absorbing boundary 
condition is also applied for the other sides to eliminate 
wraparound phases due to the implicit periodicity in the FFT. 
Such unexpected phases can be reduced using the amplitude- 
tapering technique of Cerjan et al. (1985) and its improved 
scheme (Kosloff & Kosloff 1986; Berg et al. 1990). Wraparound 
phases can also be eliminated efficiently by means of a tech- 
nique based on an anti-periodic extension of the wavefield 
(Furumura & Takenaka 1995). 

In the next section, we show a 2.5-D equation of motion, 
which is derived from the 3-D equation and can be solved by 
the pseudospectral method. 

3 2.5-D EQUATION O F  MOTION 

We now derive a 2.5-D equation of motion for a 3-D wavefield 
in a 2-D medium that is invariant along one coordinate and 
varies along the other two coordinates. We assume the medium 
is invariant in the y-direction throughout the rest of this paper. 
That is, 

1 = 4 x ,  4 ,  P = Ax, 4 > P = P(X, 4 .  (7) 
We set the y-coordinate of the source position at y = 0 without 
loss of generality. 

Then, on performing a Fourier transform of the 3-D equa- 
tions (1) to (6) with respect to y ,  we obtain the following 2.5-D 
equation of motion: 

as,, as,, p U ,  = - + ik,d,, + ~ +I,, ax aZ 
I: as,, as,, pU,  = - + ikY6,, + - +f, ,  ax aZ 

as,, a s z z  pU,  = ~ + ik,8,, + - + f z ,  ax aZ 

, (p ,q=x ,z ) ,  

Z,, = ik, 0, , 

s p q  = 44, + %, + 4,,)6,, + 2PEpq, ( p ,  q = x, y, z )  , 

(9) 

where we have used the notation 

E(x, k,, z ,  t )  = Ax, Y, z ,  t )  e-”yy d y ,  (11) J-: 
and the y-invariance of the medium, i.e. eq. (7). Note that the 
transformed variables, i.e. tilde variables, are generally complex 
valued. It should also be noticed that, for a fixed value of the 
wavenumber k,, these equations depend on only two space 
coordinates, i.e. x and z. If these equations can be solved, the 
displacement in the (x, k,, z )  domain (hereafter called the 
k,-domain) can be obtained. The displacement in the physical 
domain, i.e. (x,y,z) domain, can then be derived by inverse 
Fourier transformation. 

For each value of k,, eqs (8) to (10) can be solved as 
independent 2-D equations using a 2-D pseudospectral tech- 
nique, because, due to the invariance with respect to y,  there 
is no coupling between waves of different k,. The computer 
memory required for 2.5-D modelling can be reduced down to 
the same size as that for 2-D modelling, because we do not 
need to store other k, components in the memory while we 
calculate a wavefield for a given k,. This is the main advantage 
of 2.5-D modelling compared with 3-D modelling for the 
reduction of memory resources. 

In actual calculations, we must discretize k,. This discretiz- 
ation can be achieved by assuming the source-medium con- 
figuration to be periodic along the y axis. A repetition length 
L, along the y axis gives k,=nAk,, (Ak,=2n/LY; n is an 
integer). As is often discussed in the modelling by the discrete 
wavenumber representation method, such as the Aki-Larner 
technique (Aki & Larner 1970), we can truncate the wave- 
number summation near the wavenumber component corre- 
sponding to the fundamental Rayleigh wave as 

2nf Inax 

Y ’  Ak,N, 2 1.1 ~ 

where the parameters f””” and are the maximum fre- 
quency and the minimum S-wave velocity in the model (see 
e.g. Bard & Bouchon 1980). Then we can calculate the 2N, + 1 
wavefieldsofk,=nAk,(n= - N ,  ,..., - l , O , l , . . . ,  N,),butthe 
symmetrical relation of the transformed wavefield, 

oP(x, - k y , Z , t ) = 0 j p * ( x , k y , z , t ) ,  (P=x,Y,z) (13)  
(* represents a complex conjugate), reduces the calculation of 
the wavefields down to N ,  + 1. 

Finally, these k, components of the displacement at desired 
positions, i.e. receiver positions, are converted into the physical 
domain by using a discrete inverse Fourier transform: 

1 NYAkY 

U,(X, y d ,  z ,  t )  = - 1 o,,(x, k,, z ,  t )  eikyyd, 
LY ky = - N,Ak, 

where the variable yd denotes the source-receiver distance 
along the y axis. 

