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1. Introduction

1.1. Sub-solidus flow and effective mantle viscosity

The ability of the mantle to creep or ‘flow’ over geological time scales is due to
the presence of natural imperfections in the crystalline structure of the minerals
which constitute the rocks in the mantle. These imperfections are actually
atomic-scale defects in the lattice of the crystal grains in minerals (e.g., Nicolas &
Poirier, 1976; Carter, 1976; Weertman, 1978). If the ambient temperature is
sufficiently high, the imposition of stresses on the rocks will cause the mineral
defects to propagate and they thus permit mantle rocks to effectively ‘flow’. The
flow can persist for as long as the imposed stresses are maintained and thus
mantle deformation can achieve a steady state rate.

The steady-state creep of mantle rocks may then be characterized by a single
parameter called the effective viscosity (e.g., Gordon, 1965; Weertman & Weertman,
1975). A general formula for the effective viscosity of the mantle, which is based
on the microphysical creep mechanisms described in the references cited above,
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is as follows:

η = A dm τ−n kT exp

[

∆E + P∆V

kT

]

(1)

in which A is a dimensional constant which depends on the details of the creep
processes, d is the effective grain size of the crystal grains, τ =

√
τijτij is the

square root of the second invariant of the deviatoric stress field (Stocker & Ashby,
1973), k is Boltzmann’s constant, T is the absolute temperature, ∆E is the creep
activation energy, ∆V is the creep activation volume, and P is the total ambient
pressure.

If mantle creep occurs primarily through the diffusion of point defects, the
effective viscosity in expression (1) is independent of stress (i.e., n = 0). For this
diffusion creep the dependence on grain size is significant and generally m ranges
from 2 to 3. An alternative mechanism for mantle creep involves the glide and
climb of dislocations, in which case the effective viscosity in (1) will be
independent of grain size (i.e., m = 0) but will be sensitive to ambient deviatoric
stress. For this dislocation creep, laboratory experiments on olivine or dunite
suggest the stress exponent n will be near 3 (e.g., Post & Griggs, 1973).

The theoretical expression (1) does not explicitly show the importance of chemical
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environment (e.g., H2O, CO2) on mantle viscosity. Many studies have suggested
a strong impact of chemistry on mantle creep (e.g., Ricoult & Kohlstedt, 1985;
Karato et al. 1986; Borch & Green, 1987; Hirth & Kohlstedt, 2003).

The strong dependence of effective viscosity on temperature and pressure can be
represented in terms of a homologous temperature, T/Tmelt, as follows:

η = ηo exp

[

g
Tmelt

T

]

(2)

This dependence of viscosity on melting temperature, which has been observed
in metallurgy, was extended to the crystalline rocks in the mantle by Weertman
(1970) for the purpose of estimating viscosity in the deep mantle. The factor g in
expression (2) is empirical, and is used to relate the activation enthalpy
∆E + P∆V in expression (1) to melting temperature:

∆E + P∆V

k
= g Tmelt

The utility of using expression (2) is that knowledge of the pressure-dependence
of activation energy and activation volume, which is difficult to measure directly
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at high pressures, can be replaced by pressure-dependent melting temperature.
The latter can be measured at moderate pressures and extrapolated to high
pressures (i.e., the deep mantle). For olivine, g values between 20 and 30 have
been suggested, depending on whether diffusion or dislocation creep are
assumed (e.g., Weertman & Weertman, 1975).

The use of expression (2) may not be a valid approximation in the deep mantle,
as suggested by previous debates on the interpretation of experimentally
measured melting curves for the lower mantle (e.g., Brown, 1993). It is therefore
possible that the empirical factor g in (2) may not be effectively constant, as
assumed by (Weertman & Weertman, 1975) and others since.

The main conclusion we should extract from this brief discussion is that the
dependence of effective viscosity on grain size or stress, on ambient temperature
and pressure, and also on chemical environment, implies the viscosity in the
mantle should be strongly heterogeneous. Such lateral heterogeneity appears to
be especially important in the lithosphere, where the effectively rigid tectonic
plates are bounded by ridges, trenches and transform faults where strong
deformation is occurring. Similarly, the lateral temperature variations
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maintained by the thermal convection process in the mantle should also give rise
to corresponding lateral viscosity variations, owing to the strong temperature
dependence evident in expressions (1-2).

In Lecture 1 we developed a mantle flow theory on the assumption that the
dominant variation of viscosity is with depth. In this Lecture we will consider
how we may extend the flow theory to account for the dynamical impact of
lateral viscosity variations in the mantle.

1.2. Momentum conservation with 3-D viscosity heterogeneity

Let us first consider the most general expression of the governing hydrodynamic
equations for an infinite Prandtl number fluid with an arbitrary 3-D variation of
η(r, θ, φ), dynamic viscosity coefficient.

Recall from Lecture 1 that the fluid-mechanical equation of momentum
conservation, for an infinite Prandtl number fluid, is

∂jσij + ρo∂iφ1 − ρ1gor̂ = 0 (3)
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in which

σij = −P1δij + η

(

∂iuj + ∂jui −
2

3
δij ∂kuk

)

(4)

In these equations we use the convenient notation ∂i to represent partial
differentiation ∂/∂xj along the Cartesian coordinate direction xi. It should be
noted that in equation (3), we describe the dynamics relative to a hydrostatic
reference configuration (identified by the subscript o).

On the basis of the constitutive relation (4), we find that the divergence of the
stress tensor ∂jσij , which is required in (3), is as follows:

∂jσij = −∂iP1 +
1

3
η∂i(∂kuk) −

2

3
(∂iη)(∂kuk) + η∂j∂jui

+(∂jη)(∂jui) + ∂i(uj∂jη) − uj∂j(∂iη) . (5)
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Employing vector notation, we may rewrite this last expression as:

∇ · σ = −∇P1 +
1

3
η∇(∇ · u) −

2

3
(∇ · u)∇η + η∇2u

+(∇η · ∇)u + ∇(u · ∇η) − (u · ∇)∇η . (6)

By virtue of the vector calculus identity

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A) ,

we may rewrite expression (6) as:

∇ · σ = −∇P1 +
1

3
η∇(∇ · u) −

2

3
(∇ · u)∇η + η∇2u

+2(∇η · ∇)u + ∇η × (∇ × u) . (7)

Substituting this last expression into the momentum conservation equation (3),
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finally yields:

−∇P1 + η∇2u +
1

3
η∇(∇ · u) −

2

3
(∇ · u)∇η + 2(∇η · ∇)u

+∇η × (∇ × u) + ρo∇φ1 − ρ1gor̂ = 0 (8)

The mathematical and/or numerical solution of this general expression for
momentum conservation presents a major challenge. In this Lecture we shall
consider two rather different approaches for modelling the dynamical impact of
lateral viscosity variations in the mantle. The first approach involves a direct
calculation of the effect of rigid surface plates on buoyancy induced mantle flow,
which is modelled with depth-dependent viscosity below the plates. Here it is
assumed that the plates are the most extreme manifestation of lateral variations
of rheology in the Earth. The technique for incorporating the plates can
effectively be reduced to a complex surface boundary condition. In the second
half of this Lecture we will consider a direct, quasi-analytic solution of equation
(8), using an elegant variational principle. This approach will allow us to
investigate the impact of an arbitrary 3-D variation in viscosity on buoyancy
induced mantle flow.
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2. Analytic Spectral Description of Surface Plate Kinematics

2.1. Analytic description of plate divergence and vorticity for N rigid plates

Since the tectonic plates may be treated as effectively rigid bodies, we then know
from Euler’s theorem (e.g., Goldstein, 1980) that the surface velocity field v(θ, φ) of
N plates may be represented in terms of the sum of the rigid-body rotations of
each plate:

v(θ, φ) =
N

∑

i=1

Hi(θ, φ) ωi × r (9)

in which the plate function Hi(θ, φ) = 1 wherever plate i is located and
Hi(θ, φ) = 0 elsewhere, ωi is the angular velocity vector of plate i, and r is the
postion of any point on the Earth’s surface.

