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" Abstract

Ordinaly perturbation theories are not appropriate to deal
with laterai heterogeneity of the earth because of selection
rules. Although a variational method (Rayleigh-Ritz method)
gives good approximation to normal modes of a laterally hetero-
geneous body, it is not realistic for the earth because we
have to solve very large matrix eigenvalue problems.

A new computational technique is proposed. This technique
is based on second-order perturbation theory and use it iter-
atively to compensate a loss of information about odd
harmonic order heterogeneities in a model, which comes from
selection rules of perturbation theory.

Vibration of a heterogeneous string and of a heterogeneous
square membrane is examined with using this technique.Convergence
of this technique is rapid and the results are remarkablly good.
It is suggested that this technigue may be applicable to the

free oscillation of the heterogeneous earth.
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1 Introduction

How the lateral heterogeneity of the earth affects the
normal modes of earth's free oscillation is a very interesting
and important geophysical problem. However, because of compu-
tational limitations, it has not been solved completely.

Approaches which have been prososed are summerized as

follows

(1) First-order degenerate perturbation theory by Madariaga
(1972), Saito(1971) and Luh(1973) - which considers only the
effect of coupling between modes within a single multiplet of
unperturbed model.

(2) Quasi-degenerate perturbation theory by Luh(1973 and
1974) and Dahlen(1962) - which considers coupling of neiboring
multiplets that have nearly equal unperturbed eigenfrequencies.

(3) Variational method by Usami(1971) and Plumlee & Geller
(1980) - the eigenfunction being calculated is considered to
be a linear combination of members of a complete se£ of
functions.

(4) Finite element method by Stifler & Bolt(198l1).

Geller & Stein(1978, hereafter referred to as G&S) com-
pared three approaches (first-order and second-order pertur-
bation theory and wvariational method) applying to vibration
of a simple heterogeneous string, and concluded that Rayleigh-
Ritz method was the most appropriate for the problem and also
for the earth.

Plumlee & Geller(1980) extended the work doen by Geller



and Stein into a simple three dimentional case. They showed
that "the strongest coupling is not necessarily within the modes
which are neiboring in unperturbed frequency" and " in many
cases, the coupling within modes of adjacent angular orders is
much larger than coupling within modes of adjacent frequencies".
This suggests that ordinary perturbation theories, such as (1)
and (2), are not sufficient and the.effect of coupling between
multiplets should él§9-be tqken;ippé §ccohnt.

In the earth's case , however, a very serious computational
problem arises if we apply Rayleigh-Ritz method proposed by
G&S - i.e., we have to solve large eigenvalue problems.

The purpose of this thesis is to present a new computa-

tional technique, which makes things more realistic, with

application to simple one and two dimensional problems.
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2 Eigenvalue Problem

Because a brief (but enough) review of three approximation
methods (the Rayleigh-Ritz method and first- and second-order
perturbation theory) for a nondegenerate eigenvalue problem
can be found in G&S {see appendix), it will not be repeated
here and the same notation will be used. We have to be care-
ful of some misprints in their paper. Sufixes of the denomi-
nators of equations {(10) and (1ll) of G&S{i.e., "n" and "m"
should be exchanged each other.

Whether the problem is the free oscillation of the earth
or a vibration of a string, it can be reduced to the following

eigenvalue problem,

HY +pw° ¥ =20 (1)

with boundary conditions

aw+s.gg. 0

where H is an hermitian operator, p is the density, w is the
eigenfrequency, ¥ is the eigenfunction‘and o and B are arbitrary
constants.

Heterogeneity is introduced into the operator and density

as

(0) (1)

+ H



and
1
o= o0, (1)
where H(O) and p(o) are the unperturbed operator and density,
(1)

and H(l) and o are the corresponding perturbations. In the

following the superscript 0 will be used to denote unperturbed
guantities. The perturbed eigenfunction, Wn, is expanded in

terms of unperturbed eigenfunctions, Wéo), l.e.,

c_ w0

y =
nmn im

n z
m

where Cnm is the expansion coefficient. Then problem is reduced

to find those expansion coefficients for each Wn.