Since, as mentioned above, we can considerably reduce the 
working memory for the 2.5-D computation compared with 
that for the full 3-D computation, we can easily implement 
such a program on a workstation or personal computer. The 
computational time required for the 2.5-D modelling depends 
on the number of wavenumbers. Of course, the total compu- 
tational time can be reduced using many computers simul- 
taneously to calculate different k, components in parallel. 
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In the next section we show an alternative 2.5-D equation 
of motion for the wavefields generated by a force system which 
is symmetric or anti-symmetric with respect to y. The equation 
can be solved with less memory and time than the scheme 
described in this section. 

4 2.5-D SCHEME OF MOTION FOR A 
WAVEFIELD EXCITED BY A FORCE 
SYSTEM THAT IS SYMMETRIC OR 
ANTI-SYMMETRIC I N  Y 

In the previous section, we described a general 2.5-D pseudo- 
spectral scheme, and showed that it requires less memory to 
compute the 3-D wavefield in a medium varying in two 
dimensions than the corresponding 3-D calculation. In eqs (8) 
to (lo), the field variables, such as acceleration, stress, and 
strain, are transformed into the k, domain by a Fourier 
transform with respect to y .  Since the transformed variables 
are then complex-valued, the volume of these data are twice 
the volume of those in the physical domain. However, if each 
variable has an even or odd distribution with respect to the 
coordinate to be transformed (i.e. y) ,  the cosine or sine 
transform can be used, respectively, instead of the Fourier 
transform. The transformed variables are then all real-valued. 
In the case of wavefields excited by a force system that is 
symmetric or anti-symmetric in y ,  each variable can be even 
or odd. This enables us to reduce the computational time and 
memory to less than half that of the previous complex calcu- 
lations. In this section we present an alternative 2.5-D equation 
of motion for calculating the wavefield generated by a force 
system which is symmetric or anti-symmetric in y.  In the 
following two subsections, we show the 2.5-D pseudospectral 
schemes corresponding to the two force systems. 

4.1 2.5-D pseudospectral scheme for a force system that 
is symmetric in y 

Here we consider the body force system describing a source 
that is symmetric in the y coordinate, such as that for single 
forces F ,  and F,, and the moment tensor components M,,, 
M,, M,, and M,, and M,,, with all other components being 
zero. We set the y coordinate of the source position to y = 0 
without loss of generality. The wavefield excited by this force 
system is then composed of the even components, 

Ux(x ,  y, z ,  t )  = Ux(x ,  -y,  z, t ) ,  

UAx, y, z, t )  = U A X ,  -Y, z, t ) ,  

U,(x, Y ,  z ,  t )  = - U,fX, -Y, 2, t )  > 

(15) 

and the odd component 

all with respect to y = 0. These components can be expanded 
in terms of the cosine functions or sine functions as follows: 

2 V k Y  - 

2 W k Y  I 

2 N P k Y  - 

U A X ,  y ,  z ,  t )  = - c UJX, k,, z,  t )  cos(k,y), 

UJX, y, 5 t )  = - c Uy(x, ky 9 z, t )  sin(k,y), 

Uz(x, y, z, t )  = - c UZ(X, k,, z, 0 cos(k,y), 

L~ k , = O  

(16) 
‘ Y  k , = O  

‘y k , = O  
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OJx, k,, z ,  t )  = UAx, y ,  2, t )  cos(k,y) dy . r 
This displacement in the k, domain, OJx, k,, z, t ) ( p  = x, y, z), 

is real-valued, and subjected to the following set of equations: 

.. ad,, aa,, - Po, = ax - kydxy  + - d Z  + f, , 

.. ad,, adyz - 

.. ad,, ad,, 

PU, = ~ + kY6,,, + - az + f ,  , 

PO, = - - kydyz  + - + f,, ax d Z  

ax 

Ex, - y o , - k , U ,  - 2 ax - >  , 
where 

.f,(x, k,, z ,  t )  = f x ( x ,  Y, z ,  t )  cos(k,y) d y ,  

x(x, ky, 2, t )  = s,”” fy(x, Y, z, t )  sin(k,y) 4, 

.f&, k,, z,  t )  = f ( x ,  y, z ,  t )  cos(k,y) d y  . 