By virtue of the trivial identity
∑

i Hi(θ, φ) = 1, we may rewrite expression (9)
as:

v(θ, φ) =

N−1
∑

i=1

Hi(θ, φ) (ωi − ωN ) × r + ωN × r (10)
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The last term on the right-hand side of expression (10) represents a net rotation of
the lithosphere with the angular velocity of plate N . Except for this net rotation,
we note that the surface plate velocity field in entirely described by the relative
rotation of each plate relative to plate N . For example, the NUVEL-1 plate-motion
model (DeMets et al., 1990) is specified by arbitrarily choosing the Pacific plate as
the Nth reference plate.

A useful mathematical representation for the relative rotation vector ωi − ωN is
given by

ωi − ωN = ∇Ωi (11)

where

Ωi = x1(ωi
1 − ωN

1 ) + x2(ωi
2 − ωN

2 ) + x3(ωi
3 − ωN

3 ) (12)

in which (x1, x2, x3) are the Cartesian components of the position vector r and
ωi

j denotes the jth Cartesian component of the rotation rate ωi. We may
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similarly show that

ωN = ∇ΩN (13)

where

ΩN = x1ωN
1 + x2ωN

2 + x3ωN
3 (14)

Substitution of expressions (11 & 13) into equation (10) yields:

v(θ, φ) = −
N−1
∑

i=1

Hi(θ, φ)ΛΩi − ΛΩN (15)

in which Λ = r × ∇ is the angular-momentum operator introduced in Lecture 1
[see also Backus (1958) for more details].

We may now use this last expression (15) to determine the horizontal divergence
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(∇H · v) and radial vorticity (̂r · ∇ × v) of the plate velocity field:

∇H · v = −
1

a

N−1
∑

i=1

∇1Hi · ΛΩi (16)

and

r̂ · ∇ × v =
1

a
Λ · v = −

1

a

N−1
∑

i=1

[

ΛHi · ΛΩi + HiΛ
2Ωi

]

−
1

a
Λ2ΩN (17)

in which r = a is the mean radius of Earth’s solid surface, ∇1 is the horizontal
gradient on a sphere of unit radius, and Λ2 = Λ · Λ is the horizontal Laplacian
operator on a unit sphere.

On the basis of the general expressions for the horizontal gradients of ordinary
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spherical harmonics, Y m
` (θ, φ), presented in Edmonds (1960), we can show that:

ΛY m
` = ı

[

ê
−√
2
am

` Y m+1
` + ê0mY m

` − ê+√
2
a−m

` Y m−1
`

]

∇1Y m
` =

ê
−√
2

[

`cm
` Y m+1

`+1 + (` + 1)c−m−1
`−1 Y m+1

`−1

]

− ê0

[

`bm
` Y m

`+1 − (` + 1)bm
`−1Y m

`−1

]

+
ê+√

2

[

`c−m
` Y m−1

`+1 + (` + 1)cm−1
`−1 Y m−1

`−1

]

(18)

in which we have

am
` = [(` − m)(` + m + 1)]1/2 , bm

` =
[

(`−m+1)(`+m+1)
(2`+1)(2`+3)

]1/2

cm
` =

[

(`+m+2)(`+m+1)
(2`+1)(2`+3)

]1/2 (19)

and the complex basis vectors in (18) are defined as follows:

ê+ = −
1
√

2
(x̂ + ıŷ) , ê0 = ẑ , ê− =

1
√

2
(x̂ − ıŷ) (20)

where ı =
√
−1, and (x̂, ŷ, ẑ) are the Cartesian unit basis vectors. Further details

concerning the derivation of the expressions in (18) may be found in Appendix I
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of Forte & Peltier (1994).

If we now expand the plate functions in term of spherical harmonics, as follows,

Hi(θ, φ) =
∞
∑

`=0

+
∑̀

m=−`

(Hi)
m
` Y m

` (θ, φ) (21)

and then substitute (21) into (16-17), we can then use (18) to arrive at the
following expressions for the harmonic coefficients of the plate divergence and
vorticity:

(∇H · v)m
` =

N−1
∑

i=1

3
∑

j=1

(

Si
j

)m

`

(

ωi
j − ωN

j

)

(22)

(r̂ · ∇ × v)m` =

N−1
∑

i=1

3
∑

j=1

(

Ri
j

)m

`

(

ωi
j − ωN

j

)

+

3
∑

j=1

δ`1T m
j ωN

j (23)

in which the terms
(

Si
j

)m

`
and

(

Ri
j

)m

`
are linear functions of the plate geometry
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coefficients (Hi)
m
` . As shown in detail in Appendix III of Forte & Peltier (1994),

(

Si
j

)m

`
≡ Sj

{

(Hi)
m
`+2 , (Hi)

m
` , (Hi)

m
`−2

}

(24)
(

Ri
j

)m

`
≡ Rj

{

(Hi)
m
`+1 , (Hi)

m
`−1

}

(25)

(24-25) show that the divergence and vorticity fields provide an independent, com-
plementary sampling of the tectonic plate geometries. The degree ` divergence co-
efficients depend only on the degree ` + 2, `, ` − 2 plate geometry. The degree `

vorticity coefficients depend only on the degree ` + 1, ` − 1 plate coefficients.

2.2. Application to a hypothetical two-plate planet

We will now illustrate the use of the analytic expressions (22-23) by considering
the following hypothetical planet with two hemispherical tectonic plates:
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PLATE 1

PLATE 2

x

y

ω

ω2

1

plate 1 angular velocity

plate 2 angular velocity

z

Fig. 1. Hypothetical planet with two hemispherical tectonic plates

If we assume that the plate boundary coincides with the equatorial plane of the
planet we know that the even degree coefficients of each plate geometry function
will vanish [i.e., (Hi)

m
` = 0 for ` = 0, 2, 4...]. This will also be true for any other

orientation of the great-circle boundary between the two plates, since an
arbitrary rotation of the coordinate system will not change the spectral
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amplitudes of the plate functions (e.g., Edmonds, 1960). If we assume an
equatorial plate boundary, we can derive the following expressions for the
harmonic coefficients of the plate functions:

(H1)m
` = δm0

[

1
2
δ`0 +

P m

`−1
(0)

`+1

√

2`+1
2`−1

(1 − δ`0)

]

(H2)m
` = δm0

[

1
2
δ`0 −

P m

`−1
(0)

`+1

√

2`+1
2`−1

(1 − δ`0)

] (26)

in which P m
` (x) is an associated Legendre polynomial which is normalized so

that its root-mean-square amplitude is unity. We will assign the following,
arbitrarily chosen, angular velocity vectors to the hemispherical plates:

ω1 = Ωẑ , ω2 = −Ω

(

1

2
x̂ +

√
3

2
ẑ

)

, Ω = 1◦/Ma (27)

Expression (26) shows that the amplitude spectrum of the hemispherical plate
functions should decrease as 1/` with increasing degree. In contrast, since the
plate divergence and vorticity fields involve gradients of the plate functions (see
eqs. 16-17), which is equivalent to multiplying by ` in the spectral domain, we
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expect the divergence and vorticity fields to have a flat amplitude spectrum.
These expectations are confirmed in the figure below:

1 10
degree

10
-2

10
-1

Hemispherical Plate Spectrum

1 10
degree

10
-3

10
-2

10
-1

ra
d/

M
a

Horizontal Divergence
Radial Vorticity

Divergence & Vorticity Spectrum

Fig. 2. Spectral amplitudes of hemispherical plate and corresponding divergence and vorticity.

