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S U M M A R Y
Kawakatsu et al. and Kawakatsu introduced a new fifth parameter, ηκ , to describe transverse
isotropy (TI). Considering that ηκ characterizes the incidence angle dependence of body wave
phase velocities for TI models, its relevance for body wave seismology is obvious. Here, we
derive expressions for partial derivatives (sensitivity kernels) of surface wave phase velocity
and normal mode eigenfrequency for the new set of five parameters. The partial derivative for
ηκ is about twice as large as that for the conventional η, indicating that ηκ should be more readily
resolved. While partial derivatives for S velocities are not so changed, those for P velocities
are significantly modified; the sensitivity for anisotropic P velocities is greatly reduced. In
contrary to the suggestion by Dziewonski & Anderson and Anderson & Dziewonski, there is
not much control on the anisotropic P velocities. On the other hand, the significance of ηκ for
long-period seismology has become clear.
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I N T RO D U C T I O N

Kawakatsu et al. (2015) and Kawakatsu (2016) recently introduced a new parameter, ηκ that characterizes the incidence angle dependence
(relative to the symmetry axis) of seismic body wave velocities in a transverse isotropy (TI) system. While the commonly used fifth parameter
in global seismology to describe TI system, η = F/(A − 2L) (e.g. Anderson 1961; Takeuchi & Saito 1972), has no simple physical meaning
(Saito, 2015, personal communication), the newly defined parameter,

ηκ = F + L

(A − L)1/2(C − L)1/2
, (1)

where A, C, F and L denote Love’s elastic constants for TI (Love 1927), measures the departure from the ‘elliptic condition’ (Thomsen 1986)
when ηκ is not equal to unity, and characterizes the incidence angle dependence of body waves (Kawakatsu 2016).

Kawakatsu (2016) also showed that when existing models of upper-mantle radial anisotropy (transverse isotropy with a vertical symmetry
axis, VTI) are compared in terms of ηκ , PREM (Dziewonski & Anderson 1981) shows a distinct property; within the anisotropic layer of
PREM (a depth range of 24.4–220 km), ηκ < 1 in the upper half and ηκ > 1 in the lower half; if ηκ > 1, anisotropy cannot be attributed to the
layering of homogeneous isotropic layers, and thus requires the presence of intrinsic anisotropy. This finding indicates that the introduction of
ηκ at least brings a new way to interpret VTI models. Then, the next question to be answered would be how well this new set of parameters are
resolved. As most of VTI models are constructed, as PREM, by analysing surface wave and/or normal mode data, to answer this question we
need their partial derivatives (sensitivity kernels) for model perturbations. It should be also noted that Thomsen & Anderson (2015) recently
called attention for the importance of partial derivatives to be taken with respect to appropriately chosen anisotropy parameters such that
partial derivatives make physical sense.

PA RT I A L D E R I VAT I V E S

We generally follow Takeuchi & Saito (1972) for the notation and derivation of partial derivatives (see also Appendix). To describe VTI, we
use two sets of anisotropy elastic parameters: (αH, αV, βV, βH, ηκ ) and (αH, βV, ξ , φ, ηκ ), where the two P-wave velocities and the two S-wave
velocities are defined as

αH =
√

A/ρ

αV =
√

C/ρ
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and

βV =
√

L/ρ

βH =
√

N/ρ

(ρ denotes density), and the strength of P and S anisotropy as

ϕ = C/A = α2
V /α2

H

ξ = N/L = β2
H /β2

V .