According to G&S, the second-order sclutions is given by

g(1) 4 (w(O))2 p(l)
c _ _mn n_ _mn m# n
nm (07,2 (07,2 ’
()%= (wp) )

nn

where
(1) _ (0),* (1) ,,(0)
Hij = I(?i } H (Wj ) dv
(3)
or3'= rew{O® o wf®) av

and variational method leads to an eigenvalue problem



Ve =" TC (4)
where € is the expansion coefficient and

()
i3 = Pij * %4y

3
|

(5)
5

(1) (0)
Vij —Hij + Sij (wj )

It should be noted that in both cases what define the problems

are the coupling matrices, H(l), p(l)

(0)

eigenfrequencies,w n

, and the unperturbed

In their paper, G&S applied these three methods to vib-
ration of a simple heterogeneous string which has a disconti-
nuity in density and stiffness at the center and is uniform
elsewhere. Comparing with the exact solutions, they concluded
that the variational method (Rayleigh—-Ritz method) may be the
most appropriate method for finding the normal modes of a
laterally heterogeneous earth model.

Although Rayleigh-Ritz method gives a good épproximation
to normal modes of a laterally heterogeneous body as they
showed, a serious computational problem appears when we apply
the method to an earth model. Accuracy of the method depends
on number of modes used for expansion. If we use an adequate
number of modes for an earth model, the matrix eigenvalue
problem, (4), will be very large. G&S suggested that inverse

iteration method was useful to this kind of problem. In that



case we have to solve a large system of simultaneous egquations
at each iteration.
In this study a new technigue is proposed to avoid these

difficulties in Rayleigh-Ritz method.



3 New technique

In G&S, they apparently showed that even second-order
perturbation theory was insufficient for eigenvalue problems
of a laterally heterocgenecus body - a variational approach was
needed. However it may not be true. In Fig.l of G&S, second-
order theory is oscillating around the correct answer, even
though it is off. And in Fig.2 of G&S, the expansion coeffi-
cients by second-order theory corresponding to the modes an
odd distance away from the "parent"” mode are just about the
same as the exact solution for N = 1, 11 and 21, but not for
N = 31, 41 and 51. The modes an even distance away all have
zero coefficients because of selection rules. For N = 31, 41
and 51 the second-order eigenfunctions are poor because the
original mode of unperturbed solution deoes not contribute much
to the final answer.

The second-order theory does not give the right answer
mainly because the selection rules exclude even modes. The
fact that the second-order eigenfrequencies oscillate about
the correct answer and that in the two methods (second-order
perturbation theory and Rayleigh-Ritz method) what define the

problems are same coupling matrices H(l), p(l)

L (0)
n

, and unperturbed
eigenfrequencies, ; means that several iterations of some
kind of second-order theory may converge toc the correct answer

without solving large systems of simultaneous equations.

The following new iterative technique is proposed.



(1) (k),2 (1), (k)
I (H'V + (w ) p T )CH,
C(k+l)= l | I'Fll n mi ni , m#n
nm
(@92 - (@{k)y?

(6)

o (k1) _ (k)
nn nn

After each iteration the Rayleigh gquotient is used to estimate

corresponding eigenfrequencies - i.e.,

t
x).2 T VE
(™) =
T
(EnT(Dn
where €_= (C C )t and C(0)= S (Kronecker's
n NEALEREEE rComreee nm nm
delta).
Because of the initial condition Cé£)= Snm’ this technique

gives the same results as the second-order theory at first
iteration, but on further iterations third order correction
develops, the forbidden modes no more forbidden. After con-.

vergence is obtained we normalize Qn by

and the normalized eigenfunction is given by

c. v\O , &,

nm m

¥y =
o n



4 _Numerical examples

4.1  Heterogeneous String

In this section we consider the exactly same problem
discussed in G&S, a one-dimensional string, with jump of stiff-
ness, k, and density, p, at the center and uniform elastic
properties elsewhere.