The divergence and vorticity spectra shown above (Fig. 2) were calculated by
substituting the plate coefficients (26) into expressions (22-23), using the rotation
vectors in (27). In the maps below we show the predicted divergence and
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vorticity fields resulting from the rotations of the two hemispherical plates.

Horizontal Divergence (L=1-32)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.06 -0.03 0.00 0.03 0.06
rad/Ma

Radial Vorticity (L=2-32)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.24 -0.12 0.00 0.12 0.24
rad/Ma

Fig. 3. Horizontal divergence and radial vorticity due to motion of hemispherical plates (eq. 27).

The Gibbs oscillations which are evident in Fig. 3 are due to the truncation of the
spherical harmonic expansion of the discontinuous divergence and vorticity
fields. We have suppressed the amplitude of these oscillations by multiplying
the harmonic coefficients of the divergence and vorticity fields by the following
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Lanczos smoothing factor (see Lanczos, 1961; Justice, 1978):

(∇H · v)m
` → Lm

` (∇H · v)m
` and (r̂ · ∇ × v)m` → Lm

` (r̂ · ∇ × v)m`

where

Lm
` =

[

sin(mπ/M)

mπ/M

] [

sin(`π/L)

`π/L

]

(28)

The values of M and L may be set to the maximum harmonic degree and
azimuthal order used in the truncated harmonic representation of the surface
field. (In the case of Fig. 3, L, M = 32.)

2.3. Application to tectonic plates on Earth

We will now consider the application of expressions (22-23) to the observed
tectonic plates on Earth’s surface:
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0˚
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0˚ 0˚
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60˚ 60˚

90˚ 90˚

North America

Philippines

Australia Nazca America
South

Antarctica

Eurasia

Africa
Cocos

Carribean
Arabia

India
Pacific

Fig. 4. The 13 main plates identified in NUVEL-1 (De Mets et al., 1990).

The amplitude spectrum of the function Hi(θ, φ) describing the geometry of
some of these tectonic plates is shown below in Fig. 5.
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Tectonic Plate Spectrum
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Fig. 5. Amplitude spectrum of the tectonic plates and the NUVEL-1 divergence and vorticity spectrum.

The spectral amplitudes of the large Pacific and African plates display a 1/`

variation which is similar to the hemispherical plates (Fig. 2). The small Cocos
plate instead has a much flatter spectrum characteristic of a small disk (i.e.,
similar to a 2-D delta function). The amplitude spectra of the corresponding
plate divergence and vorticity fields, calculated using expressions (22-23) and
using the relative rotation vectors in the NUVEL-1 model (De Mets et al., 1990), is
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relatively flat, despite the fact that we used Lanczos smoothing (28) on these
coefficients. The relatively flat divergence and vorticity spectra is similar to that
obtained for the hemispherical plate motions (Fig. 2) because of the dominant
contribution of the large plates (e.g., Pacific and African). Fig. 5 shows that the
strength of the plate vorticity field is nearly equal to that of the plate divergence.
This equipartition of energy is also illustrated in the following maps:

Horizontal Divergence of NUVEL-1 Plate Velocities (L=1-32)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
rad/Ma

Radial Vorticity of NUVEL-1 Plate Velocities (L=2-32)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
rad/Ma

Fig. 6. Plate divergence and vorticity fields calculated using plate rotation vectors in NUVEL-1 (DeMets et al., 1990)

The Gibbs oscillations in the fields shown in Fig. 6 have again been suppressed
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by using the Lanczos filtering in (28).

2.4. Poloidal-toroidal coupling generated by tectonic plates

The existence of rigid surface plates with weak boundaries is, in effect, an
extreme manifestation of lateral variations of rheological properties in the
lithosphere. As indicated in Lecture 1, the excitation of toroidal mantle flow
requires the existence of lateral viscosity variations. This generation of toroidal
flow arises through a viscous coupling with the buoyancy-induced poloidal flow
in the mantle. The poloidal and toroidal mantle flows are manifested at the
surface in terms of the horizontal divergence and radial vorticity of the plate
motions. We will demonstrate how the presence of a finite number of rigid
tectonic plates automatically requires the coupling of poloidal and toroidal
surface flows.

We first note that expressions (22-23) may be rewritten as the following matrix
equations:

d = S∆ω (29)

ν = R∆ω + TωN (30)
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in which d and ν are column vectors containing the harmonic coefficients
(∇H · v)m

` and (r̂ · ∇ × v)m` , respectively, and the column vector ∆ω contains
the 3(N − 1) Cartesian components of the relative plate rotation vectors

ωi − ωN . The matrices S and R, which contain the elements
(

Si
j

)m

`
and

(

Ri
j

)m

`
, respectively (see eqs. 22-23), depend only on the plate geometries.

We may now represent the divergence matrix S in terms of its singular value
decomposition (SVD) developed by Lanczos (1961):

S = UΛVT (31)

in which U and V are orthonormal matrices (i.e., UTU = I = VTV) and Λ is a
diagonal matrix containing the singular values of the divergence matrix S. [A
useful, concise description of the Lanczos decomposition may be found in
Volume II of Aki & Richards (1980).]
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The dimensions of the matrices appearing in (31) are as follows:

S → L(L + 2) × 3(N − 1)

U → L(L + 2) × 3(N − 1)

Λ → 3(N − 1) × 3(N − 1)

V → 3(N − 1) × 3(N − 1)

in which L is the maximum harmonic degree employed in the spherical
harmonic representation of the plate divergence and vorticity fields. (In Figs. 5
and 6, L = 32.)

The columns of V constitute all the vectors which span the space of plate rotation
vectors ∆ω. If the singular values in Λ are all nonzero, the columns of V span
the entire space of rotation vectors and then VVT = I.

The generalized inverse SI of the plate divergence matrix S is given by

SI = VΛ−1UT (32)

Employing SI, we can find the generalized inverse solution of eq. (29) and
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thereby determine the particular plate rotation vectors ∆ωI which correspond to
a given plate divergence field:

∆ωI = SI d (33)

If one of more of the singular values in the diagonal matrix Λ are zero, then there
exists a family of plate rotations which will produce zero plate divergence. This
null family of plate rotations is spanned by the columns of V which correspond to
the zero singular values in Λ.In such a situation, the generalized inverse solution
in (33) will only describe the restricted class of plate rotations which produce an
nonzero plate divergence.

