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ABSTRACT

In his pioneering 1961 paper on seismic anisotropy in a layered earth, Don L. 
Anderson (hereafter referred to as DLA) introduced a parameter often referred to in 
global seismology as η without providing any reasoning. This note hopes to clarify the 
signifi cance of η in the context of the dependence of body wave velocities in a trans-
versely isotropic system on the angle of incidence, and also its relation with the other 
well-known anisotropic parameters introduced by Leon Thomsen in 1986.
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INTRODUCTION

To describe a radially anisotropic (transversely isotropic 
with a vertical symmetry axis, VTI) system, we employ Love’s 
(1927) original notation, where stress (τ) and strain (e) tensors 
are related by
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where H = A – 2N (all other non-specifi ed components of the 
elastic tensor are zero). There are fi ve independent parameters, A, 

C, F, L, N, to describe this system, while there are two, λ and µ, 
for the isotropic case, for which A = C = λ + 2µ, F = λ, L = N = µ. 
For convenience, Anderson (1961) introduced the following 
“anisotropy factors”:

                                    ϕ = C/A = α2
V  / α2

H                                  (2)

                        ξ = (A – H)/2L = N/L = β2
H /  β2

V                         (3)

                                    η = (A – 2L)/F,                                   (4)

which are all equal to 1 for isotropic case ( 

         V H H V/ / / , /C A N Lα = ρ , α = ρ, β = ρ β = ρ, 
where ρ gives the density and α and β respectively represent P- 
and S-wave velocity).
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While both ϕ and ξ have simple meanings (degree of anisot-
ropy in P and S wave, respectively), the physical meaning of η is 
not so trivial. Takeuchi and Saito (1972), in their monograph on 
seismic surface waves, reversed the order of the denominator and 
numerator in the defi nition of η as

 η = F / (A – 2L),                                         (5)

also without commenting on the physical meaning. As the expres-
sion of Takeuchi and Saito (1972) is now commonly used in the 
global seismological community, we will use this notation and 
denote it as ηDLA = F / (A – 2L) in the following. In his textbook, 
Anderson (1989) called this ηDLA “the fi fth parameter required 
to fully describe transverse isotropy.” Dziewonski and Anderson 
(1981), by showing examples, discussed the effect of ηDLA on 
the incident angle dependence of the phase velocity of P and S 
waves, and we generally think that ηDLA controls, to some extent, 
the incidence angle dependence of those body waves, as well as 
related properties of Rayleigh waves.

The purpose of this short note is to provide simple theoreti-
cal background to how ηDLA affects body wave propagation.

INCIDENCE ANGLE DEPENDENCE OF BODY WAVES

By solving an eigenvalue problem of an appropriate Christ-
offel matrix, the incidence angle, θ, dependence of body wave 
phase velocities can be obtained as
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where νP, νSV, and νSH denote phase velocities of quasi-P, quasi-
SV, and SH waves respectively, and
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When the condition

 (F + L)2 = (C – L)(A – L)                         (13)

is satisfi ed, Equation 11 will be S = [(C – L) + (A – C)sin2 θ]2, and

 
22 ( ) ( )sinPv C A Cθ θρ = + −                        

(14)

       
2 ( )SVv Lθρ =                                        

(15)

 
22 ( ) ( )sinSHv L N Lθ θρ = + − .

                    
(16)

The condition in Equation 13 is called by Thomsen (1986) 
the elliptic condition because, in the absence of the sin2 2θ term, 
the forms of the wave velocity surfaces as a function of incidence 
angle θ are elliptical with only a sin2 θ dependence. When the 
condition in Equation 13 is not satisfi ed, the presence of the sin2 
2θ term means that the wave surfaces can be either convex or 
concave. Note that the convexity or concavity of the P velocity is 
in the opposite sense to that of the SV velocity. This is an explicit 
consequence of the presence of the S  term in Equations 6 and 
7 with opposite signs.