Equation of motion and boundary conditions are

4 dVy (x) 2
— (k(x) — ) + p(x) w” ¥({x) =0
dx dx
(7)
Y(0) = ¥(2) =0
where
ki(x) = k0 - (6k)
0 < x < &/2

p(x) = o5 = (8p)
kix) = ko + (8k)

L/2 < x < &
p(x) = py + (8p)

Here k0 and Py are the unperturbed stiffness and density, and

8k and Sp are the perturbations and £ is the length of the
string.
The coupling matrices are given by

. (m%n)w ._(m-n)mw

sin———+'— Sin-—ert

w_ 200 S ) (8)
mn -90“ m + n m - n :

P
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2(8k)mnm . sipmmIT oo (mon)m
(1) _ . Lo 2 2
Hm = [ + ]
poft',z m+ n m — n
Because of selection rules Héi) and Dii) are equal to zero

when (n-m) is even.

We used 41 trial functions as in G&S in the actual cal-
culation. The exact solutions are calculated by the program
used in Gs&S.

In Figure 1 and Figure 2, we considered first 21 modes
on the exactly same problem as in G&S - i.e., k0=l.0, p0=0.5,
8k=8p=0.1 and 2=20. Convergence of this technique is extremely
Four

good. iterations seem to be enough for modes up to N=21.

Since
it may not

too large.

this technigue is based on a perturbation theory,
give the right solution if the heterogeneity is

In Figure 3, we extended calculation for modes up

to N=50 and changed the perturbation of elastic properties in
order to see this effect. As expected, it gave wrong answer
after N=40 for the same problem. (Figure 3-a) The plots of

exact answer in Fig.2 of G&S shows that when N=31 or 41 the

th mode) is

expansion coefficient for its own mode (i.e., N
smaller than the others. Since such a phenomina may not occur
in the earth case, this technigue may be applicable to the
earth. Figure 3-b and 3-c are the case whenép =8k=0.05 and
0.15 respectively. When the heterogeneity is large this tech-
nigque fails for lower modes. It should be noted that even when

this technique fails, it converges - i.e., if the introduced

heterogeneity is too large it converges toward wrong answer.
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5 CoMPARTSON OF E1GENFREQUENCY W1TH ExacT SoLuTions
o
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- == FIRST ITERATION
- me—m——— SECOND "
e THIRD I
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Figure 1. Comparison of eigenfrequencies for exact solution

and five iterations of proposed technique. w(0)

n is subtracted

from all eigenfrequencies. The horizontal solid line represents

wéo). Four iterations seem to be enough.
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EXPANSION COEFFICIENTS
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Figure 2. Comparison of expansion coefficients for exact solu-
tion and five iterations of proposed technique, for modes of

order N. In each case the coefficient for Nth mode is in the
center.
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CoMPARISON OF EIGENFREQUENCIES WITH EXacT SOLUTIONS

T T T 1 ¥ T 1 T T T T

T T T T T T T T
.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 4

L] L T T ¥ 1
0.00 44.00 48.00

Figure 3-a. Comparison of- eigenfrequencies for exact solution
and proposed technique. Modeées are extended to N=50. §p=8k=0.1.

Itstarts to fail about N=40.
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CoMPARISON OF E1GENFRERUENCIES WITH ExacT StLuTions
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Figure 3-b. We set ¢p=0k=0.05. Present technique gives almost
right answer.
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Figure 3-c. &p=38k=0.15. It begins to fail about N=26.

T T 1
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4,2 Heterogeneous membrane

The case when the original eigenvalue problem has some kind
of  degeneracy, proposed technique can not be used because the
denominator of (6) will be zero. In this section we consider
a heterogeneous%q&;;;hmmbrane with uniform tention, T, and
variable density, p, which has degenerate eigenfunctions when
it is homogeneous.