Formulae

Surface waves

The small change in phase velocity (c) of surface waves at a given angular frequency (ω) due to changes in material properties can be
expressed as,(

δc

c

)
ω

=
∑

i

∫
εi

c

[
∂c

∂εi

]
ω

δεi

εi
dz +

∫
ρ

c

[
∂c

∂ρ

]
ω

δρ

ρ
dz, (2)

where εi denotes the ith elastic parameter among the above two sets of the anisotropy parameters and ρ the density at a depth z (e.g. Aki &

Richards (1980)). The introduction of ηκ has no effect for density sensitivity, ρ

c

[
∂c
∂ρ

]
ω

. For Love waves, it also has no effect on the partial

derivatives εi
c

[
∂c
∂εi

]
ω

as given in Takeuchi & Saito (1972). For Rayleigh waves, when we use the first set (αH, αV, βV, βH, ηκ ) as independent

parameters, we find

αH

c

[
∂c

∂αH

]
ω

= 1

ω2 I1

( c

U

)
k Ay3

[
ky3 − F + L

A − L
ẏ1

]

αV

c

[
∂c

∂αV

]
ω

= 1

ω2 I1

( c

U

)
C ẏ1

[
ẏ1 − k

F + L

C − L
y3

]

βV

c

[
∂c

∂βV

]
ω

= 1

ω2 I1

( c

U

) [
1

L
y2

4 + kL

{
2 +

(
1

A − L
+ 1

C − L

)
(F + L)

}
ẏ1 y3

]
(3)

βH

c

[
∂c

∂βH

]
ω

= 0

ηκ

c

[
∂c

∂ηκ

]
ω

= −1

ω2 I1

( c

U

)
k(F + L)ẏ1 y3,

where k denotes the wavenumber and U the group velocity, yi = yi(z; ω, k) is the ith depth-dependent eigenfunction and ẏi = dyi/dz and the
energy integral

I1 =
∫

ρ(y2
1 + y2

3 ) dz. (4)

Note that the term (F + L) is present in all non-zero partial derivatives. As (F + L) = ηκ (A − L)1/2(C − L)1/2, it is possible to express them in
terms of ηκ , a requirement for these new formulae to be correct. In fact, it is easy to show that partial derivatives can be expressed in terms
of the five chosen anisotropy parameters (and the density) without employing Love’s elastic constants.

For the case of the second set of parameters (αH, βV, ξ , φ, ηκ ), we find the following:

αH

c

[
∂c

∂αH

](∗)

ω

= 1

ω2 I1

( c

U

) [
k2 Ay2

3 + C ẏ2
1 − k(F + L)

(
A

A − L
+ C

C − L

)
ẏ1 y3

]

= 1

ω2 I1

( c

U

) [
k Ay3

(
ky3 − F + L

A − L
ẏ1

)
+ C ẏ1

(
ẏ1 − k

F + L

C − L
y3

)]

βV

c

[
∂c

∂βV

](∗)

ω

= 1

ω2 I1

( c

U

) [
1

L
y2

4 + kL

{
2 +

(
1

A − L
+ 1

C − L

)
(F + L)

}
ẏ1 y3

]

ξ

c

[
∂c

∂ξ

](∗)

ω

= 0 (5)
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φ

c

[
∂c

∂φ

](∗)

ω

= 1

2ω2 I1

( c

U

)
C ẏ1

[
ẏ1 − k

F + L

C − L
y3

]

ηκ

c

[
∂c

∂ηκ

](∗)

ω

= −1

ω2 I1

( c

U

)
k(F + L)ẏ1 y3,

where superscript parentheses asterisks (*) on the left-hand side are introduced to denote that these partial derivatives are for the second set
of parameters. The relationship between the derivatives for the two sets of parameters are given by

αH

c

[
∂c

∂αH

](∗)

ω

= αH

c

[
∂c

∂αH

]
ω

+ αV

c

[
∂c

∂αV

]
ω

βV

c

[
∂c

∂βV

](∗)

ω

= βV

c

[
∂c

∂βV

]
ω

+ βH

c

[
∂c

∂βH

]
ω

(6)

ξ

c

[
∂c

∂ξ

](∗)

ω

= 1

2

βH

c

[
∂c

∂βH

]
ω

φ

c

[
∂c

∂φ

](∗)

ω

= 1

2

αV

c

[
∂c

∂αV

]
ω

.