Thus if we were to introduce an additional parameter to 
characterize the incidence angle dependence of body waves, one 
reasonable choice may be

 
1/2 1/2 ,
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and ηκ = 1 for the isotropic case.
Further considering
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is another possibility that may make sense by looking at 
Equation 12.

One of the good points of ηDLA is that it is simple and depends 
on just A and not C. Assuming that P-wave anisotropy is small, if 
we substitute 

2
A C+  in Equation 18 by A, we get

                  
.

F L
A Lκ ″

+η =
−                                      

(19)

It is instructive to examine how these η parameters behave 
when both P- and S-wave anisotropy are absent (i.e., A = C and L = 
N). When these conditions are satisfi ed,
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S = [(A – L)]2 + [(F + L)2 – (A – L)2]sin2 2θ

and sin2 θ dependence disappears. In this case, ηκ, ηκ′, and ηκ″ 
reduce to the same form. Also, it is easy to see that ηDLA = 1 gives 
the elliptic condition, and so in this sense, ηDLA – 1 becomes a 
measure of departure from the elliptic condition to dictate the 
convex-concave pattern.

For more general cases, χ = ηDLA – 1 is small for weak 
anisotropy:
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2
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2
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(20)

Similarly,

              
×1 F − A + 2L A − 2L

A − L A − Lκ ″χ″ = η − = = χ ,
                 

(21)

and as long as A – L > A – 2L > 0 is satisfi ed, χ″ has the same 
sign as χ, and χ > χ″, indicating that χ″ is also small. So in this 
respect, if anisotropy is weak (especially in P), ηDLA might be a 
good proxy for ηκ whose departure from unity provides a measure 
of the deviation from elliptic anisotropy and dictates the convex-
concave pattern of the incidence angle dependence of νP  and νSV.

THOMSEN’S PARAMETERS

Thomsen (1986) introduced three parameters for a VTI system, 
now referred to as Thomsen’s parameters, and they are defi ned as

 ε = 11
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which are all small for weak anisotropy. While ε and γ are directly 
related to ϕ and ξ, respectively, as shown above, and thus to P- 
and S-wave anisotropy, δ was introduced such that it dominates 
νP in the case of near-vertical incidence as in refl ection profi ling.

Considering that δ = ε corresponds to the condition for ellip-
tical anisotropy, examination of ε – δ leads to

                      ε – δ = 
2 2( ) ( )
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and we now see the connection between Thomsen’s δ and ηκ 
introduced here. If ηDLA were a proxy of ηκ for weak anisotropy, 
we might be able to say that a connection between ηDLA and 
Thomsen’s δ is established.

For weak anisotropy, the incidence angle dependence of 
body waves is, according to Thomsen (1986),

              νP(θ) = αH(1 + δsin2θ cos2 θ + εsin4θ)                    (28)

               νSV(θ) = 
2

2 2
21 ( sin cosH

V
V

θ θ
⎡ ⎤αβ + ε − δ)⎢ ⎥β⎣ ⎦

                 (29)

                            νSH(θ) = βV(1 + γsin2θ)                             (30)

and when the elliptic condition is satisfi ed,

 νP(θ) = αH(1 + εsin2θ)

 νSV(θ) = βV

 νSH(θ) = βV (1 + γsin2θ),

which show simple incidence angle dependences.
Equations 28, 29, and 30 may be expressed in terms of 

2θ and 4θ to make the incidence angle dependence more 
explicit:

            νP(θ) = 1 (1 cos 2 ) (1 cos 4 )
2 2H θ θε ζ ⎤⎡α + − − − ⎥⎢ ⎦⎣

              (31)

                  νSV(θ) = 
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                      (32)

                       νSH(θ) = 1 (1 cos 2 ) ,
2V θγ⎡ ⎤β + −⎢ ⎥⎣ ⎦

                      (33)

where ζ = (ε – δ)/4 is introduced. These equations show that (ε – 
δ) dictates the convex-concave nature (i.e., cos 4θ dependence) 
of νP and νSV.