This is a 2.5-D equation of motion with Hooke’s law in the 
k,-domain for a force system symmetric in y .  Note that all 
variables in this system are real-valued. For each value of k,, 
this system can be solved using a 2-D pseudospectral technique, 
and the solution at desired positions is summed over k,  
according to eq. (16) to get the seismograms at those positions. 
The computational resources of memory and time required in 
this 2.5-D scheme with real operations are about half those of 
the previous 2.5-D scheme including complex operations. 

r 

4.2 2.5-D pseudospectral scheme for a force system that 
is anti-symmetric in y 

Now we consider another wavefield geometry derived from a 
force system that is anti-symmetric in y. The 2.5-D scheme for 
a force system that is anti-symmetric in y is derived in almost 
the same manner as that for a symmetric force system. 

The force system which is anti-symmetric in y ,  such as for a 
single force F,  and the moment tensor components M,,, My, ,  
M y z ,  and M z y ,  with all other components being zero, excites a 
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all with respect to y = 0. Then, these can be expanded as 
9 Nu& 

2 NYAkY 

Uz(x,  y, z, t )  = - c O,(x, k,, z, t )  sin(k,y). 

This displacement in the k, domain, o,(x, k,, z ,  t )  ( p  = x, y, z), 
is real-valued, and subjected to the following set of equations: 

LY k,=O 

ad,, ad,, ~ 

ax aZ PU, = ~ - k,d,, + - + f x  , 

ad,, ad,, 
ax aZ PU, = - + k,d,, + - + f y  , 

I?,,= -k,O,, 

where all variables are real-valued, and 

.fAx3 k,, z, t )  = f x ( x ,  Y, z, t )  sin(k,y) d y ,  

This is a 2.5-D equation of motion with Hooke's law in the k, 
domain for a force system which is anti-symmetric in y. The 
equation can be solved for each k, by a 2-D pseudospectral 
technique. 

The schemes described in the present and previous sub- 
sections can be useful for the 2.5-D modelling when the force 
system of seismic source is purely symmetric or anti-symmetric 
in y. However, since any kind of source can be decomposed 
into a force system that is symmetric and anti-symmetric in y,  
both schemes proposed in this section can also be used in the 
case of force systems that are not purely symmetric nor anti- 
symmetric in the y coordinate, so that the memory required 
for the computation is reduced by a factor of two, compared 
with the previous complex scheme. 

5 2 .5-D PSEUDOSPECTRAL FORWARD 
MODELLING O F  THE 1984 REFRACTION 
EXPLORATION I N  THE SOUTHEASTERN 
PART OF THE HIDAKA MOUNTAINS 

In this section we implement the 2.5-D pseudospectral scheme 
for forward modelling of a refraction experiment carried out 
in 1984 in the southeastern part of the Hidaka Mountains, 
Hokkaido, Japan. 

Seismic refraction explorations are usually performed to 
investigate high-resolution structures along survey lines, where 
many receivers and some explosion shot points are arranged, 
and the 2-D structure along the lines is obtained by means of 
iterative forward modelling of the records. For modelling 
refraction profiles, a ray-tracing method, rather than full-wave 
methods such as the finite-difference or pseudospectral method, 
has generally been used, because its computational time is 
much less than that for the numerical methods. However, the 
ray-theoretical approximation does not account for low- 
frequency effects, so it cannot calculate surface waves and 
diffracted waves. Thus, we may have to use a full-wave method 
to revise the model after a preliminary model is obtained by 
the ray-theoretical method. Recently, Kang & McMechan 
(1990) used the 2-D pseudospectral method for the iterative 
forward modelling of the Wichita Uplift-Anadarko Basin 
region in south-western Oklahoma. They demonstrated the 
importance of the phase information of both first-arrival and 
later phases to constrain the model. However, as discussed 
previously, 2-D modelling cannot give the true amplitude and 
pulse shape for 3-D point-sources, because no out-of-plane 
wave-spreading effect is accounted for in the equation. Hence, 
the 2-D modelling is not appropriate for this purpose. 

2.5-D pseudospectral modelling can simulate 3-D wave 
propagation in a medium varying in two dimensions. We now 
apply the scheme described in the preceding section to the 
modelling of the refraction experiment. Since we have no 
information on source mechanism, source time function, 
S-wave velocity, density or anelastic constants (Q), we make 
use of simple assumptions on these unknown parameters. For 
this reason, the goal of the modelling in this section is to 
compare the profiles of observed and synthetic seismograms 
and to demonstrate the feasibility of the 2.5-D pseudospectral 
method. The correction of the model by iterating the 2.5-D 
modelling is beyond the aim of this paper. 