Normal Modes

The small change in eigenfrequencies (ωn) of normal modes for a given angular order (n) can be expressed as,(
δω

ω

)
n

=
∑

i

∫
εi

ω

[
∂ω

∂εi

]
n

δεi

εi
dz +

∫
ρ

ω

[
∂ω

∂ρ

]
n

δρ

ρ
dz. (7)

As in the case for surface waves, the introduction of ηκ has no effect for the density sensitivity, as well as for toroidal oscillations. For
spheroidal oscillations (without self-gravity) with independent parameters (αH, αV, βV, βH, ηκ ) , we find

αH

ω

[
∂ω

∂αH

]
n

= 1

ω2 I1

[
A�

(
F + L

A − L
r ẏ1 + �

)]

αV

ω

[
∂ω

∂αV

]
n

= 1

ω2 I1
Cr ẏ1

[
r ẏ1 + F + L

C − L
�

]

βV

ω

[
∂ω

∂βV

]
n

= 1

ω2 I1
L

[
n(n + 1)

L2
(r y4)2 − r ẏ1�

{
2 +

(
1

A − L
+ 1

C − L

)
(F + L)

}]
(8)

βH

ω

[
∂ω

∂βH

]
n

= 1

ω2 I1
2N [n(n + 1)y3(y1 − y3) − y1�]

ηκ

ω

[
∂ω

∂ηκ

]
n

= 1

ω2 I1
(F + L)r ẏ1�

where yi = yi(r) is the ith radial eigenfunction,

I1 =
∫

ρ[y2
1 + n(n + 1)y2

3 ]r 2 dr,

and

� = 2y1 − n(n + 1)y3.

For the case of independent parameters (αH, βV, ξ , φ, ηκ ), we find the following:

αH

ω

[
∂ω

∂αH

](∗)

n

= 1

ω2 I1

[
A�

(
F + L

A − L
r ẏ1 + �

)
+ Cr ẏ1

(
r ẏ1 + F + L

C − L
�

)]

= 1

ω2 I1

[
A�2 + C(r ẏ1)2 + r ẏ1�

(
A

A − L
+ C

C − L

)
(F + L)

]

βV

ω

[
∂ω

∂βV

](∗)

n

= 1

ω2 I1
L

[
n(n + 1)

L2
(r y4)2 − r ẏ1�

{
2 +

(
1

A − L
+ 1

C − L

)
(F + L)

}]

+ 1

ω2 I1
2N [n(n + 1)y3(y1 − y3) − y1�]
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Figure 1. Partial derivatives for Rayleigh waves calculated for a flat PREM model at a period of 30 s: (a) and (d) fundamental mode surface wave, (b)
and (e) first overtone surface wave and (c) and (f) second overtone surface wave. (a)–(c) are for (αH, βV, ξ , φ, ηκ ) as parameters. (d)–(f) compare the anisotropic
P-wave sensitivity for (αH, αV, βV, βH, η or ηκ ) parameter sets. Note that P-wave sensitivity is greatly reduced for ηκ case, especially for the over tones.

ξ

ω

[
∂ω

∂ξ

](∗)

n

= 1

ω2 I1
N [n(n + 1)y3(y1 − y3) − y1�] (9)

φ

ω

[
∂ω

∂φ

](∗)

n

= 1

2ω2 I1
Cr ẏ1

[
r ẏ1 + F + L

C − L
�

]

ηκ

ω

[
∂ω

∂ηκ

](∗)

n

= 1

ω2 I1
(F + L)r ẏ1�,

where similar relations as in (6) hold.
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Examples

Rayleigh wave

Fig. 1 shows examples of partial derivatives for Rayleigh waves calculated for a flat PREM model (Dziewonski & Anderson 1981) at a period
of 30 s. The calculation is conducted using the DISPER80 program (Saito 1988) after necessary modification for the new partial derivatives.
Inspection of (3) and (5), and (A1) and (A2) indicates the following relation,

ηκ

c

[
∂c

∂ηκ

]
ω

= F + L

F

η

c

[
∂c

∂η

]
ω

. (10)

Considering that F and L are similar in value, the sensitivity of ηκ is about twice as large as that of η. In the mantle, the sensitivity is strongest
for S-wave velocity (βV) and that for ηκ is the second largest. Figs 1(d)–(f) compare the sensitivity of anisotropic P waves. The introduction
of ηκ significantly reduces the sensitivity of P waves, especially for overtones (Figs 1e and f). Considering that the overtones are related to
multiple S waves, such as SS, SSS, etc., it follows that the sensitivity of ηκ is inappropriately mapped into that of αH, V when the conventional
η is used, which will be discussed further in the Discussion.

