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SUMMARY

We present a method for modelling seismic wave propagation in a whole-earth model
by solving the elastodynamic equations in 2-D cylindrical coordinates (r, h) using the
Fourier pseudospectral method (PSM). In solving the 2-D cylindrical elastodynamic
equations for a whole-earth model, a singularity arises at the centre (r=0) of the earth.
To avoid the singularity, we develop a scheme that uses extension of field variables in
the radial direction, with which computation of the wavefield at the centre is avoided,
so that the wave propagation through the centre can be calculated. The time interval
used in the calculation is determined by the smallest lateral grid spacing around the
centre in the model. In a cylindrical coordinate system, the smallest lateral grid spacing is
generally so small that the calculation is too time-consuming to be realistically carried
out even on a supercomputer. We adopt a multidomain scheme to increase the smallest
lateral grid spacing and avoid the oversampling of the physical domain around the
centre of the earth. A smoothing scheme in the wavenumber domain is also proposed,
which enables us to use a large enough time interval to allow the calculation for the
whole-earth model on a desktop workstation. The waveforms calculated by the present
method are compared with those obtained by the Direct Solution Method (DSM) to
demonstrate their high accuracy. This method significantly reduces the computer
memory and computation time required and makes it possible to study the effects
of small-wavelength heterogeneities that can be approximated as azimuthally symmetric
on wave propagation in the earth. We apply the present method to study the effects
of local heterogeneity in the earth by adding a low-velocity perturbation above the
core–mantle boundary (CMB) to the IASP91 earth model.

Key words: core, core phases, pseudospectral method, seismic modelling, wave
propagation, whole earth.

1 I N T R O D U C T I O N

With the accumulation of high-quality broad-band global

seismic data, recent studies of whole-earth structure have

revealed heterogeneity in both the radial and lateral directions

in the mantle (e.g. Hedlin et al. 1997) and at the core–mantle

boundary (CMB) (e.g. Lay et al. 1998), and anisotropy in the

inner core (e.g. Song 1997). Such discoveries have been made

from the detailed analysis of observed waveforms for a variety

of phases that propagate through, are reflected, refracted, con-

verted or diffracted due to the heterogeneity, and the associated

anomalies in traveltimes and amplitudes. Forward modelling

of seismic wave propagation in the whole earth with arbitrary

heterogeneity and the synthetic seismograms at the ground

surface are crucial in the verification and understanding of the

observed phase anomalies, further constraining the heterogeneity

derived from observations.

Modelling seismic wave propagation in the spherical whole

earth has been carried out using several methods (Alterman

et al. 1970; Li & Tanimoto 1993; Wysession & Shore 1994;

Friederich & Dalkolmo 1995). With developments in com-

puter technology and numerical simulation algorithms, recent

modelling has been performed for spherical whole-earth models

with arbitrary heterogeneity of strong velocity perturbations.

For instance, Yoon & McMechan (1995) applied the finite
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difference algorithm on a staggered grid in Cartesian coordi-

nates to simulate the wave propagation inside a 3-D whole-earth

model. They calculated the complete wavefield for a PREM

model with a bump on the CMB, to illustrate the effects of the

CMB topography on synthetic seismograms for long-period

(80 s) body waves. However, the accuracy of their calculations

was not checked by comparison with those obtained by other

methods. Igel & Weber (1995, 1996) performed simulations of

seismic wave propagation in the mantle for axisymmetric earth

models using a finite difference scheme on a staggered grid in

spherical coordinates. They studied the effect of CMB structure

on the seismograms by comparing three different velocity models

with lowermost mantle heterogeneity. Igel & Gudmundsson

(1997) extended their method to simulate SH-wave propagation

in the mantle with a depth-dependent lateral grid spacing. They

studied the frequency dependence of arrival times of long-

period S and SS waves through random upper mantle models

with specified spectral properties. Chaljub & Tarantola (1997)

used the staggered-grid finite difference scheme to study the

topography effect of the upper mantle 660 km discontinuity

on SS precursors. However, the schemes presented by Igel &

Weber (1995, 1996) and Chaljub & Tarantola (1997) were only

applied to wave propagation in the mantle, and have not been

used to simulate wave propagation through the core of the

earth. Since the lateral grid spacing decreases with depth for

models defined in spherical coordinates, there is a maximum

limit to the depth range that can be simulated for a reasonable

time interval. Cummins et al. (1997) applied the Direct Solution

Method (DSM) (Geller & Ohminato 1994; Cummins et al.

1994a,b; Takeuchi et al. 1996) to a laterally heterogeneous

spherical earth model with strong axisymmetric velocity pertur-

bations in the upper mantle of the IASP91 model, and showed

the effect of the heterogeneity on S-wave propagation in the

mantle. The Spectral Element Method (SEM) (e.g. Komatitsch

& Vilotte 1998; Komatitsch & Tromp 1999), which is very

flexible in handling free-surface topography, fluid–solid inter-

faces, anisotropy and attenuation with high accuracy has been

applied to wave propagation simulations in 3-D whole-earth

models (e.g. Chaljub & Vilotte 1998; Capdeville et al. 1999).

The Chebyshev spectral method was used by Igel (1999) to

simulate seismic wave propagation in the 3-D spherical earth

with heterogeneity in the uppermost mantle defined in spherical

coordinates, but the range of the physical domain was limited

to 80u in both the radial and lateral coordinates and 5000 km

in depth. Furumura et al. (1998) exploited a pseudospectral

method (PSM) scheme to simulate seismic wave propagation

in laterally heterogeneous whole-earth models. They solved the

elastodynamic equations for a 2-D heterogeneous earth structure

in 2-D cylindrical coordinates whose physical domain ranged

from the earth’s surface to 5315 km below the surface, including

the outer core. They applied the method to the IASP91 model

and predicted nearly all of the seismic phases in the whole

wavefield along the surface of the earth. They also applied their

method to 2-D heterogeneous models to study the anomalies

in arrival times and amplitudes of various phases caused by

heterogeneity located just below the earth’s surface and above

the CMB. Since a 2-D approximation was made, they could

simulate the whole wavefield for relatively short period (15 s) in

the entire cross-section through a great circle of the earth except

the core. This 2-D cylindrical method was used by Furumura

et al. (1999) to study the effect of stochastic heterogeneity on

seismic wave behaviour in the mantle. They compared the effects

of broad-scale and stochastic heterogeneity for a model built

from a slice through a tomographic model for the Himalayan

region. However, in this 2-D cylindrical method, the inner core

cannot be included in the model because of the singularity at

the centre of the earth and the limitation in the minimum grid

spacing related to the time interval. Therefore, the seismic wave

propagating through the inner core could not be calculated.

Thomas et al. (2000) recently presented a scheme to solve

the ‘acoustic’ wave equation in spherical coordinates for axi-

symmetric media using a high-order finite difference method.

They developed a multidomain approach to avoid the stability

problem associated with the centre of the earth, and proposed a

scheme to treat the centre of the earth in a Cartesian system

that allows the wave propagation through the whole core to be

calculated. This method was applied to an axisymmetric earth

model to simulate P-wave propagation in the whole earth and

the effects of scatterers in the earth’s lower mantle on core

phases.

