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ABSTRACT: We studied the source process of the Wenchuan earthquake using not only 
teleseismic waveforms observed by FDSN/IRIS but also strong motion waveforms 
observed by the Institute of Engineering Mechanics of the China Earthquake 
Administration. We first defined a two-segment source fault according to surface rupture 
investigations and the aftershock distribution by the United States Geological Survey. 
The southern and northern segments were given similar strikes, but different dip angles 
based on the results of point sources analyses.  We next carried out a finite source 
inversion of the teleseismic waveform data. The result of this inversion indicates MW 7.9, 
the maximum slip of about 9 m, and two asperities in the southern and northern segments. 
The southern asperity is much stronger than the northern one. Mostly reverse faulting 
occurred up to 60km from the hypocenter, but strike slips are dominant beyond 60km. 
Significant slips appear in a 250 km long region (10,000 km2) of the source fault. These 
length and area are close to the averages for MW 7.9 low-angle reverse-faulting 
earthquakes. We then performed a joint inversion of both the teleseismic and strong 
motion data. The result of the joint inversion still keeps similar features to those found in 
the result of the inversion of the teleseismic data only. We can also find some 
discrepancies such as strike-slip components in the southern asperity and shallow slips in 
the southern segment. The detailed structures of the asperities are shown in the result of 
the joint inversion. The strong motion records closest to the source fault mainly consist 
of the ground motions from the southern asperity and the slips around the hypocenter. 
They overlap each other because of the rupture velocity nearly equal to the S-wave 
velocity, resulting in strong directivity effects at the end of the southern segment. Heavily 
damaged towns such as Yingxiu and Beichuan and the zones of seismic intensity XI were 
located just above the southern asperity or at the end of the southern segment. 
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* Parts of this report were taken from a paper submitted to “International Conference on Earthquake 
Engineering for the 1st Anniversary of Wenchuan Earthquake.” 
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INTRODUCTION 
 
The 2008 Wenchuan earthquake of MW (moment magnitude) 7.9 occurred in eastern Sichuan, China at 
6:28UT on May 12, 2008, causing 69,226 fatalities, 17,923 missing and 374,643 injuries (as of 
September 18, 2008). The economic losses have reached 845,100,000,000 yuan. To estimate the 
source process of this earthquake, we observed the locations of surface ruptures and determined the 
source fault. We then inverted teleseismic records in the world and a few strong ground motion records 
in the source region. We next compared the resultant slip distribution to the distributions of aftershocks, 
geological structures, seismic intensities, and peak ground accelerations.  
 
 

SURFACE RUPTURES AND AFTERSHOCK DISTRIBUTION 
 
The Longmen Shan thrust belt consists of three fault zones (Wenchuan-Maowen, Yingxiu-Beichuan, 
and Guanxian-Anxian). Since surface ruptures often appear on the ground surface for a crustal 
earthquake such as the 2008 Wenchuan earthquake, we can estimate the location of its source fault 
from the locations of these surface ruptures. Surface ruptures were observed by Japanese societies 
reconnaissance teams and Hao et al. (2008a, b). Another was found in ALOS PRISM images by 
Koarai et al. (2008) (Fig. 1). 
 

 
Fig. 1  Locations of surface ruptures observed by the Japanese societies reconnaissance teams and 
Hao et al. (2008a, b), and Koarai et al. (2008). Black lines denote active fault traces identified by 
Kirby et al. (2003), Burchfiel et al. (1995), and Densmore et al. (2007). The meshed rectangles 
represent the source fault model. 
 

We also examined the distribution of aftershocks determined by USGS (Fig. 2) and the result of 
point sources analyses by the method of Kikuchi and Kanamori (1991) (Fig. 3). Based on these 
observations and analyses, we then constructed the source fault model shown in Figures 1 and 2 such 
that the upper sides of the fault rectangles are aligned along the lines connecting the sites of surface 
ruptures.   
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Fig. 2  Distribution of aftershocks (brown circles) and the hypocenter (pink star) determined by 
USGS. The surface ruptures and active fault traces overlie or underlie them. The meshed rectangles 
represent the source fault model. 
 