Spheroidal mode

Figs 2 and 3 show examples of partial derivatives for spheroidal modes calculated for PREM (Dziewonski & Anderson 1981). Four modes,
(1) 0S80, (2) 1S40, (3) 2S30, (4) 3S73 are specifically chosen to be those investigated by Anderson & Dziewonski (1982). Fig. 2 shows the change
in the anisotropic P-wave velocity partial derivatives by the introduction of ηκ . As in case of Rayleigh waves, the sensitivity of anisotropic

Figure 2. Partial derivatives of spheroidal modes (a) 0S80, (b) 1S40, (c) 2S30, (d) 3S73 calculated for PREM. Four modes are chosen to be those studied by
Anderson & Dziewonski (1982). Blue and red lines denote P-wave partial derivatives for cases with ηκ and η as the fifth parameter. Solid lines are for αH

partial derivatives αH
ω

[ ∂ω
∂αH

](∗)
n . Note that anisotropic P-wave sensitivity is generally greatly reduced for the ηκ case, but for shallow depths they are comparable

or even larger for some modes.
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Fifth parameter for TI II 365

Figure 3. Partial derivatives for the same spheroidal modes (a) 0S80, (b) 1S40, (c) 2S30, (d) 3S73 as in Fig. 2 for the parameter set (αH, βV, ξ , φ, ηκ ). Red,
green, blue, black and cyan lines are for αH, βV, ξ , φ and ηκ partial derivatives, respectively. Note that the most and the secondmost sensitive parameters are,
in general, βV and ηκ , respectively.

P-wave velocities is generally greatly reduced by the introduction of ηκ . Fig. 3 shows the sensitivity of the same four modes for (αH, βV, ξ , φ,
ηκ ) as anisotropic parameters. Again similar to the Rayleigh wave case, the largest and secondmost sensitive parameters are S-wave velocity
βV and ηκ . It should be also noted that the shape of sensitivity kernels for the two parameters are similar, as pointed out by Anderson &
Dziewonski (1982). Eq. (9) indicates that while ηκ sensitivity ηκ

ω
[ ∂ω

∂ηκ
]n is dictated by the (r ẏ1�) term, βV sensitivity has an additional large

term dependent on (ry4)2 that is always positive, which make them look alike. This also indicates that good data would be required to resolve
them separately (Anderson & Dziewonski 1982).

D I S C U S S I O N

The significant change in the anisotropic P-wave parameter sensitivity shown in Fig. 2 may be understood as follows. Fig. 4 demonstrates how
phase velocity surfaces of VTI models may change when we modify P-wave anisotropy while keeping other parameters constant for the new
parametrization using ηκ (left) and the conventional parametrization using η (right). The thick lines show the phase velocity surfaces of q–P,
q–SV and SH waves for a reference VTI model that satisfies the elliptic condition (the same reference model shown in fig. 3 of Kawakatsu
(2016)). Thin broken lines indicate phase velocity surfaces when we further reduce αV by changing the elastic constant C. To keep ηκ constant
(i.e. 1), through eq. (1), F needs to be also changed. As the condition η constant does not impose this change in F, the ellipticity condition is
not satisfied for the case of η = const. (a similar situation can occur when A or L is changed while keeping η constant, as it results in a change
in F that changes ηκ .) This results not only in the deformation of the q–P wave phase velocity surface, but also in the deformation of the q–SV
wave phase velocity surface. Consequently, an apparent sensitivity of anisotropic P-wave parameters occurs due to inappropriately mapped
S-wave sensitivity, which might have mislead Dziewonski & Anderson (1981) and Anderson & Dziewonski (1982) into their assertion that
Rayleigh wave dispersion has such sensitivities. All these seem to follow the line of argument made by Thomsen & Anderson (2015) for the
importance of appropriate partial derivatives, although their argument was restricted for weak anisotropy.
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366 H. Kawakatsu