We can now establish the coupling which must exist between plate vorticity and
divergence by substituting expression (33) into (30), and thereby obtain

ν = Cd + TωN (34)

in which the coupling matrix, which depends only on plate geometry, is

C = RSI (35)
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We therefore see that on a planet with rigid tectonic plates the horizontal
divergence and radial vorticity are not independent and there is in fact a linear
dependence between these two fields. The divergence-vorticity coupling
expressed in (34) is controlled by the geometry of the tectonic plates. To the
extent that the existence of the tectonic plates, and hence their geometry, is a
manifestation of lateral variations of the rheology in the lithosphere, then
equation (34) is an expression of the poloidal-toroidal coupling of flow in the
lithosphere due to lateral viscosity variations.
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3. Dynamical Models of Rigid Plate Motions Coupled to Mantle Flow
The mathematical and numerical difficulties involved in an explicit treatment of
lateral viscosity variations, particularly the extreme variations associated with
the surface tectonic plates, have motivated a number of studies which attempt to
directly incorporate the observed plate motions into mantle flow models.

Hager & O’Connell (1981) developed the first such models in 3-D spherical
geometry, in which the observed plate motions where directly imposed via the
surface boundary conditions and they then attempted to balance the surface
stresses generated by the imposed plate motions with the stresses generated by
buoyancy forces inside the mantle. The primary internal driving forces
considered were those due to the negative buoyancy of subducted slabs and, to a
lesser extent, the small negative buoyancy associated with the cooling and
thickening of the oceanic lithosphere.

The approach introduced by Hager & O’Connell (1981) was subsequently
extended and modified by Ricard & Vigny (1989) for global flow in 3-D spherical
geometry and by Gable et al. (1991) for numerical convection simulations in 3-D
Cartesian geometry. The main modification was to avoid imposing a priori a
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given set of plate motions, but rather to calculate the plate motions a posteriori in
terms of the buoyancy forces inside the mantle. The basic approach, which is
also used by Hager & O’Connell (1981), is to match the stresses exerted by
buoyancy driven flow, acting on a no-slip surface, with the stresses arising from
a prescribed plate velocity field with unknown plate rotation vectors. The rotation
vectors are then determined via the stress matching.

In the models developed by Ricard & Vigny (1989) and by Gable et al. (1991), it is
assumed that all stresses acting on plate boundaries are zero. This is a very
questionable assumption since, as pointed out by Hager & O’Connell (1981), there
are significant collision-related stresses at subduction zones and significant shear
stresses along transform plate boundaries. Such difficulties led to the
development of an alternative model of plate-coupled, buoyancy induced
mantle flow which was first described in Forte & Peltier (1991). This alternative
approach does not make any assumptions about the state of stress at plate
boundaries and the plate motions are again determined on the basis of the
internal buoyancy forces, rather than being imposed a priori. A detailed
discussion of this approach will be provided below.
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3.1. Theory of buoyancy driven plate motions

We begin by reconsidering the SVD (31) of the plate divergence matrix, which
determines the relationship (29) between the surface plate divergence and the
plate rotation vectors:

d = UΛVT∆ω

We immediately see from this expression that the harmonic coefficients of any
realizable plate divergence field must be a linear superposition of the columns in
matrix U. We can therefore define the following plate projection operator P:

P = UUT (36)

which acts on any arbitrary column vector d0 as follows

Pd0 = d1 (37)

where d1 now contains the harmonic coefficients of a realizable field of plate
divergence. Since the plate divergence matrix S is dependent only on the plate
geometry, it immediately follows that the projection operator P will also depend
solely on the geometry of the surface plates.
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Recall from Lecture 1 (eq. 53), that the surface divergence of the
buoyancy-induced mantle flow, predicted with a simple free-slip surface
boundary condition, is given by the following expression:

(∇H · u)m
` =

go

ηo

∫ a

b
S`(η(r)/ηo; r′) δρm

` (r′) dr′ (38)

in which the surface divergence kernel S` depends on the nondimensional radial
viscosity profile η(r)/ηo as well as on the radius. Since we have assumed
free-slip conditions at the surface, all the internal density anomalies δρ in the
mantle will contribute to the predicted surface flow, as is evident in expression
(38). In general the predicted surface divergence will not look very ‘plate-like’, as
we saw in Fig. 19 in Lecture 1.

We may obtain a ‘plate-like’ or realizable plate divergence field, ∇H · v, from the
predicted field, ∇H ·u, by applying the plate projection operator P introduced in
(36-37):

(∇H · v)m
` = P`m, st (∇H · u)t

s (39)

in which the ordered pair (`m, st) identify a particular row and column,
respectively, of the plate projection matrix P. It should be understood in (39) that
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a sum over all values of s t is implied on the right hand side of this equation. If
we now combine expressions (38) and (39) we find

(∇H · v)m
` =

go

ηo

∫ a

b
S`(r

′) δρ̂m
` (r′) dr′ (40)

in which
δρ̂m

` (r) =
[

S−1
` (r) P`m, st Ss(r)

]

δρt
s(r) (41)

The density perturbations δρ̂m
` (r) defined in (41) give rise to a surface

divergence field in (40) which is perfectly plate-like (i.e., corresponds to a
divergence produced by rigid-body rotations of the plates). By virtue of
expression (41), we define the following density projection operator P̂:

P̂`m, st(r) = S−1
` (r) P`m, st Ss(r) (42)

This density projection operator allows us to partition any arbitrary field of
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mantle density anomalies δρt
s(r) into two orthogonal families as follows:

δρ̂m
` (r) = P̂`m, st(r)δρt

s(r) (43)

δρ̄m
` (r) =

[

δ`m, st − P̂`m, st(r)
]

δρt
s(r) (44)

in which δ`m, st is simply an element of the identity matrix I. We can
immediately establish that the density perturbations δρ̂m

` (r) in (43) and δρ̄m
` (r)

in (44) belong to orthogonal families by noting that:

P̂`m, st(r) δρ̂t
s(r) = δρ̂m

` (r) (45)

P̂`m, st(r) δρ̄t
s(r) = 0 (46)

The family of density perturbations δρ̂ in (43) can produce realizable surface
plate motions whereas the family δρ̄ cannot produce a plate-like surface flow
field. The mantle flow driven by the density anomalies δρ̂ should thus be
modelled with a free-slip surface boundary condition, while the flow driven by δρ̄

should be modelled with a no-slip surface. The tectonic plates are effectively
‘locked’ into position by the flow driven by δρ̄, acting as a rigid ‘lid’.
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The family of density perturbations δρ̄ constitutes the portion of internal buoy-
ancy forces which are completely ‘invisible’ from the perspective of the tectonic
plate motions. This conclusion has important consequences for any effort to re-
construct the density perturbations in the mantle, solely on the basis on past and
present-day plate motions (e.g., Richards & Engebretson, 1992; Ricard et al., 1993).
Any such effort, for example to reconstruct the subducted slab heterogeneity from
past plate motions, will suffer from a fundamental nonuniqueness owing to the
existence of the δρ̄ family of density anomalies.

3.2. Predicting plate motions with tomography-based flow models

We will now illustrate an application of the theory of buoyancy-induced plate
motions to tomography-based mantle flow models. Unless stated otherwise, all
calculations will be based on the recent high-resolution model of global S-wave
heterogeneity derived by Grand (2002). The principal inputs needed to carry out
the mantle flow calculation are the mantle viscosity profile and the
velocity-to-density scaling profile d ln ρ/d ln Vs. The mantle viscosity profile we
will employ (Fig. 7) has recently been derived by Mitrovica & Forte (2004) on the
basis of a nonlinear, Occam inversion (Constable et al., 1987) of a combined set of
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postglacial rebound and convection data. The convection data included the
present-day plate divergence field which was modelled in terms of the plate-like
mantle flow theory described above. The d ln ρ/d ln Vs scaling profile (Fig. 7) was
similarly derived by carrying out an Occam inversion of the convection-related
surface data (i.e., global free-air gravity anomalies, dynamic surface topography,
observed plate divergence and the excess or dynamic CMB ellipticity).