In this paper, we present a method to simulate seismic wave

propagation in a heterogeneous whole-earth model including

the core using the Fourier pseudospectral method (Kosloff &

Baysal 1982; Kosloff et al. 1984). We define the model and solve

the elastodynamic equations in 2-D cylindrical coordinates. The

model is defined between 0 and 2p in the lateral (h) direction

and between the centre of the earth and the surface in the radial

(r) direction. We compare the synthetic seismograms calculated

by our method with those obtained with the DSM method.

If the results of our method are proved to be close enough to

the results given by the DSM method, we think it would be

reasonable to perform the modelling of the effect of random

heterogeneity in the whole earth using a 2-D cylindrical model

instead of a 3-D spherical model. Since use of a 2-D model will

significantly reduce the required computer memory and com-

putation time, simulations could be performed for models with

finer grid spacing for relatively shorter-wavelength seismic waves

than the full 3-D calculation. However, such a model cannot

accurately predict the scattering and focusing/defocusing effects

from out-of-plane wavefields.

To treat the whole-earth model including the core, we meet

two challenges: one of them is the singularity at the centre of

the earth where r equals zero; the other is the reduced lateral

grid spacing close to the centre, which leads to a very small time

interval for stable computation, which will cause very long com-

putation times for synthetic seismograms of reasonable duration.

For the first challenge, we develop an ‘extension scheme’ along

the radial direction in which the spatial variables are extended

and the spatial derivatives are calculated along the range of

the diameter instead of the radius. For the second one, we

adopt a multidomain scheme in which the lateral grid spacing

varies with depth and a smoothing technique in the wave-

number domain is also applied for a small region around the

centre when performing the spatial derivatives in the lateral

direction.

The spatial derivatives in both the radial and lateral directions

are calculated in the wavenumber domain by the Fast Fourier

Transform (FFT). Compared with the traditional finite differ-

ence scheme, the Fourier differential operator can achieve results

of the same accuracy with larger grid spacing, so that the

computational memory and time can be considerably reduced

(e.g. Fornberg 1987; Daudt et al. 1989; Vidale 1990). Kessler

& Kosloff (1990, 1991) presented the pseudospectral method

for solving the acoustic wave equation and the elastodynamic
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equation in 2-D cylindrical coordinates. In their method,

the derivatives along the lateral direction are calculated by the

Fourier expansion, while the derivatives along the radial

direction are calculated by the Chebyshev expansion because

it can represent the free surface accurately. Since the design

of a Chebyshev mesh that is suitable for both computational

requirements and the representation of the structural hetero-

geneity in a whole-earth model is rather difficult (Furumura et al.

1998), we use the Fourier expansion for the radial derivatives.

The accurate representation of the earth’s free surface and the

discontinuities in the whole-earth model are accomplished by

a mapping technique (Fornberg 1988; Furumura et al. 1998)

along the radial direction.

In the following sections, we will first explain the scheme for

the whole-earth modelling, the treatment of the singularity at

the earth’s centre, the multidomain approach and the smooth-

ing scheme. Next we check the accuracy of the method by

comparison of the synthetic seismograms with those obtained

by the DSM. We then show some examples in which we will

apply the method first for the IASP91 earth model to give a

complete image of seismic wave propagation in the whole earth

and then for models with strong heterogeneity located above

the CMB to see its effect on the whole wavefield.

2 E Q U A T I O N S O F M O T I O N

We consider P–SV wave propagation in a whole-earth

model. In a cylindrical coordinate system with coordinates

(r, h, z), assuming invariance in z for all fields leads to the 2-D

cylindrical equations of momentum conservation for P–SV

waves (Aki & Richards 1980),

o�ur ¼
1

r

L
Lr

ðrprrÞ þ
1

r

Lprh

Lh
� phh

r
þ fr ,

o�uh ¼
1

r2

L
Lr

ðr2prhÞ þ
1

r

Lphh

Lh
þ fh , (1)

where üp=üp(r, h, t) ( p=r, h) are the acceleration in the

radial (r) and lateral (h) directions at a gridpoint (r, h) at time t,

r=r(r, h) is the mass density, fp=fp(r, h, t) ( p=r, h) are body

forces and spq=spq(r, h, t) ( p, q=r, h) are the stress com-

ponents. The constitutive relations between the stress and the

displacement for an isotropic linear elastic solid are

prr ¼ ðj þ 2kÞ Lur

Lr
þ j

r

Luh

Lh
þ j

r
ur ,

phh ¼ j
Lur

Lr
þ j þ 2k

r

� �
Luh

Lh
þ j þ 2k

r

� �
ur ,

prh ¼ k
r

Lur

Lh
þ k

Luh

Lr
� k

r
uh , (2)

where up=up(r, h, t) ( p=r, h) are the displacement components

and l=l(r, h) and m=m(r, h) are the Lamé constants.

3 N U M E R I C A L I M P L E M E N T A T I O N I N
2 - D C Y L I N D R I C A L C O O R D I N A T E S

3.1 Physical and numerical domains

We consider a 2-D heterogeneous earth structure defined

between r=0 and 6371 km and h=0u and 360u that is a slice

cutting through the great circle of a 3-D spherical earth. To solve

the above equations for such a model, the physical domain is

discretized in the radial (r) and lateral (h) directions in 2-D

cylindrical coordinates as depicted in Fig. 1. In the lateral

direction, the field quantities g(mDh) (m=0, 1, . . . , Mx1) are

distributed with uniform angular interval Dh for given radius

r. As shown in Fig. 1, the numerical model is composed of

three subdomains with a different number of gridpoints in the

lateral direction, and therefore Dh varies for each subdomain.

The multidomain approach used here will be described in the

next subsection. In the radial direction, the quantities g(nDr)

(n=0, 1, . . . , Nx1) are distributed along grids with irregular

spacing Dr in depth that is small at the free surface and inter-

faces in the model. The varying radial grid spacing Dr is achieved

by using a mapping technique (Fornberg 1988; Furumura et al.

1998) in order to locate accurately the free surface and the

interfaces in the earth. The actual radial grid spacing Dr and

the lateral grid arc length along the radius are shown together

with the model in Fig. 1.

3.2 Multidomain approach

In a cylindrical coordinate system, with decreasing radius from

the surface to the centre, as can be seen in Fig. 1, the lateral grid

spacing (the arc length between adjacent gridpoints) decreases

very quickly since it is calculated by 2pr /M, where M is

the number of gridpoints in the lateral direction. In the case

of a single numerical domain, in which the number of lateral

gridpoints is the same for radius r, the physical area covered

by the lateral gridpoints becomes smaller from the surface

to the centre but the number of gridpoints remains the same.

This leads to oversampling of the physical domain near the

centre of the earth, and such oversampling will occupy much

unnecessary computer memory and cause extra execution time

in the calculation.

The time interval determined by the stability condition is

selected according to the smallest grid spacing in the numerical

mesh. In cylindrical coordinates, the smallest grid spacing is the

lateral one at gridpoints nearest to the centre. In the whole-

earth model including the core, radius r of the first gridpoint

next to the centre should be small compared to the minimum

wavelength in the modelling. This will cause extremely small

lateral grid spacing next to the centre and the related time

interval will then be extremely short, which means the modelling

cannot realistically be performed, as will be shown in the

following examples. Therefore, increasing the smallest lateral grid

spacing is crucial if the earth’s core is included in the model.