ηDLA AND ηκ FOR WEAKLY ANISOTROPIC MODELS

To fi nish up this short note, we compare distributions of 
η-related parameters for some weakly anisotropic cases.
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Millefeuille (Isotropic Layers) Case

In the fi rst example, we present a series of VTI models con-
structed by the Backus averaging (Backus, 1962) of a stack of two 
kinds of homogeneous isotropic layers: soft layers embedded in 
a background solid matrix (Kawakatsu et al., 2009). We param-
eterize (1) the proportional reduction of rigidity of soft layers to 
the background by a (0 ≤ a ≤ 1), (2) the proportional reduction 
of the bulk modulus by a/2, and (3) the volume fraction of soft 
layers by f (0 ≤ f ≤ 1). Both a and f are varied in intervals of 0.05. 
Figure 1A compares ηκ with ηDLA (blue circles) and 

 
ηκ′ (magenta 

crosses). While ηκ and ηκ′ give almost the same values, ηDLA gives 
slightly smaller values. As ηκ  ≤ 1 is guaranteed (Berryman, 1979), 
all values appear generally less than 1. Although ηDLA in this case 
deviates slightly from ηκ, nearly one-to-one correspondence may 
be observed, making ηDLA a reasonable proxy for ηκ.

General Case

For a more general case, we construct a series of VTI models 
which have a maximum of ±5% anisotropy in both αV,H and βV,H , 
and 0.5 < ηDLA < 1.5 (Fig. 1B). While ηκ  and ηκ′  give almost the 
same values, ηDLA  deviates signifi cantly from the corresponding ηκ .

A-Type Olivine Case

As a third example, we construct a series of VTI models 
by azimuthal averaging (Montagner and Nataf, 1986; Montag-
ner and Anderson, 1989) of an arbitrarily rotated A-type olivine 
fabric (Jung et al., 2006) (Fig. 1C) (rotation is done with a 30° 
interval for each Euler angle). In a similar way to the preceding 
cases, ηκ and ηκ′ have almost the same values, but ηDLA deviates 
from corresponding ηκ.

Examples of the incidence angle dependence of representa-
tive VTI models (denoted by green asterisks in Fig. 1) are shown 
in Figure 2. Note that the convex pattern of νSV velocity occurs 
when ηκ  < 1.

DISCUSSION

The incidence angle dependence of body wave phase veloci-
ties in a radially anisotropic system has not been discussed much 
in the geophysical literature, as it is a diffi cult effect to observe. 
In the laboratory, on the other hand, the simple sin θ and sin 2θ 
dependence (e.g., Equations 6 and 11) has been used to obtain the 
fi fth elastic constant from measurement along the angle 45° from 
the symmetric axes (Christensen and Crosson, 1968; Anderson, 
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Figure 1. Comparison of η-related pa-
rameters for various weakly anisotro-
pic models (ηκ versus ηDLA—blue cir-
cles; ηκ  versus ηκ′—magenta crosses). 
(A) Millefeuille case. (B) General trans-
versely isotropic (TI) case. (C) Rotated 
A-type olivine case. Green asterisks 
correspond to ηκ versus ηDLA for the fol-
lowing representative models: in A, a = 
0.9, f = 0.01 (see text); in B, peak-to-
peak anisotropy for both P and S waves 
is 1.5% with ηDLA = 0.9 and 1.0; and in 
C, the A-type olivine fabric case whose 
fast axis lies in the horizontal plane. Ex-
amples of incident angle dependency of 
body waves for the representative mod-
els are shown in Figure 2.
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analyses can be made generally, the new parameter ηκ (or ηκ′) 
might be a useful tool in global seismology to characterize VTI 
(radially anisotropic) systems. How η-related parameters might 
be constrained from Rayleigh wave dispersion needs also to be 
understood (Anderson, 1965).
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blue and red lines are for the ηDLA = 0.9, ηκ = 0.983 case, and νSH be-
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