The Fourier transformed equation of motion is

CR2Y(x,y) 32¥(x,y)

T ( ———— + —— ) + p(x,y) 0®¥(x,y) =0 (9
ax? 3y ?

with boundary conditions
Y(x,y ) =0 at all boundaries.
If P=Pq is constant, then eigenfunctions have degeneracies,

i.e., unperturbed eigenfunction of mode (n;,n:),

2 n;Tx Ny

—W(O) _ . .
n = — S1n sin
/o a a a

where a is the length of the sides, and that of mode (n;,n;)

have same eigenfrequency,

M
N

(w(O))z = 2 hy + n%
n

©
o

Any linear combination of these two eigenfunctions also have

the same eigenfrequency. In this problem mode number,n, denotes
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a pair of natural numbers, (n;,n,), where n, is a mode number
of x-direction and n, is that of y-direction.

A perturbation of density is introduced by

2 10

p(x,¥) =py + Bp) xy / a (10)

Where‘p0 is the unperturbed density, while tention,T, is kept

constant. Coupling matrices of such a problem are

s Sinl.r.l_]:_.tn_lﬁ sinIE_IE—nl-]T
(1) .4 06p 2 2 5
P = 7 —u L (- —— ) 7= —) 71

0 m;+ n; mip— n;

. [( Sinr_n#%_ﬂ )2 ) ( Sinriz_g_n_zﬂ )2]

mz+ nsp m2— Na
(11)

H(l) -0
mn

where n={n;,n;) and m=(m;,ms).

As mentioned earlier, when the original unperturbed eigen-
functions have degeneracy, we have to remove the degeneracy
before applying this technique. First-order degenerate pertur-
bation theory, which is common in Quantum mechanics (e.g.,

Schiff ), is used to each degenerate multiplet.

Fivst-order degenerate perturbation theory We consider only

the effect of coupling between modes within a single multiplet

(0) (0}

(ni1,n2) (nz,n:)

case. The new eigenfunction is assumed to be a linear combi-

- i.e., the coupling between VY and Y in this

nation of the unperturbed eigenfunctions corresponding to

(MQO))Z
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_ A1y (0} 2 (0)
t=2c ly(-‘f‘llr-‘ﬂz) +C IP(1‘12:1'11)

Substituting this expression into the equation of motion, (1)

we have
2 m, (1) (0),2 (1), ,(0)_ m 2, (0),2
.'>IC(H.+(wn )P )‘l‘m—DOZC((wm) -(wn )7

m=1

Only first order terms in the perturbations have been kept.
The orthogonality property of the unperturbed eigenfunctions

are then employed to simplify this to the final eigenvalue

problem:
Gm €= 12 ¢
where w(l) is the first orderéarréctithfor eigenfrequency,
_ (1) _ (0,2 (L)
and
c=(c,c )t

Before applying the proposed technique, following unitary
transformations are employed to get new coupling matrices

corresponding to the new non-degenerate eigenfunctions.

D _ ot 4
new

(1y _ £ (L)
Prew = € P C
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*. 0
Lo 1

c-c*!
C = C2C2l
1

0 L]

1
where ( C',C? ) and ( C€!'',C2?' ) are the eigenvectors of first-

order theory. And finally we use the technique including other

multiplets.

Numeviecagl results We set a=20, T=1.0 and p0=0.5 and

tried four cases for &p, Sp= 0.1, 0.5, 1.0 and 1.5. Because
of the simplicity of our example and selection rules, some of
the degenerate multiplets could not be resolved by first-order
parturbation theory. In Figure 4 through 7 we excluded such
modes and used first 41 trial functions to solve the problem
for first 21 modes, where mode number,N, was counted in the

w(O)_ In all
n

order of increasing unperturbed eigenfrequencies,
figures, stars, solid-lines and broken-lines show the answers
obtained by Rayleigh-Ritz method, this technique and first-
order perturbation theory respectively. Figure a's of them show
eigenfrequencies and b's show deviation from original unper-
turbed eigenfrequencies. Horizontal solid lines in Figure b's
are the original eigenfrequencies.

They show that basically our technique gives almost iden-

tical eigenfrequencies with those of Rayleigh-Ritz method,
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while first-order theory fails as perturbations increase. In
Figure 4-a, there can not be seen any difference among three
methods. In Figure 4-b, however, first-order theory deviate
from Rayleigh-Ritz ﬁethod and present technique only slightly.
As we increase perturbations, Figure 5 - 7, the discrepancy
between first-order theory and Rayleigh-Ritz method can be
found even in Figure a's.

