Stress Corrosion Cracking (Sub-Critical Crack Growth) and its Implication for Slow Slip

Osam SANO

Cracks grow slowly even under critical state of stress, known as sub-critical crack growth.

$$[\equiv Si-O-Si\equiv] + H_2O \rightarrow \equiv SiOH + HOSi\equiv$$
$$V \propto K_1^n \exp(-E/kT)$$
$$V \propto \exp[-(E - \alpha K_1)/kT]$$
PURPOSE: 10⁻¹¹m/s or lower

Three years are required for extension of one meter under constant velocity of 10^{-8} m/s. As K is proportional to the square of crack length, dc/dt will be accelerated.

Scaling? C_{max} for 10 MPa is 0.02 m. Is it OK? C_{max} for 100 hPa is 19 km... $Gc = 60 \sim 100 \text{ J/m}^2$ for observed Kc. 82 days for $C_0=1m$, $dC_0/dt=1e^{-8}$ m/s, or 1 m and 2 e-10 m/s for 3 years.

Arrest mechanisms?

 $y = \lambda P = (Bc+D)P$ dy/dt=BPdc/dt+(Bc+D)dP/dt (1) Constant Load dc/dt = (dy/dt)/BP(at constant dy/dt.) (2) Constant dy/dtdc/dt = (dy/dt)/BP(at constant P). (3) Constant y (Relaxation) dc/dt = $-(P_i \lambda_i / BP^2) dP/dt$ (Red letters indicate observation)

For rocks, load relaxation test has to be carried out under sufficiently large initial displacement. Sub-critical crack can easily be arrested or locked at barriers, or asperities.

After Pletka et al. (1979).

Memo: regarding to seismic effects on crack velocity, see Kerkhof, F., Proc. Int. Conf. Dynamic Crack Propagation, ed. Sih, Noordhoff Int. Publ., Leyden, 3–35, 1972.

We have to consider High temperature, high pressure and water.