In the next subsection, we introduce an outline of the 
explosion experiments (RGES 1988) with a brief review of the 
geological and geophysical characteristics of the Hidaka region. 
Then, we perform a 2.5-D pseudospectral modelling. The 
differences in the seismograms between the 3-D wavefield for 
a point-source and the 2-D wavefield for a line-source are 
illustrated in the last subsection. 

5.1 
southeastern foothills of the Hidaka Mountains 

Here we summarize the previous studies on geological and 
geophysical structure of the southeastern foothills of the 
Hidaka Mountains. In this area lies the Kamuikotan meta- 
morphic belt, which runs across Hokkaido Island from north- 
west to southeast and reaches the coastline in the Urakawa 
region. This area includes the aftershock region of the 1982 

1984 seismic refraction exploration in the 
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Urakawa-oki earthquake, M 7.1 (Moriya, Miyamachi & 
Kato 1983). Fuji & Moriya (1983) showed the existence of 
ihick sediments of considerably slow P-wave velocity 
( 4  = 3.6 km s-') in this region from a refraction experiment 
using mining explosion shots. This low V, anomaly appears to 
coincide with a low Bouguer anomaly (-150mgal) in the 
gravity map of this area compiled by Yamamoto (1987). 
Studies of the 3-D structure of P-wave velocity (Takanami 
1982; Miyamachi & Moriya 1984, 1987) and the anelastic 
attenuation (Q) factor (Furumura & Moriya 1990) show that 
very low-velocity (10 per cent or more) and low-Q (Q - 50) 
material exists in the Urakawa region, which extends down to 
80 km below the free surface. 

In 1984, a seismic refraction exploration was carried out by 
RGES (1988) along a profile from Niikappu to Samani, in the 
southeastern foothills of the Hidaka Mountains (Fig. 1). This 
covers a representative part of the 1982 Urakawa-oki earth- 
quake ( M  7.1) aftershock region and Kamuikotan metamor- 

42.7N 

41.8N 

phic belt, which is almost perpendicular to this line. The survey 
line ranged from 0 to 66 km, oriented approximately perpen- 
dicular to the geological strike in order to reduce the off-line 
effects of 3-D geological heterogeneity. The survey involved 
five shots of sizes ranging from 400 to 600 kg, and 64 temporary 
seismic array stations arranged at intervals of about 0.1 km, 
in which were installed vertical-velocity-type seismometers 
with a natural period of 2 Hz (Fig. 1). The seismic records 
were digitized with a resolution of 12 bits and a time sampling 
increment of 10 ms. 

The observed seismic record profile is displayed in Fig. 2. 
Each trace is plotted in a reduced-time format, t = T -  A/6.0, 
where t is the time plotted in s, T is the true traveltime in s, 
and A is the offset between the shot and the receiver in km. 
Although the receivers were not actually placed exactly on a 
straight line (see Fig. l ) ,  we simply use the shot-receiver 
distance as the offset. The plotted amplitude of each trace is 
normalized by its maximum amplitude to increase the visibility 

NI IKAPPU-SAMANI '84 
\ 

K A I D O  

I I 1 1 1  
50 K M  

141.8E 143.5E 
Figure 1. Map showing the location of the 1984 reflection exploration in the southeastern foothills of the Hidaka Mountains, Hokkaido, Japan. 
Five shots (marked with crosses) and 64 seismic recording stations (small circles) were arranged in the survey line at intervals of about 0.1 km. The 
hatched area of the inserted map indicates the approximate location of the Kamuikotan metamorphic belt. The survey line was oriented 
approximately perpendicular to the geological strike. (After RGES 1988.) 
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Figure 2. Seismic record profile section of the vertical velocity component for shot S-2. Each trace is normalized by its maximum amplitude. The 
time axis is plotted in reduced time format with a reduced velocity of 6 km s-l, and the distance for each receiver is measured from the shot point. 

0 1996 RAS, G J I  124, 820-832 



826 T. Furumuru and H.  Takenaka 

of small amplitudes at large distances. The seismic record 
profile of a shot (S-2) shows a slow apparent velocity of the 
first arrival and many later phases, which can be considered 
as reflections, refractions, converted S- and surface waves. We 
also find tentative large-reflection phases following small initial 
arrivals at the southeastern locations in the distance range 10 
to 40 km. 