In Figure 6-b the eigenfrequency of mode N=15 looks poor.
This is because eigenfrequencies of mode N=14 and 15 are nearly
equal. In such a case (a kind of guasi-degenerate case) present
technique may not converge to right answer. A more interesting
phenominon can be seen in Figure 7-a, where apparently present
technique fails for the modes indicated by arrows, N=15,17,18
and 20. But this is not true. Because we counted mode number
in the order of increasing new perturbed eigenfrequencies, it
would not give right mode number if eigenfrequencies of split-
ting multiplets exceed that of neiboring modes. If we compare
the eigenfrequency of mode N=15 of Rayleigh-Ritz method with
that of ﬁ=l7 of present technique and so on, we see present
technique gives right answer. In Figure 7-b, this is not true
because the original unperturbed eigenfrequencies, which we

subtract from new eigenfrequencies, are different.
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E1ceENFREQUCNCIES OF SQURE MEMBRANE

0.76 0.94 1.30 1.26 t.42 1.58 1.74 1.90

0.62

0.46

‘UBR
|

T T T

T T 4 T T L[] L]
0.0D0 2.00 4.00 5.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Figure 4-a. Comparison of eigenfrequencies for Rayleigh-Ritz
method(*}, first-order perturbation theory(broken line) and
present technique(solid line). Difference among three methods
can not be seen. Density change (§p/p) is 20%.
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‘ ComParISON OF E1GENFREQUENCIES OF SQURE MEMBRANE
| # RAYLEIGH-RITZ

i ————— 1ST ORDER PERTURBATION
—————— THIS METHOD
&
-
0
Q.
o
=
o
1
‘I‘ T L T T T T T T T T T T T T T T T T T T 1
0D.cO0 2.00 4.00 85.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
' N

Figure 4-b. Comparison of eigenfrequencies.(uéo) is subtracted

from all eigenfrequencies. Horizontal line is the original
unperturbed eigenfrequencies. (Gp/%} = 20%.
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E1ceENFREQUENCIES OF SquRe MEMBRANE

1.90

]

1.58 1.1

1.42
b

1.28

T T 1

H T
.00 2.00 4.00 5.00 8.00 10.00 12.00 1!4.00 16.00 18.00 20.00

Figure 5-a. Same as Fig.4-a. (8p/po)=100%.
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COMPARISON OF EIGENFREQUENCIES OF SqURE MEMBRANE

1 1
18.00 20.00

[

Figure 5-b.

=100%.

(6p/04)

Same as Fig.4-b.
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E1GENFREQUENCIES OF SQURE MEMBRANE

1.42 1.58 [.74 1.90

1.26

T T T T ¥ T T T T 1
12.00 14.00 16.00 18.00 20.00

Figure 6-a. Same as Fig.4-a.

_ (§p/po)= 200%. Pirst-order theory
fails apparently.
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CoMPARISON OF EIGENFREQUENCIES OF SQURE MEMBRANE

1

1

-0.02 0.00
1

-0.06 -0.05 -0.03
1 1 L | |

* RAYLEIGH-RITZ , - ————. 1ST ORDER PERTURBATIGN, ———— <THIS METHOD

-0.08

T T T 1
0.00 2.00 4.00 65.00 2.00 10.00 1Z2.00 t14.00 16.00 18.00 20.00

Figure 6-b. Same as Fig.4-b. (6p/ps)=200%. Present technique
is poor for N=15.
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9.39
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Figure 7-a. Same as Fig.4-a. (8p/po)=300%. For the modes
indicated by arrow, present technique apparentry fails to

give right solution. But it is not true. See the contex for
detail.
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CompARISON OF EIGENFREAUENCIES OF SaURE MEMBRANE
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Figure 7-b. Same as Fig.4-b.

(8p/po)=300%.