 
 

Fig. 3  Results of the point sources analyses by the method of Kikuchi and Kanamori (1991). Two 
point sources were obtained in the southern part with low-angle dip slips, while the third point source 
was located in the northern part with a high-angle strike slip. 
 

 
Fig. 4  Stations observing the teleseismic waveforms used in the inversions. 
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INVERSION OF TELESEISMIC DATA 
 

We then carried out a finite source inversion of the first 140 s of the teleseismic waveforms (Fig. 
4) using the Green’ s functions of Kikuchi and Kanamori (1991) and the inverse algorithm of Yoshida 
et al. (1996) with modifications by Hikima and Koketsu (2005). We also used the location of the 
hypocenter determined by USGS as a rupture initiation point. 

The inversion achieved the agreement shown in Figure 5. Its results indicate a seismic moment of 
1.0 x 1021Nm (MW 7.9) and the maximum slip of about 9 m. In the resultant slip distribution (Fig. 6), 
significant slips occurred in an area of 250 x 40 = 10,000 km2 (this is about an average; Fig. 7). There 
are mostly reverse faulting slips up to 60 km from the hypocenter, while there are mostly strike slips 
beyond 60 km. There is one asperity on each half. The southern asperity is much stronger and larger 
than the northern one. These asperities look surrounded by the aftershocks, as shown in Fig. 8. 

 

 
 Fig. 5  Comparison of observed and synthetic waveforms from the inversion of teleseismic data. 
 
 

 
 

Fig. 6  Resultant slip distribution by the source inversion of the teleseismic waveforms. 
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Fig. 7  Scaling of rupture areas with respect to seismic moment. 
 
 

 
 

Fig. 8  Projection of the slip distribution onto the ground surface and the distribution of aftershocks. 
 
 

JOINT INVERSION OF TELESEISMIC AND STRONG MOTION DATA 
 
We next introduced the strong motion records observed at six stations close to the source region (Fig. 
9). These data were published in Supplement of Vol. 28 of Journal of Earthquake Engineering and 
Engineering Vibration in October of 2008. We performed a joint inversion of them and the teleseismic 
data used in the previous section. The Green’s functions were calculated by the extended reflectivity 
method of Kohketsu (1985). 

The slip distribution (movements on the northwestern hanging wall) obtained by this joint 
inversion is shown in Fig. 10. Fig. 11 shows its projection onto the ground surface, associated with the 
aftershocks and active fault traces. The comparison of Figs. 10 and 11 with Figs. 6 and 8 for the 
inversion of strong motion records only suggests the detailed structures of the asperities such as the 
shape of the southern asperity, though the seismic moment and MW are almost unchanged. We can also 
find some discrepancies such as strike-slip components in the southern asperity and shallow slips in 
the southern segment. 
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Fig. 9  E-W components of the strong motion records observed at the six stations close to the source 
region (turquoise triangles). The yellow star denotes the rupture initiation point (hypocenter). 
 

 
Fig. 10  Resultant slip distribution by the joint inversion of the teleseismic and strong motion 
waveforms. 
 

 
Fig. 11  Projection of the slip distribution in Fig. 10 onto the ground surface and the distribution of 
aftershocks. 
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GROUND MOTIONS 
 
The strong motion records closest to the source fault mainly consist of the ground motions from the 
southern asperity and the slips around the hypocenter. They overlap each other because of the rupture 
velocity (Vr) nearly equal to the S-wave velocity (VS). Heavily damaged towns such as Yingxiu and 
Beichuan and the zones of seismic intensity XI determined by the Institute of Engineering Mechanics 
(IEM; Fig. 12) were located just above the southern asperity or at the end of the southern segment. The 
Vr nearly equal to VS resulted in strong directivity effects and these caused the damaging ground 
motion at the end of the southern segment, as shown in Fig. 13.  
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Figure 12  Distribution of seismic intensities. 