Moriya & RGES (1986) estimated the 2-D P-velocity 
structure along the profile by forward modelling using a ray- 
tracing method (Fig. 3). This result shows that a sedimentary 
surface layer of very slow velocity (V, = 2.5 km s-l)  and 1 km 
thickness covers this region, and an inclined high-velocity 
(V, = 5.3 km s-l)  layer lies in the depth range 1 to 6 km from 
the shot point (S-2) to the end of the survey line. 

5.2 2.5-D pseudospectral modelling of the 1984 
refraction exploration in the southeastern foothills of the 
Hidaka Mountains 

Now we perform a 2.5-D pseudospectral modelling for the 
refraction experiment in the southwestern foothills of the 
Hidaka mountains. Among the five shots, we model a seismic 
profile of shot S-2, in which we can see many more tentative 
seismic phases than in the other profiles. We use a 2-D P-wave 
velocity profile estimated by Moriya & RGES (1986), and 
linearly interpolate the velocity between each layer. 

The computational domain is represented by a grid of 512 
nodes horizontally by 128 nodes vertically at a regular grid 
spacing of 0.125 km. We must specify the medium parameters 
of 1, p, p, at each grid point. We know only the P-wave velocity 
in this model; the S-wave velocity and density are unknown. 
Therefore, we assume the S-wave velocity (V,) profile through 
the simple assumption of Vp/V,= 1.73, and the density is 
assumed by means of the following empirical relationship 
between the P-wave velocity (V,) and the density (p) ,  which 
was proposed by Gregory (1977): 

p = 0.23(3081.5413Vp)1'4, (28) 

where the coefficients have been redefined for use with V, 
in km s- l  and p in Mg m-3. An explosion-type point source 
described by the moment tensor M,, = M y ,  = M,, = M o  is 
employed for the numerical modelling, so that we can apply 
the 2.5-D scheme for the force system which is symmetric in y 

s- 1 s-2 s-3 

described in Section 4.1. We assume the moment of the source 
as M o =  1 N m .  

In order to avoid one instability problem that arises in the 
spatial differentiation using the FFT, we use a spatially distrib- 
uted volume source to produce a band-limited wavefield. An 
equivalent body force corresponding to the explosion source 
can then be written as 

a -  
8x0 

fib, Y, z, t )  = Mo- S(x - xo, y - yo, z - zo, t - to) 

a "  - - -MM,-6(x-xo,y-yy,,z-zo, ax  t - t o ) ,  

a "  
f,k y,  z, t )  = M,-S(x ay0 - xo, y - yo,  z - zo, t - t o )  

a "  
az0 

f&, Y, z, t )  = Mo - 6(x - xo, y - yo, z - zo, t - t o )  

a -  
aZ = - M,-6(x - xo, y - yo, z -zo, t - to ) ,  

where 8 is a pseudo-delta function for a volume source that 
has a narrow distribution in space and time around the centre 
(xo, yo, zo, to) of the source, and 

s_-: {Im &x, y,  z, t )  dx dy dz d t  = 1 .  ( 30) 

In this modelling, we employ the following function, 8, as the 
pseudo-delta function: 

&x, y, z, t )  = &(x - xo)6(y)8,(z - z,)s,(t - t o ) ,  (31) 

where we have set the y coordinate of the source position at 
y = 0, i.e. yo =0, and 8, and 8t are the spatial and time 
distribution of the source, for which we used Herrmann's 
pseudo-delta function (Herrmann 1979). Note that for the 
distribution in the y-direction the Dirac delta function has 
been used, which will be transformed into k,-domain through 
eq. (21). We choose the width of the Herrmann's function as 
4Ax x 4Az in space; therefore, the source volume extends over 
25 grid points in the x - z plane. Substituting eqs (29) and 

s-4 s-5 
4 . 5  
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4.5 
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5.4  
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12 1 

Figure 3. P-wave velocity model along the survey line used in the modelling. The numbers within the figure indicate the P-wave velocity (km s-')  
of the upper and lower boundary of each layer (after Moriya & RGES 1986). 
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(31) into eq. (21), we get the following representation in the 
k,-domain for the equivalent body force to the explosion 
source: 

In the modelling, the source depth (i.e. z o )  corresponds to a 
half-node below the free surface (62.5 m), since the free surface 
IS assumed in the pseudospectral method to be about a half- 
node above the uppermost grid point, which agrees well with 
the actual depth of the shot point (71 m). 