METHOD
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5 Discussions

In last section we showed that the proposed technique
could be used for a degenerate case, if we remove degeneracy
by first-order perturbation theory in advance. When the origi-
nal unperturbed problem has some quasi-degenerate eigenfunctions,
like last example, quasi-degenerate perturbation theory should
be used instead of ordinary first-order perturbation theory.

We have introduced present new technique as the extension
of second-order perturbation theory. However, another inter-
pretation of the technique is possible from (3), (4),(5) and
(6). In (6), except for Cnn,actually we are solving set of
linear simultaneous equations-by a procedure similar to Jacobi
method. From (4), the matrix eigenvalue problem of Rayleigh-

Ritz method is written as
( -V +w2T) € = 0.
n n

If we have good approximations to eilgenfrequencies, by the

analogy of Jacobi method, present technique will converge

. _ t
toward a solution mn—(Cnl, an,... ..... ’Cnm’ ...... ) ~. The
residual of this solution is given by

(-V+wim c = (0 0,5 ,0 0t
n reseea 10,6 40,0000, ’
where
_ (1) 2 (1) 2, (0,2, .
8 r (H)7 + w P ) Chz * ( w (wn )7) Cay

n 1751'1 ni n
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If 5n=0, then Cn is the real eigenvector. So Gn will be a good
criterion of correctness of the technique.

Since the condition that Jacobi method coverges to right
answer is that the specific matrix is diagonally dominant,
the necessary condition that present technique works is that
the matrix, (—V+w§T), is diagonally dominant. This implies in
our problem that heterogeneities are small and that (wn - wéO))
are not too small. The reason why eigenfrequency of mode N=15
of Figure 6-b is poor is that for the mode the latter condition
is not fulfiled. If we use the procedure similar to that of
Gauss-8idel method instead of Jacobi method, above conditions
will not be needed, because the convergence condition of Gauss-
Sidel method is that the matrix is possitive-definite symetric
one - so that Quasi-degenerate treatment may not be needed
any more.

The fact that proposed technigue converges to wrong answer
in Figure 3 suggests that this technique is perturbational
rather than iterative.

For the earth, what we do is:

(1) split degenerate multiplets with first-order degenerate
perturbation theory,

(2) use this proposed technique including other multiplets.
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"6 Conclusions

As ehown by Plumlee & Geller (1980), first-order degene-
rate perturbation theory is inadequate for dealing with
lateral heterogeneity of the earth, because it loses all infor-
mation about the odd harmonic order heterogeneities in an
earth model. Rayleigh-Ritz method, on the other hand, does
contain this information and gives good approximation to the
solution if an adequate number of modes is taken into account.
There are, however, serious difficulties of this method in the
actual computation - solving large eigenvalue problems.

In this thesis I have described a new computational
technique for calculation of normal modes of a laterally
heterogeneous body. This technique has the advantages of being
able to solve normal mode problem only refering to the specific
mode which is to be solved. When the heterogeneity is small
enough, this technigque gives right answer with equivalent

accuracy to Rayleigh-Ritz method.
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Appendix

( After G&S )
- ApPROXIMATION METHODS FOR NoRMAL Mopm ProBLEMS

The variational method and first- and second-order perturbation theory are well
known methods in mathematical physics, so a brief review will suffice. The equation of
motion for an elastic, nongravitating, body may be written as -

Ii@+pw2\1’=0 o (1)

~where H is the (Hermitian)} operator for the elastic restoring force, p-is the density,
@ is the eigenfrequency, and ¥ is the eigenfunction. The boundary conditions are

a\If+ﬁg—i=0 _ (2)

‘where @ and 8 are arbitrary constants which may be functions of position along the

boundary. ‘ )
All three approximation methods assume that we start with the exact (nonde-

generate) eigenvalues and eigenfunctions for the problem '

- H(o)‘l,.(o) _I_'pm)(w(m)?\y(m = 0. . (3)

For simplicity, we assume that for the boundary conditions @y = @ and 8, = g8 (i.e.,
the boundary conditions are the same for the perturbed and unperturbed problems).
We denote the eigenvalues and eigenfunctions for (3) as w.” and ¥,", respectively.
The ¥.® are orthonormalized so that [ (Zn™)**(2,@) AV = 8mp.
We now consider the details of each approximation method. _ :
First-order perturbation theory: We write the perturbed operator and density in (1) as