Figure 4. Phase velocity surfaces of q–P (blue), q–SV (red) and SH (green) waves of two sets of VTI models. The thick lines show phase velocity surfaces for
a reference VTI model that has 10 per cent anisotropy in both P-wave (α(H, V)) and S-wave (β(V, H)) velocities and satisfies the elliptic condition, ηκ = 1 (the
same reference model shown in fig 3 of Kawakatsu (2016)). Thin broken lines show phase velocity surfaces when αV is further reduced by changing the elastic
constant C while keeping other parameters constant for the new parametrization using ηκ (left) and the conventional parametrization using η (right). Note that
in the conventional parametrization, by changing αV while keeping other parameters constant, including η = const, we are introducing deformation of phase
velocity surfaces, not only for P wave but also for S wave, resulting in apparent sensitivity of anisotropic P-wave parameters.

C O N C LU S I O N S

Partial derivatives of surface waves and normal modes for new sets of anisotropy parameters of VTI models are investigated. It is shown that
incorporation of the new fifth parameter ηκ is beneficial for modeling long-period seismic waves, as well as for body waves.
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A P P E N D I X : PA RT I A L D E R I VAT I V E S F O R T H E C O N V E N T I O NA L η

For a comparison purpose, we show partial derivatives for the conventional η given by Takeuchi & Saito (1972) below (some expressions are
modified and one typo is corrected):
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Rayleigh waves (for the case (αH, αV, βV, βH, η) as independent parameters):

αH

c

[
∂c

∂αH

]
ω

= 1

ω2 I1

( c

U

)
k Ay3

[
ky3 − 2F

A − 2L
ẏ1

]

αV

c

[
∂c

∂αV

]
ω

= 1

ω2 I1

( c

U

)
C ẏ2

1

βV

c

[
∂c

∂βV

]
ω

= 1

ω2 I1

( c

U

) [
1

L
y2

4 + 4k F L

A − 2L
ẏ1 y3

]
(A1)

βH

c

[
∂c

∂βH

]
ω

= 0

η

c

[
∂c

∂η

]
ω

= −1

ω2 I1

( c

U

)
k F ẏ1 y3,

(for the case (αH, βV, ξ , φ, η) as independent parameters):

αH

c

[
∂c

∂αH

](∗)

ω

= 1

ω2 I1

( c

U

) [
k Ay3

(
ky3 − 2F

A − 2L
ẏ1

)
+ C ẏ2

1

]

βV

c

[
∂c

∂βV

](∗)

ω

= 1

ω2 I1

( c

U

) [
1

L
y2

4 + 4k F L

A − 2L
ẏ1 y3

]

ξ

c

[
∂c

∂ξ

](∗)

ω

= 0 (A2)

φ

c

[
∂c

∂φ

](∗)

ω

= 1

2ω2 I1

( c

U

)
C ẏ2

1

η

c

[
∂c

∂η

](∗)

ω

= −1

ω2 I1

( c

U

)
k F ẏ1 y3,

Spheroidal modes (for the case (αH, αV, βV, βH, η) as independent parameters):

αH

ω

[
∂ω

∂αH

]
n

= 1

ω2 I1

[
A�

(
2F

A − 2L
r ẏ1 + �
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ω

[
∂ω
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]
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C(r ẏ1)2
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ω
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∂ω

∂βV
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L
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n(n + 1)

L2
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r ẏ1�

]
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ω

[
∂ω

∂βH

]
n

= 1

ω2 I1
2N [n(n + 1)y3(y1 − y3) − y1�]

η

ω

[
∂ω

∂η

]
n
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ω2 I1
Fr ẏ1�.

(for the case (αH, βV, ξ , φ, η) as independent parameters):

αH

ω

[
∂ω

∂αH
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n
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[
A�
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r ẏ1�

}
+ 2N {n(n + 1)y3(y1 − y3) − y1�}

]

ξ

ω

[
∂ω
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ω
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