 
 

 
 

Fig. 13  Section of vertical velocity seismograms. 
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ATTENUATION RELATIONS 
 
In order to study the attenuation of strong motions during the 2008 Wenchuan earthquake (MW 7.9), 

we finally considered 54 triaxial accelerograms, recorded at distances shorter than 150 km. The main 

reason for this selection criterion is due to the fact that far-field records, due to their large 

source-to-site distances, are of low engineering significance (Ambraseys et al., 2005). In addition such 

records may perturb the data distribution because instruments far from the earthquake will only trigger 

for large-amplitude ground motions, and the regression results may thereby be biased (Fukushima, 

1997; Fukushima and Tanaka, 1990). The distribution of selected strong motion stations is shown in 

Fig. 14.  

A fourth-order acausal Butterworth filter is used to adjust the baseline as well as to reduce the 

noise in the selected accelerograms. The Peak Ground Acceleration (PGA) as well as Peak Ground 

Velocity (PGV) values of horizontal components are then determined from the processed 

accelerograms. In order to estimate the corresponding fault distance for each recording station we 

considered the fault-plane geometry mentioned in the previous sections. The surface projection of the 

considered fault-plane is shown in Fig. 14. The final functional form selected to describe the 

attenuation of PGA and PGV with distance is: 
(0.42 )

10 1 2 10 3log log ( 10 )MY a a R R a= + − +  

Where  is the predicted PGA ( ) or PGV ( ), R is the fault distance in , M is the 

moment magnitude of the Wenchuan event (MW 7.9), and  are the regression coefficients. In 

the assumed model the addition of the term (0.42 )
4( 10 )Ma  to R  in the geometrical spreading term 

allows the amplitude saturation in the near-fault region to be expressed (Fukushima et al., 2003). The 

functional form adopted here requires both linear and nonlinear parameters to be determined. We take 

advantage of the equation’s separable structure to apply an efficient, robust solution technique:  

accordingly, a direct search technique known as the Nelder-Meade algorithm is used to search for 

values of the nonlinear parameters that minimize the norm of residuals. At each step of the search 

process, the linear parameters are estimated via maximum likelihood estimation by maximizing the 

log-likelihood function over the estimation parameters (Joyner and Boore, 1993).  

Fig. 15 and Fig. 16 show the comparison between predicted and observed PGA and PGV values, 

respectively. The scatter plots of the residuals with respect to distance for PGA and PGV are shown in 

the second and third rows of Fig. 15 and Fig. 16, respectively. The thick solid lines in these graphs are 

the best-fitting least-squares lines, calculated in order to detect any possible trends in the distribution 

of the residuals with respect to the explanatory variable (distance R). The model parameters for the 

fitted lines and their 95% confidence intervals are calculated and are not significantly different from 

zero at the 5% significance level and hence the null hypothesis that the residuals are dependent on 
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distance can be rejected at these periods. In Fig. 17 the observed PGA values as well as several curves, 

presenting predictions made by several attenuation models, are shown.  As can be seen models 

developed by Kanno et. al (2008) and Si and Midorikawa (2004) based on Japan strong motion data, 

overestimate PGA while other models, namely Boore and Atkinson (2008, for California), Fukushima 

et al. (2003, for West Eurasia), and Ghasemi et al. (2009, for Iran) underestimate PGA at most of the 

distance range; However the latter models, on average, seem to be in better agreement with observed 

points than those developed for Japan.  
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Fig. 14.  Distribution of the selected recording stations and the source fault model. 
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Fig. 15 Comparison between predicted PGA for the derived attenuation model and observed PGA 
values. The dashed lines indicate +1 and -1 standard deviations. The distribution of residuals between 
the observed and predicted accelerations with respect to distance is also shown.  
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Fig. 16 Comparison between predicted PGV for the derived attenuation model and observed PGV 

values. The dashed lines indicate 1±  standard deviation. The distribution of residuals between the 

observed and predicted accelerations with respect to distance is also shown. 
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Fig. 17. Comparison of median PGA predicted from several attenuation models, and proposed model 

in this study (dashed solid line). The observed data are shown by circles. 
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