In order to treat the problems mentioned above, we adopt a

multidomain approach. The whole numerical domain is divided

into several subdomains with different lateral grid spacing as

shown in Fig. 1. The subdomain around the centre has fewer

lateral gridpoints and larger grid spacing compared with the

subdomain near to the surface. In the examples given in the

following sections, the total computational domain is com-

posed of three subdomains. The numbers of lateral gridpoints

are 256, 512 and 1024 for subdomains from the centre to the

surface. The lateral grid spacing decreases by half between two

adjoining subdomains. In this case, the smallest lateral grid

spacing will increase fourfold and the time interval will also

increase fourfold, and the computation time will decrease four-

fold compared with the model in which only a single domain

(1024 lateral gridpoints) is used. This multidomain method also
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samples the physical domain evenly for all the area as shown

in Fig. 1. Kessler & Kosloff (1991) used a multidomain tech-

nique in simulations of elastic wave propagation in the vicinity

of cylindrical objects in 2-D cylindrical coordinates. In their

study, the radial derivatives are solved by the Chebyshev

expansion and the adjacent subdomains are connected by the

characteristic variables of the wave equation (that is, the com-

ponents of the displacement and the stress). In our method,

the discontinuities of the field variables across the boundary

between two subdomains are connected through interpolation

of the field variables performed using the FFT. We interpolate

the field variables in the subdomains with fewer lateral grid-

points to the same number as the grid number of the outermost

subdomain and then calculate the radial and lateral derivatives.

Since the number of lateral gridpoints in each subdomain is

a power of 2 defined between 0 and 2p in the PSM method,

the interpolation using FFT is quite easily incorporated in the

scheme.

3.3 Avoiding the singularity at the centre

Eqs (1) and (2) include terms divided by r, therefore a singularity

arises at the centre where r equals zero when we consider the

whole-earth model including the core. We exploit the follow-

ing extension of field variables to avoid this singularity and

calculate the radial derivatives.

We observe the field variables defined along one diameter

in the model at h and h+p as shown in Fig. 2. Let g(r, h)

represent the field variable defined along the radial direction in

cylindrical coordinates, where g(r, h) is defined for 0jrjR

and 0jhj2p, where R is the range of the physical domain. In

order to calculate the wave propagating through the centre, we

solve the wave equations in the range xRjrjR instead of

0jrjR. To do this, we map g(r, h) defined along the radius

for 0jrjR and 0jhj2p to gk(rk, hk) defined along the

diameter for xRjrkjR and 0jhkjp. We write the discrete

form of g(r, h) along the radius as gh(i), and consider gh(i) and

gh+p(i) (i=0, 1, . . . , Nx1) distributed on the diameter (Fig. 2).

For the mapping, we reverse the order of gh+p(i) for 0jrjR at

h+p to form the first half (corresponding to xRjrk<0) of

a new array gkh( j)( j=0, 1, . . . , 2Nx1) at hk=h, while gh(i) for

0jrjR at h are put directly into the second half (0<rkjR) of

gkh( j), as shown in Fig. 2.

The radial derivatives are then evaluated for the new array

gkh( j) in the diameter range (xRjrkjR, 0jhkjp). The signs

of the radial derivative operation and some field variables are

changed on the mapping for the range 0jrjR at h+p as listed

in Table 1. The signs of ur and srh are changed because the

positive direction of r is reversed, while the signs of uh and srr

remain unchanged. The sign of the radial derivative operation

h/hr is changed due to the reversed order of the field variables.

After calculating the radial derivatives, the mapping is again

performed for the h/hr terms on xRjrkj0 at hk=h because

the following calculations using these derivatives are carried

out for the original range 0jrjR and 0jhj2p. The changes

of the signs of the radial derivatives for xRjrkj0 at hk=h are

given in Table 2. Since the signs of ur and srh changed before

taking the derivatives as shown in Table 1, the signs of hur /hr

and hsrh/hr will not change because of the sign reversal of h/hr.

The signs of uh and srr are not changed before taking the

derivatives so the huh /hr and hsrr /hr will change their signs.
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Figure 1. Configuration of the numerical model for the cylindrical whole earth. The upper left figure is the whole model with the solid lines showing

the inner–outer core boundary, CMB boundary and the surface of the earth and the dashed lines indicating the boundaries between subdomains. The

whole domain is divided into three subdomains. The grids of the shaded part are enlarged. The curves on the right show the grid spacing in both

the lateral and radial directions with depth. The dashed line for the lateral grid spacing shows the actual values after discretization, while the

corresponding solid line is the reference value used in the smoothing in calculating the lateral derivatives.
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3.4 Spatial derivatives and time extrapolation

Both of the spatial derivatives in the radial and lateral directions

are calculated by multiplication in the wavenumber domain,

and the transformation between the physical domain and the

wavenumber domain is performed by the FFT (Kosloff et al.

1984; Furumura et al. 1998). Since we use the multidomain

approach and the ‘extension scheme’ to avoid the singularity at

the centre, the calculation of the spatial derivatives and the

stress and displacement components in eqs (1) and (2) at each

time step is accomplished by the following procedures.

(i) Compute h/hh of ur and uh in each subdomain for

0jrjR, 0jhj2p.

(ii) Perform interpolation in the h-direction in the sub-

domains by FFT as mentioned in Section 3.2 to form the array

g(i, j)(i=0, 1, . . . , Nx1); ( j=0, 1, . . . , Mx1) for ur and uh,

where N and M are the number of radial and lateral gridpoints,

respectively.

(iii) Use the ‘extension scheme’ as mentioned in Section 3.3 to

map g(i, j) to gk(ik, jk) (ik=0, 1, . . . , 2Nx1); ( jk=0, 1, . . . , M/2x1),

where 2N is the number of radial gridpoints for xRjrkjR, and

M/2 is the number of lateral gridpoints for 0jhkjp.

(iv) Compute h/hrk of the mapped urk and uhk for xRjrkjR,

0jhkjp. Map the h/hrk back to h /hr terms again for 0jrjR,

0jhj2p.

(v) Calculate srr, srh and shh from ur, uh and their h/hr

and h/hh terms computed in steps (i) and (iv) over 0jrjR,

0jhj2p.

(vi) Repeat steps (i) to (iv) for srr, srh and shh.

(vii) Compute the acceleration ür, üh from srr, srh, shh and

their h /hr and h/hh terms in eq. (1) for the current time step.

(viii) Integrate the acceleration twice to obtain the displace-

ment ur, uh using the following second-order finite difference

scheme:

_unþ1=2
p ¼ _un�1=2

p þ �un
p*t ,

unþ1
p ¼ un

p þ _unþ1=2
p *t , (3)

where p=r, h, üp
n are the accelerations calculated in the current

time step in (vii) and up
n and up

n+1 are displacements at the

current and the next time step, respectively.

In the radial direction, the field variables are distributed

on irregularly spaced grids. The h /hr terms, which are first

calculated for evenly spaced gridpoints by FFT, are converted

to the values on irregular spaced grids by the mapping tech-

nique used by Fornberg (1988) and Furumura et al. (1998). The

h/hh in the h-direction are calculated in each subdomain with a

different number of gridpoints with a uniform grid spacing.

3.5 Seismic source

We calculate the wavefield excited from a point source in

2-D cylindrical coordinates that is equivalent to a line source

extending infinitely in the z-direction in (r, h, z) coordinates.