The source ,time function, i.e. &( t )  in eq. (31), is also selected 
to produce a band-limited wavefield. Fig. 4 shows the Fourier 
spectrum of the waveform recorded 1.3 km from the shot point. 
Since the frequency range of the observed waveform extends 
from 2 to 15 Hz, we choose a predominant frequency of 3 Hz 
for the source. 

The absorbing boundary condition of Cerjan et al. (1985) is 
incorporated in the 20 nodes of both the horizontal and the 
bottom sides in order to reduce the wraparound phases which 
arise at the sides of the computational domain. A free-surface 
boundary condition is incorporated in the computation by 
adding the same number of zeros (128) as the vertical grid size 
prior to the vertical differentiation of the stress components 
and discarding them immediately after the differentiation. We 
also apply the stable Fourier differentiation scheme (‘symmetric 
differentiation’) developed by Furumura & Takenaka (1992) 
for the vertical differentiation of displacement. 

We calculated the wavefields of 34 values of k, (i.e. k, = 0, 
Ak,, 2Ak,, . .. , 33Ak,; Ak, = 27c./L, km-I), where we employed 

0.0 0.1 1.0 10.0 100.0 

Frequency (Hz) 
Figure 4. Comparison of the Fourier spectrum of a real seismogram 
recorded near the source (A = 1.3 km) (thin line), and that of the band- 
limited source time function (centre frequency is 3 Hz) used in the 
modelling (thick line). Here the source time function has been differen- 
tiated with respect to time to display the frequency response of the 
velocity component. 

the spatial periodic length L, = 32 km, which was selected so 
that the significant wraparound waves would not arrive within 
the time window of the computation. The number of wave- 
numbers to be calculated in the modelling was decided using 
eq. (12). Each calculation was held for 6000 time steps with a 
time increment of 5 ms to obtain the time window of 30 s. The 
computation was performed using single-precision arithmetic, 
and required only 8.4 MB of memory and 4.3 hr of CPU time 
on a HITAC M-680H main-frame computer (the CPU speed 
is nearly equal to that of a Sun Microsystems Sparc Station 
10 model 40) for one wavenumber (k,) calculation. so it took 
146.2 hr to calculate 34 k, components. Although we calculated 
all k, components sequentially on one computer, the calcu- 
lation for different k, s can be performed in parallel using 
many computers. 

5.3 Interpretation of the synthetic seismograms 

Fig. 5 displays the 2.5-D synthetic waveforms of vertical and 
radial velocity components at the in-plane ( y  = 0) receivers. 
The plotted amplitude of each trace is normalized by its 
maximum amplitude to increase the visibility of small amp- 
litudes at large distances. Since no energy appears on the 
transverse components for this calculation, we omitted the 
transverse components from the figure. 
Fig. 6 shows the low-pass-filtered waveforms of the observed 

seismograms with the cut-off frequency of 6 Hz. Comparison 
between the synthetic (Fig. 5) and the filtered (Fig. 6) seismo- 
grams shows fairly good agreement in first arrivals, later 
phases, and surface waves. In both real and synthetic seismo- 
grams in the distance range of 10 km to 40 km we can see 
a small first-arriving phase followed by a large phase, which 
may be the P-wave reflection from the interface between the 
sediment (V, = 2.5 km s - I )  and the rock (V, = 5.3 km s-I). 

On the other hand, there are two differences between the 
real and synthetic profiles. 

(1) The polarity of the reflected wave does not agree with 
that of the real data at distances of more than 20 km. 

(2) First arrivals with large amplitudes, which are recorded 
in the distance range 4 km to 8 km at a time of 1.2 s, do not 
appear in the synthetic seismograms. 

These discrepancies may be mainly due to some minor errors 
in the P-wave velocity structure of the supposed model. 

We find that the polarity of the first-arriving phase in the 
radial seismograms changes at an offset of -5 km, while this 
is not observed in the vertical seismograms. This suggests that 
additional information to constrain the model might be pro- 
vided by radial seismograms if the horizontal components are 
recorded in the experiment. 