H = H® + H“" ‘ @)
and ‘ o=+ 9 (5)
where H ® and p® represent the difference between the perturbed and unperturbed
problems. We then define matrix elements ;
HS = [(2.9)89@,9) av
and ' Pt(nlf)l —_ f{‘I’mm))*P(l) (.\I,“(D)) av. | : (6)
(Note that Hoy = (H%)* and o) = (o8)*)
In first order perturbation theory, as commonly applied in seismology, we assume

that the eigenfunction for a given mode remains the same, and caleulate the “first-
order” correction to the eigenvalue, (o) = (™) + (o)

(“"nm)z = _(wnw))zpa(xli - H:(mlrz (7)

Second-order perturbation theory: We proceed in the same way as Merzbacher {1970},
except for the extra terms due to the density perturbation. We assume that we make a
- smail perturbation to the eigenfunction, which we find to first order .

‘Pn = ‘I'n(m + E Cnm‘I’m(m (8) ‘

m#n




and a small second-order cbrrection $o the eigenvalue

o = (07 + (") + () - (9)

When we introduce (8) and (7) into (1)} we obtain, after discarding terms which
are not of first order

HE 4 (0.)%8

(wnw))z —_— (wm(ﬂ))2 °

Gﬂ.m = ( 10)

When we substitute (7), (8), (9), and (10) into (1) we find the second-order cor-
rection to the eigenfrequency

@ = 3 B A @Vl oy (1)
& T on® — (@)

Finally, it is necessary to renormalize the new eigenfunction. Althcugh the summations
in (8) and (11) are in principle over all modes, in practice we use some finite subset of
the modes for which (11) will eonverge, The normalization factor is then

P = 2 3 CuConlolsl + in] (12)

and the normalized eigenfunction is

\/P (@ 4 22 Con ¥m ‘°’> (13)

mn

 Variational method: It should be emphasized that the variational method is based
on Hamilton’s prineiple, and thus can be justified physically (¢f. Morse and, Feshbach,
1953). Hamilton’s principle states tha.t for any small change in a system the La-

grangmn, L, is stationary, 7
8(L) = &(T — V) =0, (14)

~ where T is the kinetic energy and V is the potential energy. We will use the elgen-
functions for (3), the unperturbed solution, as trial functions and write the eigen-
function as -

T = 3 0w, ‘ o (15)

If we insert (15) into (14) and set the partial derivatives of L with respect to C, to
zero, we obtain a matrix eigenvalue problem

det ('T — V) = 0 (18)

where the elements of T and V are

Ty = f (OO av = o + 5y
| ' (17)
Vis= ~ [ @OV HEO aV = B + 5™

The eigenfrequencies are given by the eigenvalues of (16) and the elgenfunctlons by
(15), where the coefficients C, are from the eigenvectors of (16).

Because the eigenfunctions for (3) are a complete set, if we used all of the unper-
turbed modes in our trial function, (15), we would obtam the exact eigenfrequencies
and eigenvalues for the perturbed problem. In practice we must limit ourselves to a
finite set and verify “experimentally” that our set is large enough. Note that, as is "
well known, first-order perturbation theory is essentially equivalent to the vari-
ational method with only one trial funetion in (15).
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Fic. 1. Comparison of eigenfrequencies for exact solution, variational method, and first- and
second-crder perturbation theory. w.(® is subtracted from all eigenvalues for ease of presen-
tation. The variational solution agrees excellently with the exact solution, while the second-
order perturbation solution osciflates wildly around the correct asymptote. First-order perturba-
tion yields eigenvalues which are identical to those for the unperturbed problem. To put this figure

iin ?erspective, the lowest eigenvalue is wy = 0.2219, s0 the difference between wso and o’ is about
ol wy.
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Fre. 2, Comparison of expansion coefficients for exaet solution, variational method, and
first- and second-order perturbation theory, for modes of order N. In sach case the coefficient
for the Nth mode is in the center.