The body force corresponding to a combination of moment

tensor components Mrr(t), Mrh(t) and Mhh(t) is introduced over

Figure 2. Diagram showing the extension of field variables in the radial direction to avoid the singularity at the centre of the earth. The gh(i) are the

field variables along the radius at h for 0jrjR, and gh+p(i) are those along the radius opposite gh(i) at h+p for 0jrjR. O is the location of

the centre and R is the range of the model in the radial direction. After mapping, gkh( j) along the diameter at h are formed from the values of gh(i) and

gh+p(i) on the corresponding grids. The arrows show the positive radial directions before and after mapping (i.e. r and rk).

Table 1. The signs of field variables and spatial derivative operations

before and after mapping along the radial direction for 0jrjR at

h+p.

Field variable ur uh srr srh h/hr

Before mapping + + + + +
After mapping x + + x x

‘x’ means that the sign will change on mapping
‘+’ means that the sign will remain unchanged

Table 2. The signs of radial derivatives before and after mapping

along the radial direction for xRjrkj0 at h.

Radial derivative Lur

Lr
Luh
Lr

Lprr

Lr
Lprh
Lr

Before mapping + + + +
After mapping + x x +

‘x’ means that the sign will change on the mapping
‘+’ means that the sign will remain unchanged
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a small region of the gridpoints around the centre of the source

(r0, h0). The body force system for a moment tensor point source

in 2-D cylindrical coordinates is derived by differentiating the

equations for single point forces in 2-D cylindrical coordinates

with respect to the source coordinates (e.g. Ben-Menahem &

Singh 1981) as follows:

frðr, h, tÞ ¼ � MrrðtÞ
1

r

L
Lr

dðr � r0Þdðh � h0Þ

� MrhðtÞ
1

rr0
dðr � r0Þ

L
Lh

dðh � h0Þ ,

fhðr, h, tÞ ¼ � MrhðtÞ
1

r

L
Lr

dðr � r0Þdðh � h0Þ

� MhhðtÞdðr � r0Þ
1

rr0

L
Lh

dðh � h0Þ : (4)

The 1/r and 1/rr0 can also be replaced by 1/r0 and 1/r0
2 in a

distribution sense, because of the following property:

gðtÞdðt � aÞ ¼ gðaÞdðt � aÞ : (5)

The source expression (4) is different from that used by

Furumura et al. (1998, 1999), which did not have the factors 1/r

and 1/rr0. In this paper, the delta functions d(r) and d(h) in

eq. (4) are approximated by Herrmann’s pseudo-delta function

(Herrmann 1979), which gives a point source of unit area in

(r, h) coordinates. We also use Herrmann’s function for the

source time history.

3.6 Boundary conditions

In the whole-earth model including the core, the free-

surface boundary of the entire numerical domain only needs

to be considered in the radial direction. The free surface is

incorporated into the model by satisfying the zero traction

condition (srr=srh=0) at the surface. We adopt an ‘image

method’ to implement this condition, which was proposed

by Crase (1990) and successfully employed by Rodrigues &

Mora (1993). We add a number of gridpoints above the free

surface. srr and srh at these gridpoints are obtained by using the

anti-symmetric extension from the values on corresponding

gridpoints below the surface, while the displacement com-

ponents ur and uh are symmetrically extended from the values

at corresponding gridpoints to ensure stability (e.g. Crase 1990;

Rodrigues & Mora 1993). This scheme is different from the

‘symmetric differentiation’ that Furumura et al. (1998, 1999)

employed for the free-surface condition. Therefore, the simu-

lation can be performed stably for a long duration of seismo-

grams and the stability problem related to the free-surface

condition as mentioned by Furumura et al. (1999) does not

appear. Robertsson (1996) showed that this image method is

very accurate. In this paper, the total number of gridpoints in

the radial direction is 256, and 64 of them are located above the

free surface. The liquid outer core is treated by setting m=0.

This treatment for a liquid layer has been successfully applied

to seismoacoustic scattering problems (e.g. Bayliss et al. 1986;

Dougherty & Stephen 1988, 1991; Levander 1988; Stephen &

Swift 1994; Swift & Stephen 1994; Okamoto 1994; Robertsson

& Levander 1995; Robertsson et al. 1996; Okamoto & Takenaka

1999). We reduce the radial grid spacing at the CMB and inner

core boundary (ICB) by mapping, as mentioned in Section 3.1,

which is quite efficient in suppressing the Gibbs’ noise produced

during the differentiation calculation using the FFT at the

discontinuities (CMB and ICB), since the oscillation noise decays

exponentially as the number of gridpoints from the boundary

increases (Furumura et al. 1998). In the h-direction, the periodic

boundary condition is naturally incorporated in the calculations

from the periodicity in the FFT.

4 C O M P A R I S O N W I T H T H E D I R E C T
S O L U T I O N M E T H O D

In this section, we check the validity and accuracy of our

method by comparing our results with those obtained using the

DSM (Geller & Ohminato 1994; Cummins et al. 1994b; Takeuchi

et al. 1996), which gives exact waveforms for spherically sym-

metric media. The numerical model we used for the comparison

calculation is composed of three subdomains, as shown in

Fig. 1. The first subdomain around the centre of the earth

extends to the middle of the inner core, and the lateral grid

spacing ranges from 0.43 to 13.54 km. The second subdomain

includes part of the inner core and most of the outer core,

and the lateral grid spacing is between 7.11 and 37.30 km. The

third subdomain covers the upper part of the outer core and

the mantle and extends to the surface, where the lateral grid

spacing varies from 18.85 to 39.09 km. The radial grid spacing

changes from 28.10 km (in the inner core, at the CMB and at

the surface) to 39.10 km (in most of the mantle and the middle

of the outer core). The numbers of gridpoints in the lateral

direction for the three subdomains from the core to the surface

are 256, 512 and 1024, respectively, and 256 in the radial

direction. The source is a double-couple point source located at

a depth of 600 km with moment tensor components Mrr=x1.0

and Mhh=1.0 (the other components are all zero). The width of

the source time function is 50 s. Using the minimum S-wave

velocity just below the surface (VS=3.36 km sx1) and the

minimum S wavelength (168.0 km) for the source, the number of

gridpoints per minimum wavelength for the largest grid spacing is

4.3. The time interval Dt used in the calculation is constrained by

the ratio of the minimum grid spacing in the model and the

maximum wave velocity as

*t < a
*min

Vmax : (6)

The minimum grid spacing is 0.43 km near the centre and the

maximum wave propagation speed is VP=13.7 km sx1, so the

time interval will be 0.008 s if we use a=0.26 for a 1 per cent

tolerance error level (Daudt et al. 1989). This value of Dt is too

small for actual calculations.

In order to increase Dt, we apply smoothing in computing

the lateral derivatives. Since the grid spacing in the lateral

direction around the centre in the first subdomain is still too

small compared with the minimum S wavelength even when the

multidomain is used, we apply a low-pass filter to filter out

the high-wavenumber component when we calculate the lateral

derivatives in the wavenumber domain. For lateral gridpoints

in a circle at distance r from the centre, the Nyquist wavenumber

along the circle is

KN ¼ nr

*a
, (7)

where Da is the lateral arc length between adjacent grids. We

take a reference lateral arc length Daref, and define the cut-off
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wavenumber as

Kc ¼ nr

*aref
: (8)

When we calculate the lateral derivatives for lateral grids at r,

we filter out the wavenumber component higher than Kc and

the time interval Dt in eq. (6) is then determined by Daref

instead of Dmin. Since the Daref is much larger than the Dmin

in the model, the Dt actually used in the calculation will be

increased by an order of magnitude. The accuracy of the results

is not affected by this smoothing if the Daref is selected to be

small enough compared with the minimum wavelength in the

modelling.