The density projection operator (eq. 42) was calculated on the basis of the
geometry of the 13 major tectonic plates (Fig. 4) and using the surface divergence
kernels calculated on the basis of the Occam-inferred viscosity profile. These
kernels are illustrated in Fig. 7 below.
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Fig. 7. The principal geodynamic inputs required to model the buoyancy driven surface flow.
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We now have all the ingredients to explore the impact of the rigid surface plates
on the buoyancy-driven mantle flow. The surface divergence predicted in the
absence of tectonic plates, assuming a simple free-slip surface boundary
condition, is shown below (Fig. 8). We again note that the predicted surface
divergence is far from appearing plate-like.

It is interesting to next consider the impact of two hemispherical plates (Fig. 1)
on the predicted surface divergence (Fig. 8). We can immediately observe that
overall amplitude of the predicted surface divergence is nearly two orders of
magnitude smaller than the free-slip prediction. This example shows the
importance of the geographical alignment between the plate-boundary geometry
and the geometry of the upwellings and downwellings in the mantle. It is clear
in this example that the plates are essentially ‘locked’ in response to the
underlying buoyancy driven flow.

The final calculation was carried with the present-day tectonic plate geometry
(Fig. 4) and we now note that the overall amplitude of the predicted plate-like
divergence is only a factor of two smaller than the free-slip prediction. Evidently,
the plates are favourably aligned with respect to the predicted underlying
mantle flow.
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Predicted Surface Divergence - No Plates (L=1-32)
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Fig. 8. Surface divergence predicted in absence of plates, with 2 hemispherical plates and with the 13 major,

present-day tectonic plates. Internal mantle flow predicted using Grand’s (2002) tomography model.
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4. Variational Modelling of Mantle Flow with
Lateral Viscosity Variations

The treatment of rigid surface plates and their impact on the buoyancy induced
mantle flow, described in the previous section, is very convenient because it
allows us to treat the plate-like structure of the lithosphere without explicitly
modelling the lateral variations in rheology associated with the plates. This
technique only introduces the effect of plates as a surface boundary condition,
via the use of the plate-projection operator (42). The dynamical details of the
coupling between poloidal and toroidal flows is however not determined
explicitly. A complete, dynamically consistent treatment of the effect of lateral
viscosity variations and the resulting poloidal-toroidal flow coupling must be
based on the solution of the momentum conservation equation (8) derived in the
Introduction.

The direct mathematical solution of differential equation (8) is rather
complicated. One possibility is of course to write an equivalent finite-difference
approximation to the equation and solve the resulting equations numerically.
Finite-element solutions in 2-D Cartesian geometry were presented by
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Christensen (1984) and later extended to 3-D Cartesian geometry by Christensen &
Harder (1991). The extension of finite-element numerical solutions to 3-D
spherical geometry is well illustrated by the study of Zhong et al. (1998).

Interesting alternatives to the purely numerical solutions of mantle flow with
lateral viscosity variations have been presented by Ribe (1992) and by Zhang &
Christensen (1993). In the former study, a thin-shell approximation is used, in
which lateral viscosity variations are only considered in the lithosphere. In the
latter study, the spectral propagator solutions for mantle flow in 3-D spherical
geometry (described in Lecture 1) were modified to allow for the presence of
lateral viscosity variations throughout the mantle.

Variational methods provide a mathematically elegant solution which can also
provide useful physical insight into the dynamics of poloidal-toroidal flow
coupling. The initial application of variational problems to mantle-flow in
spherical geometry was presented by Čadek et al. (1993) and is based on the use
of an iterative numerical scheme. A direct and quasi-analytic solution was
presented by Forte (1992) and is described in detail in Forte & Peltier (1994). In
this section we will consider the approach presented in the latter reference.
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4.1. A variational principle for buoyancy induced mantle flow

We begin with the equations (3-4) expressing momentum conservation and the
constitutive relation for an extremely viscous (i.e., infinite Prandtl number) fluid:

∂kσki + ρo∂iφ1 + ρ1∂iφo = 0 (47)

in which

σij = −P1δij + 2ηEij , where Eij =
1

2
(∂iuj + ∂jui −

2

3
δij∂kuk) (48)

If we further assume for simplicity that the fluid is incompressible, we then have
the following expression for mass conservation (see Lecture 1):

∂kuk = 0 (49)

Equations (47-49) describe a flow field ui driven by density perturbations ρ1

which are assumed to be known a priori and are henceforth treated as fixed. This
buoyancy induced flow field occurs in a bounded spatial volume V with a
surface boundary S. The boundary conditions which the flow field ui must
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satisfy are:

n̂iui = 0 (50)

ĥin̂jσji = 0 on S1 (51)

ui = ci on S2 (52)

where n̂i is the unit vector everywhere normal to the surface S, ĥi is any unit
vector which is tangential to the surface S, S1 is the portion of the bounding
surface on which free-slip (i.e., zero tangential stress) conditions apply and S2 (=
S − S1) is the portion on which the horizontal velocity ci is prescribed.

Let us assume that we posses a particular solution ui to the governing equations
(47-49) and that this solution satisfies the boundary conditions (50-52). We now
consider a kinematically admissible flow perturbation δui which satisfies mass
conservation (49). The flow perturbation must be such that the total flow field
ui + δui also satisfies the same boundary conditions (50-52) which are satisfied
by the solution ui. By taking the inner product of the flow perturbation δui with
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the momentum conservation equation (47) we obtain:

∂k(σki δui) − σki ∂k(δui) + ∂i(ρoφ1 δui) + ρ1(∂iφo) δui = 0

in which we have used the result ∂k(δuk) = 0. If we now integrate this last
expression over the entire volume V occupied by the fluid we obtain, by virtue
of Gauss’ theorem,

∫

V
[ρ1∂iφo δui − σki δEki] dV +

∫

S
[n̂kσki δui + ρoφ1 n̂kδuk] dS = 0 (53)

in which we have also used the result σki∂k δui = σki δEki which follows from
the symmetry of the stress tensor σki.

Since both the solution ui and the perturbed flow ui + δui satisfy the same
boundary conditions on the surface S, it follows from (50) that

n̂k δuk = 0 , everywhere on S (54)

which implies that δui must be tangential to surface S. By virtue of the condition
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(51) we therefore have that

n̂kσki δui = 0 , on S1 (55)

Condition (52) also implies that

δui = 0 , on S2 (56)

From these three boundary conditions on the flow perturbation δui we can
conclude that the surface integral in expression (53) must vanish and we
therefore obtain

∫

V
[ρ1∂iφo δui − 2ηEki δEki] dV = 0 (57)

in which we have used the result P1δki δEki = P1δEkk = 0 by virtue of the
incompressibility (49). Since the density anomalies ρ1 and the reference gravity
field φo are known a priori, we can then rewrite expression (57) as

δW = 0 , where W =

∫

V
[ηEijEij − ρ1∂iφoui] dV (58)
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In other words, the functional W is stationary with respect to perturbations of the
flow field if and only if the flow field ui satisfies the governing equations (47-49)
and all the boundary conditions (50-52). The functional W is the difference
between the rate of viscous dissipation of energy, ηEijEij , and the rate of energy
release by buoyancy, ρi∂iφoui.