Now we also calculate the P-wave seismograms, Up, and 
the in-plane (yd = 0) SPwave seismograms, Usv, which are 
defined by the divergence and rotation of the displacement 
(U,, U,, U z ) ,  respectively, as 

a a a 
u p  = - u, + - u, + - u,, ax ay az 

a a 
a x  aZ usv = - u, - - u,, 

(33) 

(34) 

(Fig. 7). In Fig. 7, only the seismograms of [A[ I 1 5  km are 
displayed, because high-frequency noise on the decomposed 
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Figure 5. Synthetic velocity seismograms for the shot (S-2) of (a) vertical and (b) radial components. Each trace is normalized by its maximum 
amplitude. The scales of time and distance axes are the same as in Fig. 2. 

LPF (6Hz) 
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Distance in km 
Figure 6. Seismograms processed by a low-pass filter (with centre frequency of 6 Hz) applied to the real profile (Fig. 2). 

seismograms was enhanced due to the spatial differentiation, 
and the signal-to-noise ratio was not good for (dl > 15 km. We 
can clearly see a Rayleigh wave in the SVwave seismograms 
(Fig. 7b). In the P-wave seismograms (Fig. 7a), for the receivers 
between -5 and - 15 km, we also recognize the P-wave 
reflections 2 s behind the primary plane, which have almost 
the same propagation speed as the primary phase. Although 
S-wave energy is not radiated from the explosion source, in 
the Slrwave seismogram we can clearly see SVwaves converted 
from P waves at the free surface near the shot point or 
interfaces along the path of wave propagation. These decom- 

posed seismograms may give us useful information for the 
interpretation of the seismograms. 

We also show the out-of-plane synthetic seismograms 2 km 
from the survey line (x axis), i.e. y ,  = 2 km, in Fig. 8. This 
distance corresponds to a maximum out-of-plane deviation of 
the winding receiver locations along the survey line. Since no 
significant differences are found between the in-plane and the 
out-of-plane seismograms, except that the arrival times are 
delayed for the out-of-plane seismograms, it seems reasonable 
to approximate the winding receiver arrangement along the 
survey line by the linear receiver array based on the actual 
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Figure 7. Decomposed seismograms of (a) the P-wave component, 
and (b) the SVwave component. Only the seismograms of near offset 
(1A1 I 15 km) are displayed, since the signal-to-noise ratio of the 
seismograms was not good for large offsets. 

distance of each receiver from the source. This may be due to 
the explosive-type source, which isotropically radiates only 
P-wave energy. 

5.4 Comparison of 2-D modelling and 2.5-D modelling 

In this subsection we compare the waveforms of 2.5-D model- 
ling described in the preceding section and those for the 
corresponding 2-D calculation. The 2-D synthetics cannot 
include the true geometrical spreading for 3-D waves, so the 
phases associated with long ray paths have considerably larger 

amplitudes. The amplitudes of waveforms calculated by 2-D 
modelling may be approximately corrected to get the true 
amplitudes for 3-D waves by applying a simple scaling function 
(Kang & McMechan 1990) or by using the 2-D to 2.5-D 
amplitude correction operator (e.g. Bleistein 1986; Esmersoy 
& Oristaglio 1988). However, this compensation is not valid 
unless the heterogeneity of the medium is very small. 

Here we illustrate the difference in seismograms between the 
3-D wavefield for a point source and the corresponding 2-D 
wavefield for a line source. The 2-D wavefield can be con- 
structed from the component of k, = 0 in the 2.5-D modelling. 
We can confirm the difference in waveforms between 2-D 
modelling (Fig. 9) and 2.5-D modelling (Fig. 5a) on the first 
arrivals and Rayleigh phase. Fig. 10 shows the enlarged seismo- 
grams at offsets of 1A1= 1, 5 ,  and 15 km, together with their 
absolute amplitudes. We find that the difference of amplitudes 
between the 2-D modelling and the 2.5-D modelling increases 
as the traveltime or source-receiver distance increases. 

We also show the amplitude decay curves of the first-arrival 
phase for 2.5-D and 2-D modelling against distance (Fig. 11). 
In Fig. 11, the amplitudes of the synthetic and observed 
waveforms are scaled so as to match each other at lAl= 2 km 
because we cannot estimate the absolute value of the source 
energy. We can see that the amplitude decay curve of the 2.5-D 
modelling simulates the observed one well. Also, Fig. 1 1  shows 
that it may be difficult to obtain the correct 3-D wave 
amplitude from the 2-D amplitude by the compensation tech- 
nique as mentioned above, since the relation between the 2-D 
and the 3-D amplitudes is not simple in Fig. 6. A difficulty like 
this using compensation based on a simple filtering process 
(e.g. Bleistein 1986) in getting the correct 3-D amplitudes and 
waveforms from the corresponding 2-D calculation is discussed 
in Song & Williamson (1995). 