In the comparison modelling, we set Daref to 14.0 km,

which leads to 12 gridpoints per minimum S wavelength.

The reference lateral grid spacing then allows a time interval

up to 0.27 s. The time interval we used in the computation is

0.25 s, which increases by about 31 times over the time interval

(0.008 s) without smoothing. In Fig. 1, the dashed line in

lateral grid spacing is the actual arc length in the model and

the corresponding solid line is the Daref that is used in the

computation to determine the time interval Dt. With 14.0 km as

the reference arc length, the smoothing in computing lateral

derivatives is actually applied to a very small physical domain

within about 570 km from the centre in the inner core. The

velocity model employed here is the IASP91 model (Kennett &

Engdahl 1991) without considering anelastic attenuation.

Since the DSM solves the equations of motion in 3-D

spherical coordinates, for comparison we map the ‘line’ source

solution obtained by our method in 2-D cylindrical coordinates

to an approximate 3-D ‘point’ source solution (e.g. Vidale

et al. 1985; Helmberger & Vidale 1988; Pitarka et al. 1994,

1996). The mapping of the seismograms is performed through

the following filter:

oðtÞ ¼ 1ffiffiffiffi
R

p 1

n
1ffiffi
t

p 1
d

dt
uPSMðtÞ

� �
, (9)

where * is the convolution operation, uPSM(t) is the displace-

ment obtained by our 2-D method for a double-couple ‘line’

source, and o(t) is the converted waveform that corresponds to

the displacement excited by a double-couple ‘point’ source. R is

the distance between the source and the observation position,

i.e. the hypocentral distance. Furumura et al. (1998, 1999) also

compared their 2-D synthetic seismograms with those obtained

by the DSM. For the comparison, they corrected only for

the difference in geometrical spreading between 2-D and 3-D

wave propagation by multiplying by a factor Rx0.5 (R is the

epicentral distance in their paper, not hypocentral distance).

Their comparisons did not show good agreement. This may be

mainly because they did not apply the correction filter for the

difference in the pulse shape between the ‘line’ and the ‘point’

source solution [(1/p)ð1=
ffiffi
t

p
Þ1ðd=dtÞ] in eq. (9).

4.1 Comparison of the complete seismograms

We calculated the synthetic seismograms at five epicentral

distances (D=30u, 60u, 90u, 120u and 150u) by our method, then

converted them to 3-D seismograms by applying the filter in

eq. (9) and compared the resulting seismograms with the 3-D

synthetic seismograms calculated by the DSM. The comparison

of the seismograms is shown in Fig. 3. A bandpass filter of

40–300 s has been applied to all the seismograms. In the radial

component ur, we see both seismograms are almost identical in

waveforms and traveltimes for all major phases. In the lateral

0

30

60

90

120

150

180

E
pi

ce
nt

ra
l D

is
ta

nc
e 

(d
eg

)

0 500 1000 1500 2000 2500
Time (s)

0

30

60

90

120

150

180
0 500 1000 1500 2000 2500

Time (s)

S SS P

sP

P’P’(ScS)

S SS

SKS
sS SS

SS

SS PKP

pPKP

PP

SP P’P’

SP

P’P’

2

radial component (u )lateral component (u )θ r

PKS

Figure 3. Comparison of synthetic seismograms for the pseudospectral method and the DSM at five epicentral distances. The observation points are

located half a grid spacing below the free surface. The thick lines are the results calculated by the pseudospectral method, and the thin lines are those

calculated by the DSM. All the seismograms are bandpass filtered between 40 and 300 s.

Modelling seismic wave propagation in the whole earth 695

# 2001 RAS, GJI 145, 689–708



component uh, most major phases also show very good agree-

ment in both waveforms and traveltimes, but there is a small

phase delay for surface multiples such as the SS phase as

observed at D=60u, 90u and 120u. This is due to the larger grid

spacing in the lateral direction near to the surface in our model.

Since the number of gridpoints per minimum S wavelength in

the h-direction is 4.3 along the surface, which is less than the six

gridpoints per minimum S wavelength in the radial direction,

the SS phase that propagates along a shallow zone below the

surface is affected by the greater lateral grid spacing just below

the surface. The phase delay grows stronger with increasing

epicentral distance. However, this could be prevented by using

finer grids in the model.

In Fig. 3, large discrepancies for some later phases between

the two methods at short epicentral distance are also seen; for

example, the PkPk at around 2342 s in ur and the (ScS)2 at about

2000 s in uh at 30u, and the PkPk between 2200 and 2500 s in ur

and uh at 60u. The amplitudes of these phases are larger than

the results by the DSM. These later phases travel very long

distances (e.g. about 25 000 km for PkPk at 30u) and a long time

in the earth, so the accumulated numerical error causes large

differences in the amplitudes of these phases.

4.2 Comparison of core phases

Since the whole core of the earth has been included in the

model, complete core phases can be calculated by this method.

In this subsection, we select some core phases at various epi-

central distances from the complete seismograms obtained by

the method described above and compare them with the DSM

results.

The PKP and pPKP phases that propagate through the inner

and outer core can be observed at epicentral distances of 116u
to 244u. In Fig. 4(a), the complete PKP and pPKP phases are

displayed between 110u and 180u. The agreement in arrival time

and amplitude between the two results is fairly good for all

epicentral distances, which suggests that these core phases can

be correctly calculated using this method. In Fig. 4(b), the Pdiff

and pPdiff phases diffracted at the CMB are displayed between

110u and 130u. Both the arrival times and the amplitudes of

these phases from the two methods coincide with each other

very well. Fig. 5(a) shows the PKS and pPKS phases between

120u and 155u, which were converted at the CMB when PK

and pPK penetrated from the outer core into the mantle. In

Fig. 5(b), the comparison of phases related to the direct S phase

are shown between 60u and 115u. The triplication of the direct

S, SKS and Sdiff occur at around 80u, while SKS and Sdiff are

observed at epicentral distances larger than 80u. The good

agreement for these phases can be seen in the lateral component

and for the SP phase in the radial component. As can also be

seen in Fig. 3, the surface multiples SS show a delay in arrival

time in the PSM results compared with the DSM results.

4.3 Comparison of surface waves

Comparisons of the Rayleigh waves excited from the 600 km

deep source in the calculations are shown in Fig. 6(a). The

calculations have been performed for seismograms of 3000 s

duration, where the surface waves can be seen up to an epi-

central distance of 90u. In Fig. 6(a), the Rayleigh waves between

10u and 90u are displayed by superimposing the PSM results

onto the DSM results. We see that both the amplitudes and the

arrival times of the Rayleigh waves are nearly identical for the

two results up to 80u, and show discrepancies at 90u. This

suggests that the free-surface condition used in our method

can calculate the Rayleigh waves correctly for an epicentral

distance less than 90u for a 600 km deep source in this model.
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Since a distribution source in space is used in the model

(see Section 3.5), the shallowest source depth we can set in the

numerical model described in the beginning of this section is

85 km. In order to compare the surface waves excited from a

shallower source, we calculated the synthetic seismograms for a

170 km deep source. All other parameters and the numerical

model for the calculation are the same as used in the previous

calculation. Fig. 6(b) shows the complete seismograms between

10u and 90u in which the PSM and DSM results are super-

imposed. We see again that the Rayleigh waves in the lateral

component (uh) are nearly identical for all epicentral distances.