It is important to note that in deriving the variational equation (58), we have
assumed that the viscosity η is not a function of the flow field ui (i.e., δη = 0).
This is equivalent to assuming a linear, stress-independent, Newtonian rheology. An
extension of the variational principle for the case of stress-dependent rheology,
which requires an iterative approach, may be found in the study by Čadek et al.
(1993).

We can show that the functional W in expression (58) must be an absolute
minimum for the flow field. To show this, let u0

i be the flow solution which
satisfies δW = 0 and let u1

i be any kinematically admissible flow which satisfies
mass conservation (49) and the boundary conditions (54-56). We may therefore
express the perturbed flow field as ui = u0

i + εu1
i , in which ε ¿ 1, and therefore
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the quantity W in (58) may be written as:

W =

∫

V

[

ηE0
ijE0

ij − ρ1∂iφou0
i

]

dV

+ ε

∫

V

[

2ηE0
ijE1

ij − ρ1∂iφou1
i

]

dV

+ ε2
∫

V

[

ηE1
ijE1

ij

]

dV

From this expression we may regard W as a function of the perturbation variable
ε:

W (ε) = W (0) +

(

dW

dε

)

0

ε +
1

2

(

d2W

dε2

)

0

ε2 (59)

According to the variational principle (58), δW = 0, and therefore from
expression (59) we have

δW =

(

dW

dε

)

0

δε = 0 , which implies
(

dW

dε

)

0

= 0
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We may therefore conclude that the functional W (ε) may be written as

W (ε) = W (0) +
1

2

(

d2W

dε2

)

0

ε2 , where
(

d2W

dε2

)

0

= 2

∫

V
ηE1

ijE1
ij dV (60)

The last term in expression (60) is positive definite and therefore it is clear that
W (0) must be the absolute minimum of the function W (ε). This minimum
principle is simply an extension of the classical minimum dissipation theorem of
Helmholtz [see pp. 227-228 in Batchelor (1967)] to fluids with internal buoyancy
sources.

4.2. Variational calculation of buoyancy induced flow in 3-D spherical
geometry

The calculation of buoyancy induced flow in spherical geometry, using the
variational principle (58), can be greatly facilitated by using the generalized
spherical harmonics described in Phinney & Burridge (1973), henceforth referred to
as PB for convenience.

We begin by expressing the tensor inner product EijEij in terms of the so-called
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contravariant canonical components presented in PB:

EijEij = CiαCjβEαβCiγCjδEγδ = eαγeβδEαβEγδ

= E00E00 + 2E++E−− + 2E+−E+− − 4E0+E0− (61)

The Latin indices i = 1, 2, 3 refer to the coordinate directions (ϑ̂, ϕ̂, r̂),
respectively. The Greek indices α = −1, 0, +1 refer the complex coordinate
directions (ê−, ê0, ê+), respectively (see Lecture 1). The unitary rotation matrix
Ciα which relates these two coordinate systems is:

Ciα =









1√
2

0 − 1√
2

− ı√
2

0 − ı√
2

0 1 0









(62)

in which ı =
√
−1.
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The contravariant strain-rate tensor components in (61) are defined as

Eαβ =
1

2

[

uα,β + uβ,α
]

=
1

2

∞
∑

`=0

+
∑̀

m=−`

[

U
(α|β) m
` (r) + U

(β|α) m
` (r)

]

Y
(α+β) m
` (θ, φ) (63)

Employing the covariant differentiation rules in PB to evaluate the terms

U
(α|β) m
` (r) in expression (63), we obtain the following:

E00 =
∑

` m

(E1)m
` Y 0 m

` , E+− =
∑

` m

(E2)m
` Y 0 m

` , E0+ =
∑

` m

(E3)m
` Y 1 m

`

E0− =
∑

` m

(E4)m
` Y −1 m

` , E++ =
∑

` m

(E5)m
` Y 2 m

` , E−− =
∑

` m

(E6)m
` Y −2 m

`

(64)

in which
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(E1)m
` =

d

dr
U0 m

` , (E2)m
` =

Ω`
1

2r

[

U+ m
` + U− m

`

]

−
1

r
U0 m

`

(E3)m
` =

1

2

(

d

dr
−

1

r

)

U+ m
` +

Ω`
1

2r
U0 m

` , (E4)m
` =

1

2

(

d

dr
−

1

r

)

U− m
` +

Ω`
1

2r
U0 m

`

(E5)m
` =

Ω`
2

r
U+ m

` , (E6)m
` =

Ω`
2

r
U− m

` (65)

in which Uα m
` (r) is the generalized spherical harmonic coefficient of the

contravariant flow component uα:

uα(r, θ, φ) =
∑

`,m

Uα m
` (r) Y α m

` (θ, φ)

and

Ω`
1 =

√

`(` + 1)

2
, Ω`

2 =

√

(` − 1)(` + 2)

2

We now require expressions for the contravariant flow coefficients Uα m
` (r) in

terms of the poloidal and toroidal flow scalars. Recall (Lecture 1) that Backus (1958)
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proved any incompressible flow field u may be written as:

u = ∇ × Λp + Λq , where Λ = r×∇ (66)

in which p and q are the poloidal and toroidal flow scalars, respectively. The
contravariant flow components uα may be obtained from the components ui in
(66) by using the relation

uα = C†
αi ui (67)

where C†
αi is the Hermitian conjugate of the unitary rotation matrix Ciα in (62).

By substituting expression (66) into (67) we find:

U0 m
` (r) = −

2(Ω`
1)2

r
pm

` (r)

U− m
` (r) = −Ω`

1

(

1

r

d

dr
rpm

` (r) + ıqm
` (r)

)

(68)

U+ m
` (r) = −Ω`

1

(

1

r

d

dr
rpm

` (r) − ıqm
` (r)

)

in which ı =
√
−1 and pm

` (r), qm
` (r) are the (ordinary) spherical harmonic
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coefficients of the poloidal and toroidal flow scalars, respectively.

We allow for explicit 3-D variations in viscosity by expanding the viscosity
η(r, θ, φ) as follows:

η(r, θ, φ) =
∑

`,m

ηm
` (r)Y m

` (θ, φ) (69)

We now have all the elements needed to calculate the dissipation integral
∫

V
ηEijEij dV

which appears in the variational principle (58). By combining expressions (61,
64, 65, 68, 69) we can show that:
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∫

V
ηEijEij dV = 4π

∑

`,m

∑

s,t

`+s
∑

J=|`−s|

√

(2` + 1)(2s + 1)(2J + 1)





` s J

m t −m − t





×
∫ a

b
η−m−t

J (r)











` s J

0 0 0





6(Ω`
1)2(Ωs

2)2

r2

[

dpm
`

dr
−

pm
`

r

] [

dpt
s

dr
−

pt
s

r

]

+





` s J

2 −2 0





2Ω`
1Ω`

2Ωs
1Ωs

2

r2

[

dpm
`

dr
+

pm
`

r
− ıqm

`

] [

dpt
s

dr
+

pt
s

r
+ ıqt

s

]

−





` s J

1 −1 0



 Ω`
1Ωs

1

[

d2pm
`

dr2
+

2(Ω`
2)2 pm

`

r2
− ır

d

dr

(

qm
`

r

)

]

×

[

d2pt
s

dr2
+

2(Ωs
2)2 pt

s

r2
+ ır

d

dr

(

qt
s

r

)]}

r2 dr (70)

We note the appearance of Wigner 3-j symbols in the dissipation integral (70).
These 3-j symbols were used to express the coupling between two generalized
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spherical harmonics as follows:

Y N1m1

`1
(θ, φ) Y N2m2

`2
(θ, φ) =

`1+`2
∑

`=|`1−`2|

√

(2`1 + 1)(2`2 + 1)(2` + 1) ×





`1 `2 `

N1 N2 N









`1 `2 `

m1 m2 m



 Y Nm
` (θ, φ)∗ (71)

in which the the asterisk ∗ denotes complex conjugation. A summary of useful
aspects of spherical harmonic coupling rules, in the context of fluid dynamics in
spheres, can be found in Forte & Peltier (1994, Appendix II).