The discrepancy between the amplitude decay curves for the 
observed and the 2.5-D synthetic seismograms, which can be 
seen at the left side of the source position, may be due to the 
imperfect P-wave velocity model and incorrect assumptions of 
the S-wave velocity and the density. We may also have to 
incorporate an anelastic attenuation (Q) effect in the model to 
explain the rapid decay of the observational curve, because 
the study on the 3-D Q structure shows very low Q values in 
this region (Furumura & Moriya 1990). It is possible to 
include an anelasticity in the time-domain computation by 
means of a simple modification of the stress-strain relation 
(Emmerich & Korn 1987; Witte 1989), although the additional 

(Y=2 km) 
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Figure 8. Synthetic velocity seismograms of the vertical component for receivers arranged 2 km from the survey line (yd = 2 km). 
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Figure 9. Synthetic velocity seismograms of 2-D modelling, which were synthesized by using a k, = 0 wavefield. 
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Figure 10. Comparison of the waveforms of the vertical velocity 
component for three distances (A=  1, 5 and 15 km), which were 
calculated by 2-D (upper trace) and 2.5-D (lower trace) modelling. 
Each trace is normalized by its maximal amplitude and the scales are 
shown on the left-hand side of each trace. 

computation of the stress-strain history requires much memory 
and time. These unknown parameters may be obtained by 
iterative forward modelling, because the amplitudes of the P 
wave depend on ,the density and Q values, as well as P-wave 
velocity, and because the later phases, such as P-to-SV con- 
verted waves and surface waves are affected most by S-wave 
velocity. 

6 CONCLUSION 

We have presented a 2.5-D pseudospectral method for comput- 
ing 3-D elastic wavefields in media varying in two dimensions. 
This method can calculate 3-D wavefields without huge com- 

ii 7 I 1 

50 

I I I I I I I 
-10 0 10 20 

Distance in km 
Figure 11. Amplitude-decay-versus-distance curve of the initial phase 
calculated by 2-D modelling (open circles) and 2.5-D modelling (solid 
circles). The amplitude measured from the low-pass-filtered seismog- 
rams are also plotted on the figure (crosses with line). Each amplitude 
of the curve is normalized at an offset of 2 km, since the absolute 
value could not be estimated from the saturated record near the shot 
point. Note that the amplitude decay curve of the 2.5-D modelling 
agrees fairly well with the observations, but the 2-D modelling usually 
overestimates the amplitude at large distance. 

puter memory requirements, since it requires storage of the 
same size as the corresponding 2-D calculations. We have 
described three kinds of schemes for the 2.5-D pseudospectral 
method: 

( 1) the scheme including complex-number operations for a 
general point source; 
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( 2 )  the scheme with real-number operations for a source 

(3) the scheme with real-number operations for a source 
which is symmetric in y ;  

which is anti-symmetric in y .  

The second and third schemes work with about half the 
memory and CPU time required by the first scheme. Since any 
kind of source can be decomposed into force systems which 
are symmetric and anti-symmetric in y and represented as a 
linear combination of them, the second and third schemes can 
also be used in the case of a source that does not have simple 
symmetry and anti-symmetry in the y coordinate. 

We have performed 2.5-D pseudospectral modelling for the 
1984 refraction survey of the southwestern foot of the Hidaka 
Mountain, Hokkaido, Japan. Since in this experiment the 
survey line was extended almost perpendicular to  the geological 
boundary, the 2.5-D configuration can be a fairly good approxi- 
mation of the actual structure. The results of 2.5-D modelling 
agreed well with the observed seismograms. Discrepancies of 
amplitude and polarity between the observed and synthetic 
seismograms can provide a constraint on the model parameters. 
In this application of the proposed method, we have employed 
the isotropic P-wave source (explosion source), but the scheme 
can be readily applied to model seismic waves excited by 
natural earthquake sources, which generally have a non- 
isotropic radiation pattern. One of the most significant advan- 
tages of the 2.5-D approach is that it is possible for us to take 
into account the 3-D radiation pattern from the source. 
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