However, the amplitude of Rayleigh waves in the radial com-

ponent (ur) shows a large difference between the two methods.

This means that the accuracy of the surface waves calculated
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for a shallower source is degraded using the present model.

In order to calculate accurately the surface waves using this

method, it is necessary to reduce the grid spacing at the free

surface in the model (e.g. Rodrigues & Mora 1993).

Much shallower sources, e.g. 20 or 30 km deep, can also be

implemented in the model by reducing the grid spacing, but the

computation time for such shallow source models will be too

long to be carried out on a desktop workstation. The major

advantages of this method are that the centre and the inner core

can be included in the whole-earth model, so that the whole

wavefield can be calculated. Since we mainly focus on the core

phases that propagate through the inner and outer core of the
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earth, a 600 km deep source that allows the P and SV waves

to be directly radiated into the mantle with a clear separation

from the depth phases reflected at the free surface is used in this

paper. For the same reason, a deep source (600 km) was also

used by Furumura et al. (1998). Because for such a deep source

even surface waves can be correctly calculated using the present

model (Fig. 6a), we will use the whole wavefield and the com-

plete seismograms obtained by this method to show the effects

of arbitrary heterogeneities on seismic wave propagation in the

following sections.

The above comparisons for core phases, surface waves

and the complete seismograms suggest that it is possible to

simulate the wavefield in a 3-D whole spherical earth model

with reasonable accuracy by using the method we developed

for a 2-D cylindrical earth model. By using the 2-D method,

we can significantly reduce the required computer memory

and computation time for the whole-earth modelling, especially

when we wish to simulate seismic wave propagation in the

whole earth with arbitrary heterogeneous structures that can

be approximated as azimuthally symmetric. Since singularities

arise at pole axes h=0 and p when we solve the equations of

motion in 3-D spherical coordinates, it might be difficult to

calculate the wavefield around these positions. In 2-D cylindrical

coordinates, by avoiding the singularity at the centre of the

earth, we can efficiently calculate the whole wavefield for a

360u earth, and obtain a clear image of the wave propagation in

the whole earth, which is very helpful in understanding the full

process of the whole wavefield evolution.

5 W A V E F I E L D A N D S Y N T H E T I C
S E I S M O G R A M S F O R T H E I A S P 9 1 M O D E L

In this section, we apply the method to the IASP91 model

(Kennett & Engdahl 1991) to simulate wave propagation

and the motion at the surface for a 2-D cylindrical radially

heterogeneous earth. The results are presented as sequential

snapshots of the wavefield and synthetic seismograms along the

surface.

The numerical model used in this simulation consists of three

subdomains, and the grid numbers in the radial and lateral

directions in each subdomain are the same as in the model used

in the last section. The source is a double-couple line source

located at 600 km depth with moment tensor components

Mrr=x1.0 and Mhh=1.0. The time history of the source is

a Herrmann function with a pulse width of 30 s. The number

of gridpoints per minimum S wavelength for the maximum

grid spacing in this model is 2.58, and Daref is 14.0 km, which

allows a time interval Dt=0.25 s. The total number of time

steps calculated is 12 000 for synthetic seismograms of 3000 s

duration.

The anelastic attenuation of the medium is incorporated in

the calculation by using the following attenuation coefficients

given by Graves (1996):

Aðr, hÞ ¼ exp½�nf0*t=Qðr, hÞ� , (10)

where Q is the anelastic attenuation factor for a reference

frequency f0. In the calculations, these coefficients are multi-

plied by the values of stress and velocity at each gridpoint at

each time step (Furumura et al. 1998). The Q used here is then

strongly frequency-dependent, although a flat Q may be pre-

ferred in global wavefield modelling. We use this scheme in this

calculation because it requires little computer memory and

computation time. The QP /QS effect can also be separately

included in the calculation by following the recent studies of

Hestholm (1999), Hestholm & Ruud (2000) and Olsen et al.

(2000). Efficient implementation of such new techniques will be

the subject of a future study.

5.1 Wavefield snapshots

In Fig. 7, the sequential wavefield snapshots at 16 time steps

are displayed in order to show the generation and propagation

of various seismic phases in the earth. The P and SV waves

are represented by red and green colours, respectively, and the

contributions from P and SV waves are calculated from the

divergence and curl of the wavefield:

P :

���� 1

r

LðrurÞ
Lr

þ 1

r

Luh

Lh

���� ,

SV :

���� 1

r

LðruhÞ
Lr

� 1

r

Lur

Lh

���� : (11)

The sequential wavefield snapshots give us a clear image of the

history of seismic wave propagation inside the whole earth

radiated from a double-couple source. They are very helpful

tools in identifying the generation and evolution of various

phases and showing clearly the relative amplitude of each phase

at various epicentral distances.

In the frames at 300 and 450 s, artefacts can be seen prior

to the arrival of PKI at the centre of the earth. This is caused

by the accumulation of very weak noise on gridpoints at the

centre. As shown in Fig. 1, the 256 lateral gridpoints are almost

located at the same position and the background noise is

enhanced more than 200 times, which is clearly visible at the

centre. This artefact can be seen in all the following snapshots,

which could be reduced by reducing the number of gridpoints

around the centre in the display.

At 600 s, the core phase PK propagates in the outer core

and PKI travels through most of the inner core, while pPK and

SK reach the inner core. P, pP, sP, S, pS and sS propagate in

the mantle with clearly separated wavefronts, and Pdiff and

pPdiff diffracted at the CMB propagate in the lower mantle. In

the upper mantle, the surface multiple PP travels with strong

energy. At 750 s, PKIK transmits through the inner core into

the outer core and pPKI propagates in the inner core. pS and sS

penetrate into the outer core and convert to the core phases

pSK and sSK. In the mantle, ScS approaches the surface, the

sScS phase is generated at the CMB, and the conversion SKS

appears near the CMB. In the uppermost mantle, both P and S

surface multiples travel with strong energy. At 900 s, PKP and

PKIKP propagate out of the core and into the mantle, and PKS

is generated at the CMB when PKP transmits from the core

into the mantle. pPK and pPKIK propagate in the outer core.

The SKK phase, the internal reflection of SK at the CMB,

propagates along the CMB in the uppermost outer core. In the

mantle, Pdiff arrives at the surface, and the P and S surface

multiples and reverberations within the upper mantle cause a

very complex wavefield pattern. SKS and Sdiff are propagating

within the lower mantle, and the weak CMB reflection sScS is

also visible.

In the last three frames at 600, 750 and 900 s, the PKJ and

pPKJ phases with very weak shear wave energy converted from

PK and pPK at the inner–outer core boundary can be seen
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clearly in the inner core. Since the wavefront of PKJ is con-

nected to that of PKI at the inner–outer core boundary and

the connection points of the wavefronts run faster than the

wavefront of PKJ inside the inner core, the wavefront of PKJ

inside the inner core gradually grows to a shape with a

reversed convex to that of PKI, as displayed in the frame at

600 s. The wavefront of PKJ has a similar shape to that of PKI

only for a short time after PKI propagates into the inner core.