By expanding the mantle density anomalies ρ1(r, θ, φ) in terms of spherical
harmonics, the buoyancy integral which appears in the variational principle (58)
may be written as:

∫

V
ρ1∂iφoui dV = −4π

∑

`,m

∫ a

b
(ρ1)m

` (r)∗ U0 m
` (r) go(r) r2 dr
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By virtue of expression (68), this last expression may be rewritten as:
∫

V
ρ1∂iφoui dV = 4π

∑

`,m

2(Ω`
1)2

∫ a

b

(ρ1)m
` (r)∗

r
pm

` (r) go(r) r2 dr (72)

The variational principle (58) requires that we minimize the functional W with
respect to the flow field. To accomplish this minimization, we expand the
spherical harmonic components of the poloidal and toroidal flow scalars in
terms of radial basis functions as follows:

pm
` (r) =

∑N
n=1 npm

` fn(r)

qm
` (r) =

∑N
n=1 nqm

` gn(r)
(73)

The radial basis functions fn(r) and gn(r) must satisfy the boundary conditions
(50-52). When the expansions (73) are inserted into the dissipation (70) and
buoyancy (72) integrals, the functional W in expression (58) will vary according
to the values of the scalar coefficients npm

` and nqm
` in (73). The particular values

of these radial coefficients which minimizes the functional W defines the flow solution.
We may therefore conclude that the functional W will be a minimum when the
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following conditions are satisfied:

∂W

∂(npt
s)

=
∂

∂(npt
s)

∫

V
[ηEijEij − ρ1∂iφoui] dV = 0 (74)

∂W

∂(nqt
s)

=
∂

∂(nqt
s)

∫

V
[ηEijEij ] dV = 0 (75)

The set of coefficients which satisfy equations these two conditions will describe
the flow solution we seek.

The substitution of expansions (73) into the dissipation (70) and buoyancy (72)
integrals, followed by the application of conditions (74-75) will yield the
following coupled set of algebraic equations:

∑

k,`,m

Ak`m
nst kpm

` +
∑

k,`,m

Bk`m
nst kqm

` =
2(Ωs

1)2

ηo

∫ a

b

(ρ1)t
s(r)

∗

r
fn(r) go(r) r2 dr

(76)
∑

k,`,m

Ck`m
nst kqm

` −
∑

k,`,m

Dk`m
nst kpm

` = 0 (77)
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in which ηo is a reference viscosity value. The coefficients Ak`m
nst , Bk`m

nst , Ck`m
nst ,

and Dk`m
nst which appear in these coupled equations involve a complicated

combination of integrals of the viscosity coefficients (69) and the flow basis
functions (73). Explicit, analytic expressions for these terms may be found in
Forte & Peltier (1994).

Equation (76) describes the flow that is directly excited by buoyancy forces. We
note that in a mantle with lateral viscosity variations, the buoyancy forces directly
excite a toroidal flow. We observed in Lecture 1 that this is not possible with a
viscosity that only varies with radius. The poloidal and toroidal flow
components excited by buoyancy forces are not independent. Equation (77)
describes the explicit coupling which must exist between poloidal and toroidal
flow as a consequence of lateral viscosity variations. (This coupling was of
course absent in a mantle with pure radial variations of viscosity – see Lecture 1.)
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4.3. Generalized Green functions for flow with lateral viscosity variations

The coupled algebraic flow equations (76-77) may be written as the following
simple matrix equations:

A p + B q = d (78)

C q = D p (79)

in which the column vectors p,q consist of the elements kpm
` and kqm

` ,
respectively. The matrices A, B, C, D are of course composed of the elements
Ak`m

nst , Bk`m
nst , Ck`m

nst , and Dk`m
nst , respectively, in which the ordered triplet (k`m)

identifies the column position while the triplet (nst) identifies the row position
in these matrices. The column vector d in (78) consists of the buoyancy term on
the right hand side of equation of (76):

dnst =
2(Ωs

1)2

ηo

∫ a

b

(ρ1)t
s(r)

∗

r
fn(r) go(r) r2 dr (80)

A straightforward inversion of the matrix equations (78-79) yields the solution
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for the flow coefficients in (73):

kpm
` =

∑

n,s,t

P nst
k`m dnst (81)

kqm
` =

∑

n,s,t

Qnst
k`m dnst (82)

in which P nst
k`m and Qnst

k`m are elements of the following matrices:

P =
[

A + BC−1D
]−1 (83)

Q = C−1DP (84)

Substitution of expressions (81-82) into the radial expansions (73), and using
expression (80), we obtain the following explicit, analytic expressions for the
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poloidal and toroidal flow solutions:

pm
` (r) =

go

ηo

∫ a

b

∑

s,t





∑

k,n

fk(r)P nst
k`mfn(r′)2(Ωs

1)2r′2





(ρ1)t
s(r

′)∗

r′
dr′ (85)

qm
` (r) =

go

ηo

∫ a

b

∑

s,t





∑

k,n

gk(r)Qnst
k`mfn(r′)2(Ωs

1)2r′2





(ρ1)t
s(r

′)∗

r′
dr′ (86)

Recall from Lecture 1 that the expression for the poloidal flow scalar in a mantle
with a spherically symmetric viscosity distribution is given by:

pm
` (r) =

go

ηo

∫ a

b
p`(r, r

′)
(ρ1)m

` (r′)

r′
dr′ (87)

in which p`(r, r
′) is the poloidal-flow Green function. If we compare expressions

(85-86) with expression (87), we may immediately see that in a mantle with
lateral viscosity variations the generalized Green functions for poloidal and
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toroidal flows are:

P st
`m(r, r′) =

∑

k,n

fk(r)P nst
k`mfn(r′)2(Ωs

1)2r′2 (88)

Qst
`m(r, r′) =

∑

k,n

gk(r)Qnst
k`mfn(r′)2(Ωs

1)2r′2 (89)

The harmonic coefficient of the horizontal divergence of the surface flow is given
by the following expression (see Lecture 1):

(∇H · u)m` (r = a) =
`(` + 1)

a

[

d

dr
pm

` (r)

]

r=a

If we now substitute the poloidal flow solution (85) into the above expression,
we find:

(∇H · u)m` (r = a) =
go

ηo

∫ a

b

∑

s,t

Sst
`m(r′) (ρ1)t

s(r
′)∗ dr′ (90)
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in which we have the generalized divergence kernel:

Sst
`m(r′) =

`(` + 1)

a

∑

k,n

[

dfk(r)

dr

]

r=a

P nst
k`mfn(r′)2(Ωs

1)2r′ (91)

We may now compare expression (90) with the expressions (40-41) for the
surface divergence generated by mantle flow which is coupled to rigid tectonic
plates at the surface:

(∇H · u)m
` (r = a) =

go

ηo

∫ a

b

∑

s,t

[

P`m, st Ss(r
′)

]

δρt
s(r

′) dr′ (92)