Figure 7. Sequential snapshots at 16 time steps showing the generation and propagation of various phases in the whole-earth model. The source is a

600 km deep double couple and the velocity model is the IASP91 earth model. The red and green colours represent P and S waves, respectively. All the

frames are shown in the same colour scale, the dense colours indicating larger amplitude. Solid circles are the free surface, the 660 km discontinuity,

the CMB and the inner–outer core boundary.
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The PKJ phase then advances in the inner core with the wave-

front convex upwards as shown in the frame at 750 s. In the

lower half of the inner core, the upward-propagating PKIJ

reflected at the inner–outer core boundary has a similar shape

of wavefront to PKI. At 750 s, PKIJ is overlapped by the

wavefront of a strong pPKI but can be identified with care,

while the wavefronts of PKJ and PKIJ form a ‘circle’-shaped

wavefront in the lower half of the inner core. The situation

of pPKJ is similar to that of PKJ, which is clearly visible in

frames at 750 and 900 s. The ‘circle’-shaped wavefront formed

by downward-propagating pPKJ and upward-propagating

pPKIJ is very clear in the frame at 900 s. Until now, there have

been no confirmed reports of the identification of the PKJKP

phase, which propagates through the mantle and outer core

as a compressional wave but traverses the inner core as a

shear wave. The difficulty in detecting PKJKP is caused by the

inefficiency of P-to-S and S-to-P conversions at the inner–

outer core boundary. In a very recent paper, Deuss et al. (2000)

reported the identification of pPKJKP and SKJKP from two

deep earthquakes (the 1996 June 17 Flores Sea event at 584 km

depth and the 1994 June 9 Bolivia event at 647 km depth) in

long-period observations (20–30 s). The wavefield snapshots of

the whole earth presented here provide us with a clear image to

‘see’ the generation and propagation of these shear waves in the

inner core.

5.2 The synthetic seismograms

The synthetic seismograms at the earth’s surface are displayed

on a reduced timescale extending to 1800 s in Fig. 8. In the

lateral component, we see the S phase with large amplitude,

the clear core reflection ScS, the SKS and the triplication

of these phases at around 80u. Surface multiple (ScS)2 can

be clearly seen extending to between 120u and 140u between SS

and SSS. Other core reflections such as PcS and sScS can also

be clearly discerned. S and its surface multiples SS and SSS

extending to large range with high amplitude are prominent

features in the lateral-component seismograms. In the radial

component, the first major phase is P with large amplitude

up to about 100u, followed by a superposition of pP and PP

with large amplitude between 30u and 50u. SP is clear after

S and Sdiff extending in a wide range between 40u and 130u.
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Figure 8. Synthetic seismograms at the earth’s surface up to an epicentral distance of 180u shown in a reduced timescale extending to 1800 s. The

source is a 600 km deep double couple and the velocity model is the IASP91 earth model. Major phases are marked.

Modelling seismic wave propagation in the whole earth 701

# 2001 RAS, GJI 145, 689–708



Core-diffracted Pdiff is visible beyond 100u up to 120u. Various

branches of core phases PKP and pPKP can be seen beyond

120u, and PkPk is visible between 65u and 85u.
Fig. 9 shows the core phases in the radial component excited

from a 600 km deep explosion source for the same model as in

Fig. 8 together with the ray-theoretical arrival times of these

phases for the IASP91 model. Since the whole core is included

in the model, we can obtain the complete seismograms for

various branches of core phases between epicentral distance of

116u and 244u. Fairly good agreements in arrival times can be

seen for all the core phases compared with the ray-theoretical

traveltimes. Around 144u and 216u, the triplications of the PKP

branches have large amplitudes. The triplications with large

amplitudes can also be seen for pPKP branches around 148u
and 212u. The core-diffracted branches AB of PKP and pPKP,

which propagate down into the core rather than up into the

mantle, extend well over their ray-theoretical limits of 170u
and 179u, respectively. This was observed by Shearer (1991) for

global body wave phases by stacking the long-period GDSN

seismograms.

The diffracted PKP phase can be seen in long-period seismo-

grams and arrives before the PKP(DF) branch. In Fig. 10, we

enhance the amplitude of the seismograms in Fig. 9 to show the

phases around the triplication at 144u from 1000 to 1250 s and

between 125u and 180u. The PKPdiff can be clearly seen ahead

of PKP(DF) between 130u and 144u. In the acoustic simulation

of P-wave propagation in an axisymmetric whole-earth model

by Thomas et al. (2000), the PKPdiff phase with a dominant

period of 11 s is calculated for a source at a depth of 192 km.

Comparing our results with their results, we see that PKPdiff is

more pronounced in this simulation with a source time function

of 30 s width. The waveforms of PKPdiff and the following

PKP(DF) overlap in these long-period seismograms but are

clearly separated in the short-period results of Thomas et al.

(2000).

We also calculated the complete synthetic seismograms for a

shallower source located at a depth of 170 km using the same

model as in Fig. 8. The synthetic seismograms are displayed in

Fig. 11, where both the time and the amplitude scales are the

same as those used in Fig. 8. Comparing Fig. 11 with Fig. 8, we

find that the seismograms for the shallow source are dominated

by Rayleigh waves and surface multiples that propagate along

a shallow zone below the surface. The arrival times for core

phases PKP and PKS are very close to those for pPKP and

pPKS, respectively, so it is difficult to have a clearly separated

waveforms for these core phases. Since this paper mainly

focuses on the complete core phases in the whole wavefield,

we prefer to use the results from the deep source (600 km)

to show the whole wavefield evolution as in the snapshots in

Fig. 7 and the effects of arbitrary heterogeneities as shown

in the examples in Section 6.

6 E X A M P L E S F O R M O D E L S W I T H
H E T E R O G E N E I T Y A B O V E T H E C M B

In recent years, detailed studies of broad-band waveforms for

various secondary phases reflected, refracted or diffracted from

the CMB have revealed the structures of velocity perturbations

above the CMB and its topography (e.g. Lay et al. 1998). In this

section, we apply our method to models including a velocity

perturbation zone just above the CMB to examine the wave-

field anomalies caused by the heterogeneous structure. Although
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Figure 9. Core phases in the radial component at epicentral distances from 116u to 244u for an explosion source at a depth of 600 km. The solid

curves show ray-theoretical arrival times for the IASP91 model. Each branch of the core phases is marked.

Figure 10. Core phases in the radial component at epicentral distances

from 125u to 180u for an explosion source at a depth of 600 km. The

dashed line shows the PKPdiff, which is diffracted at the CMB and

arrives before PKP(DF). The solid curves show ray-theoretical arrival

times for the IASP91 model.
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recent studies of CMB structure were usually performed by

using short-period seismograms to locate the relatively short-

wavelength heterogeneity (e.g. Ritsema et al. 1998; Vidale &

Hedlin 1998), we carry out the modelling for a large-scale

heterogeneity for long-period body waves in order to obtain a

clear picture of the wavefield variations inside the perturbation

zone. The mechanism of the double-couple line source is the

same as used in the previous modelling and the source time

history is a Herrmann function with a pulse width of 30 s.

The source depth is 600 km. The numerical model is also the

same as used in the previous modelling. The same anelastic

attenuation coefficients as used in the last section are employed

in these examples. The ellipse-shaped velocity perturbation zone

extends 2400 km along the CMB and up to 600 km into the

mantle with a 5 per cent reduction in both P- and S-wave

velocities.