We thus note that from the perspective of the predicted surface flow, lateral
viscosity variations may also be regarded as generating a ‘projection’ of the
internal density anomalies which is analogous to that of rigid surface plates. By
virtue of expression (91) and the analogous form of expressions (90,92), we write
this equivalent projection operator as:

P′
`m, st(r

′) = Sst
`m(r′)

[

Ss(r
′)

]−1
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We have not yet specified the radial basis functions in expression (73). The only
constraint is that the basis functions must satisfy the boundary conditions
(50-52). If we simply assume free-slip, zero radial velocity conditions on the
bounding surfaces r = a, b, then the poloidal and toroidal flow scalars must
satisfy the conditions:

pm
` (r) =

d2pm
` (r)

dr2
=

d

dr

(

qm
` (r)

r

)

= 0 , at r = a, b (93)

A very simple set of orthogonal radial basis functions which satisfy these
boundary conditions are, for poloidal and toroidal flow respectively:

fk(r) = sin kπ

(

r − a

a − b

)

and gk(r) = r cos kπ

(

r − a

a − b

)

(94)
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4.4. Application to a tomography-based flow calculation

To investigate the effects of lateral viscosity heterogeneity on mantle flow we
shall express the spatial variations of viscosity as follows:

η(r, θ, φ) = ηo(r) [1 + ν(r, θ, φ)] (95)

in which ηo(r) is the horizontal average of the 3-D viscosity function η(r, θ, φ) at
any radius r, and ν(r, θ, φ) describes the lateral variations in viscosity relative to
this average (i.e., the horizontal average of ν(r, θ, φ) is exactly zero at all radii).

The study of thermo-chemical heterogeneity in the lower mantle by Forte &
Mitrovica (2001) led to an estimate of long-wavelength, lateral temperature
variations, at the top the seismic D”-layer (i.e., at 2740 km depth), shown below
in Fig. 9.
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Lateral Temperature Variations at 2740 km Depth (L=1-12)
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Fig. 9. Estimate (left) of lateral temperature variations obtained by Forte & Mitrovica (2001) on the basis of the

long-wavelength tomography model of Su & Dziewonski (1997). On the right is the corresponding prediction of

lateral viscosity variations (see main text for details).

The lateral viscosity variations which may be estimated on the basis of the
tomography-derived temperature anomalies (Fig. 9) can be calculated on the
basis of the homologous-temperature scaling in expression (2). We estimate an
adiabatic temperature of To = 2310K at 2740 km depth and we employ an
estimated melting temperature of about Tmelt = 4260K, derived from the study
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of Zerr et al. (1998). The total temperature anomalies at a depth of 2740 km,
T (r, θ, φ) = To(r) + δT (r, θ, φ), are then obtained by adding the estimated
lateral temperature anomalies in Fig. 9 to the mean adiabatic temperature.

In order to obtain a field of lateral viscosity variations which we could
numerically resolve in the variational calculation of mantle flow, the empirical g

factor in expression (2) was set to a value of 10. This value is significantly less
than g values in the range of 20 to 30 estimated for olivine (e.g., Weertman &
Weertman, 1975) but, as we noted in the Introduction, there is considerable
uncertainty concerning the homologous temperature scaling in the lower mantle.
Karato & Karki (2001) used g = 10, 20 in their investigation of the impact of
seismic anelasticity in the lower mantle. The non-dimensional field of viscosity
heterogeneity 1 + ν(r, θ, φ), which we calculate using expression (2), is mapped
out in Fig. 9 on a logarithmic scale. We observe from this figure that
long-wavelength viscosity heterogeneity in the deep mantle can span at least 3
orders of magnitude.

We shall assume, for simplicity, that the large-amplitude, long-wavelength
lateral viscosity variations in Fig. 9 extend across the entire mantle (i.e., the
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lateral viscosity variations are the same at all depths). We will also assume that
mean (horizontally-averaged) viscosity increases smoothly with depth,
according to the simple expression:

ηo(r) =
( a

r

)n

where we choose n = 10, yielding a mean viscosity at the CMB which is 420
times greater than the viscosity at the top of the mantle. (There is no special
significance in this number. We choose an n value sufficiently large so that the
amplitude of the radial viscosity variation is of the same order of magnitude as
the amplitude of the lateral viscosity variation.)

The buoyancy forces in the mantle will be derived from the Su & Dziewonski
(1997) model of shear velocity heterogeneity, using the Karato & Karki (2001)
velocity-to-density conversion profile shown in Lecture 1 (Fig. 14).

The mantle flow driven by these buoyancy forces, in the presence of the lateral
viscosity variations shown in Fig. 9, is illustrated below in Fig. 10. For
comparison we also show the purely divergent flow which is calculated in the
absence of lateral viscosity variations.
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Surface Divergence (L=1-12)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.14 -0.07 0.00 0.07 0.14
rad/Ma

Surface Divergence (L=1-20)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.70 -0.35 0.00 0.35 0.70
rad/Ma

Surface Radial Vorticity (L=1-20)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.50 -0.25 0.00 0.25 0.50
rad/Ma

Horizontal Divergence; Depth=2891km (L=1-12)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.012 -0.006 0.000 0.006 0.012
rad/Ma

Horizontal Divergence; Depth=2891km (L=1-20)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.10 -0.05 0.00 0.05 0.10
rad/Ma

Radial Vorticity; Depth=2891km (L=1-20)

0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚ -150˚ -120˚ -90˚ -60˚ -30˚ 0˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

-0.050 -0.025 0.000 0.025 0.050
rad/Ma

Fig. 10. (top) Surface flow predicted, in the left map, with pure radially varying viscosity, and with lateral viscosity

variations in the two right maps (divergence and radial vorticity, respectively). (bottom) Flow predictions at the bottom

of the mantle, at the core-mantle boundary.
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We note in Fig. 10 that the strongly reduced viscosity below the central Pacific
Ocean and below Africa (see Fig. 9) has resulted in a strong concentration of
flow, with increased amplitude, below these regions. The flow below the
continents, in the circum-Pacific region, has been strongly suppressed by the
local increase of mantle viscosity. We also note that the amplitude of the radial
vorticity field, which is dependent on the toroidal component of mantle flow (see
Lecture 1), is comparable to the amplitude of the horizontal divergence field,
which is a manifestation of the poloidal component of mantle flow. Evidently,
the long-wavelength lateral viscosity variations in Fig. 9 are sufficiently strong to
generate significant poloidal-toroidal coupling at all depths in the mantle.

The impact of the lateral viscosity variations on less direct manifestations of the
mantle flow, such as dynamic topography, is illustrated in Fig. 11 where we show
the predicted deflections of the CMB. A detailed presentation on the theoretical
calculation of dynamic surface topography, in the presence of lateral viscosity
variations, may be found in Forte & Peltier (1994). We note here, in strong
contrast to the flow predictions (Fig. 10), that the effect of lateral viscosity
variations on flow-induced surface topography is strongly muted. The relative
root-mean-square difference between the two predictions in Fig. 11 is only 25%.
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This is more than an order of magnitude less than the effect on the flow field
shown in Fig. 10. As explained in Forte & Peltier (1994), the relative insensitivity
of dynamic topography, and hence the geoid anomalies, on lateral viscosity
variations is due to the ‘internal cancellation’ of the viscosity heterogeneity when
calculating the dynamic stress field.

CMB Topography (L=1-12)
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Fig. 11. (left) Flow-induced CMB topography predicted with pure radial variations in viscosity and,

(right) predicted with superimposed lateral viscosity variations.
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