6.1 Example 1

In this example, the centre of the velocity perturbation zone is

located 60u from the epicentre. In Fig. 12, the wavefields inside

and around the low-velocity heterogeneity are displayed at four

time steps for both models—including the velocity pertur-

bation and without the perturbation. At 600 s, Pdiff can be

seen propagating more slowly when the low-velocity zone is

introduced in the model than in the laterally homogeneous

model, pP, sP are travelling inside the heterogeneity and S

and ScS have just entered this zone. At 750 s, the sPdiff is

seen propagating slowly with larger amplitude in the laterally

heterogeneous model. The SKS phase appears inside the low-

velocity zone, and both SKS and ScS there have larger

amplitude for the laterally heterogeneous model, and the pS

phase approaches the low-velocity zone. At 900 s, it can be

clearly seen that SKS and Sdiff are propagating more slowly,

with larger amplitude in the laterally heterogeneous model. The

pS phase is propagating inside the low-velocity zone without

visible change and sS and sScS approach this zone. At 1050 s,

we see that pSdiff propagates slowly with larger amplitude in the

laterally heterogeneous model and sSdiff is travelling in the low-

velocity zone more slowly with larger amplitude than in the

laterally homogeneous model. These snapshots give us a clear

image of the effects of the low-velocity zone above the CMB

on the features of various phases propagating through it. In

these snapshots, ‘trapped’ S-wave energy just above the CMB
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Figure 11. Synthetic seismograms at the earth’s surface up to an epicentral distance of 180u shown in a reduced timescale up to 1800 s. The source is a
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Figure 12. Snapshots at four time steps showing the effects of the low-velocity perturbation on the wavefield. The velocity perturbation, which is indicated by the ellipse-shaped dashed curve, extends

2400 km along the CMB and 600 km up to the lower mantle. Its centre is located at epicentral distance of 60u. Both P- and S-wave velocities are 5 per cent lower than the IASP91 model in the perturbation

zone. Red and green colours represent P and S waves, respectively. Major phases are marked.
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can be seen, which is an artefact associated with the fluid–

solid boundary condition. This is the ringing effect due to

the Fourier transform at the discontinuity at the CMB. This

artefact decays very quickly in the radial direction and does not

propagate into the mantle and the outer core, so it does not

affect the core phases, as shown in Section 4.2.

The differential seismograms obtained by subtracting the

results for the model with velocity perturbation from those

without perturbation are shown in Fig. 13. In both the lateral

and the radial components, the anomalies of S, ScS and SKS

phases are prominent around the triplication at around 80u.
Delayed arrival times can be seen for ScS between 60u and

80u, for S over 80u and for SKS between 80u and 100u. The

strong anomalies can also be seen within the range where the

depth phases sS and pS and the core phases sSKS and pSKS

have little arrival time difference. In the radial component, the

anomalies for P and Pdiff can be seen between 75u and 120u and

for pP and pPdiff between 80u and 125u. The differential seismo-

grams show the complete wavefield anomalies caused by the

low-velocity zone above the CMB. By studying these features,

we may perform a detailed analysis of waveforms at certain

epicentral distances in order to look for quantitative relations

between velocity perturbations and anomalies in arrival times

and amplitudes. The differential traveltimes between S, ScS

and SKS have been used for locating the spatial distribution of

velocity perturbations in the lower mantle (e.g. Ritsema et al.

1998).

6.2 Example 2

In the next example, we put the centre of the low-velocity zone

at an epicentral distance of 130u to investigate the effects of

the velocity perturbation on the core phases. Precursors to the

PKP phase in high-frequency seismograms (up to 2.5 Hz) have

been used for identifying a low-velocity region above the CMB

(e.g. Vidale & Hedlin 1998). However, this modelling provides

us with the wavefield anomalies caused by the low-velocity

region in the long-period range. The differential seismograms

in the radial component are displayed in Fig. 14. The delay of

arrival times for various branches of PKP and pPKP can be

seen clearly between 140u and 150u. The largest delay of arrival

time occurs between 144u and 150u for both PKP and pPKP.
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The arrival time delay for PKP(AB) and pPKP(AB) is visible

for epicentral distances greater than 180u. The PKPdiff close to

144u ahead of PKP(DF) is seen to be affected strongly by the

heterogeneous zone, and the anomaly of this diffracted phase is

visible between 135u and 144u.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have developed a method for modelling the seismic

wave propagation in a whole-earth model by using the Fourier

pseudospectral method. With this method, we can simulate

the complete wavefield in a 2-D cylindrical whole-earth model

with arbitrary heterogeneity. The examples for the IASP91

model and models with a velocity perturbation above the CMB

show that the features of wave propagation and the effects of

heterogeneity on various seismic phases can be clearly seen with

sequential snapshots and differential seismograms.

The model used in this method is defined in 2-D cylindrical

coordinates rather than as a 3-D spherical earth model. How-

ever, the waveforms excited in the 2-D cylindrical model from a

‘line’ source can be mapped to the corresponding waveforms in

a 3-D model from a ‘point’ source. The comparison simulations

carried out in the previous sections show very good agreement

between the 3-D results and the mapped 2-D results, except for

a slight difference between a few phases caused by the large grid

spacing. The agreement between them would be improved if we

used finer grids in the model. For surface waves from a shallow

source as shown in Fig. 6(b), it is necessary to use a much finer

grid spacing below the free surface to ensure accuracy. The

comparison suggests that it is possible to simulate the wave-

field in a 3-D spherical earth model by using a 2-D cylindrical

model. This will significantly reduce the computer memory and

computation time required when we perform forward modelling

for whole-earth models to understand the full process of wave-

field evolution, especially when short-wavelength arbitrary

heterogeneity is included in the model. The merit of the 2-D

cylindrical modelling is that we can calculate the whole wave-

field for a 360u earth with arbitrary heterogeneity in order to

study the effects of the heterogeneity on the whole wavefield,

although the heterogeneity is limited to the great circle cross-

section. However, the scattering and focusing/defocusing effects

from out-of-plane wavefields cannot be accurately predicted

in a 2-D cylindrical model. This method is useful for models in

which the heterogeneity can be approximated as azimuthally

symmetric.

The problems related to the centre of the earth are also

present in the 3-D spherical whole-earth model, and the

‘extension scheme’ we proposed to avoid the singularity at the

centre, the multidomain technique and the ‘smoothing scheme’

to increase the time interval are also useful for a 3-D spherical

model including the centre. The schemes we presented in this

method can be directly extended to the 3-D case in order to

solve the problems related to the centre of the earth.

Recent studies of the earth’s structure have been performed

in a high-frequency range (period less than 20 s) (e.g. Hedlin

et al. 1997; Vidale & Hedlin 1998; Ritsema et al. 1998)

to investigate short-wavelength heterogeneity. Therefore, it is

desirable to simulate the effects of small-scale heterogeneity

in the earth on the short-period global wavefield. In this paper,

we calculated the wavefield for a dominant period of 30 s. The

simulation required 76 Mbyte memory in a single precision calcu-

lation with a CPU time of 7.8 hr on a DEC Alpha workstation

‘au500’ (500 MHz clock speed) for a 3000 s duration of wave

propagation. The method can be used for modelling in the

high-frequency range, but the required computation time will

be much longer. For a dominant period of 7.5 s, the CPU time

for calculation will be about 1300 hr using the same workstation,

which is unreasonably long. Therefore, further improvement to

reduce the computation time is necessary to apply the method

to the high-frequency range.
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