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Abstract. We present a new iterative method for 
finding the normal modes of a laterally heterogeneous 
body. The number of operations used by our method is 
proportional to the square of the number of basis func- 
tions used, while the effort required by the variational 
method increases as the cube of the number of basis 

functions. A numerical example shows that, at least for 
lower order modes, our iterative method yields results 
which are as accurate as the variational method. 

Introduction 

Since high quality long-period seismograms from 
the IDA network have become available, the importance 
of understanding the effect of the earth's lateral 
heterogeneity on its normal modes has become clear. 
There are basically two kinds of computational 
approaches to the lateral heterogeneity problem: per- 
turbation theory and the variational method. Most pre- 
vious theoretical work on free oscillations of a laterally 
heterogeneous earth model (summarized by Geller and 
Stein [1978]) developed solutions based on first order 
degenerate perturbation theory. This method assumes 
that the modes of the laterally heterogeneous body are 
linear combinations of only the singlets in the original 
degenerate multipier, with no contributions from any 
adjacent multipicts. However Geller and Stein [1978] 
and Morris and Geller [1981] showed that perturbation 
theory, in spite of its computational simplicity, seemed 
insufficiently accurate for applicability to the earth. It 
is important to note that the computational objective 
is not merely to find the eigenfunetions and eigenfre- 
quencies of the laterally heterogeneous earth model 
"to first order," but rather to obtain an accurate esti- 
mate of the difference between the modes of the 
laterally heterogeneous model, and the average, spher- 
ically symmetric, model. 

The variational (Rayleigh-Ritz) method proposed by 
Geller and Stein [1978] gives sufficiently accurate 
results. However, as mentioned by Morris and Geller 
[1981], who extended the variational method to a sim- 
ple laterally heterogeneous sphere, formidable compu- 
tational difficulties exist in applying the variational 
method to a realistic earth model, because the solution 
of a very large matrix eigenvalue problem is required. 

In this paper, we present a new iterative method, 
which for many cases appears to combine the accuracy 
of the variational technique with the computational 
speed of perturbation methods. We present a numeri- 
cal example demonstrating our method's applicability 
to lower order modes. 

Second Order Perturbation Theory 

Following Geller and Stein, the lateral hetero- 
geneity problem in which we are interested can be 
written as 

+ = o 
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and the boundary conditions as 

=o (a) 

where H and p are hermitian operators for potential 
and kinetic energy respectively, w is the eigenfre- 
quency, I•> is the eigenfunction and a and fl are arbi- 
trary functions of position on the boundary. 

We suppose that the unperturbed eigenvalue prob- 
lem, 

H(ø)I•(ø)> + p(ø)(•(ø))21•(ø)> = 0 (3) 

has already been solved. For the earth, this means that 
the eigenfrequencies and eigenfunctions of the 
corresponding spherical, vertically heterogeneous 
model are known. 

When a small change in the operators, H (•), and 
p0), is introduced into the system, the eigensolutions 
become 

where (d•) 2 and 15•> are the corresponding change in 
the eigenvalue and eigenfunetion respectively. As is 
commonly done in quantum mechanics [e.g., Schiff, 
1968], we expand the perturbed eigenfunetion in terms 
of the unperturbed modes, 

where [rr•>ml•)> and Unto is the expansion 
coefficient of the original mth mode in the expansion 
of the perturbed nth mode. In the rest of this paper, n 
and N will denote the order number of the mode whose 

solution we are seeking and the number of the trial 
functions used in the expansion, respectively. Our 
problem is to find C,•'s for each of the eigenfunetions 
of the laterally heterogeneous model. 

According to Geller and Stein [1978], second-order 
perturbation theory gives 

+ 
c,,,,= . (6) 

Once the matrix elements <m I H(')[ n > and 
<m[p0)ln> are obtained (these matrix elements are 
also required for the variational method), the number 
of operations required to find Cnm is proportional to 
the number of trial functions, N. 

Variational Method 

In the variational method, we substitute (5) into the 
Lagrangian and search for Cnm's which satisfy 
Hamilton's Principle, which requires that the Lagran- 
dian, L, must be stationary for any arbitrary small 
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Figure 1. Successive iterations of the new method for 
modes z•=l to 21. Note that after four iterations, there is 
excellent agreement between the eigenfrequencies from 
the exact solution {stars) and the results of the iterative 
method. 

change in the C•m's. Differentiating L with respect to 
Cnm, we obtain a matrix eigenvalue problem 

vc.: • z c•. (8) 

where the components of Cn are C,•, and T and V are 
given by 

%,-: <•lpl•>: <•lp(•)l•> + •,• (9) 
and 

v.o: -<•1• I• >: -<•1• (•>1•> + '0-(•?) • (•0) 

Geller and Stein used inverse iteration to find both 

the eigenfrequeneies and eigenveetors of (8) in their 
test case. While other methods may be required if a 
larger number of trial functions is used, any variational 
method will require (essentially) the solution of N 
simultaneous equations, and the number of operations 
required for a direct solution will be proportional to 
N a. This represents a very serious problem in appl•q_ng 
the variational method to realistic earth models, 
because N will be on the order of several thousand. 

New Iterative Method 

In (8), if we knew the eigenvalue, co z we could find 
the eigenveetor, C•, by solving the following N-1 
simultaneous equations. 

A x: -b (•) 

where the N-1 x N-1 matrix, A, is formed by omitting 
the nth row and the nth column of the N xN matrix, 
(V - co• T), and the N-1 dimensional vectors x and b 
are C.n and the nth column of V-co• T without the 
nth element, respectively. The eigenvector is given by 

In order to solve (11), a variation of the Jacobi 
iteration method is used. 

o •+'): -F •)- b (i3) 

where the matrices D and F are the diagonal and off- 
diagonal part of A. Because the exact eigenfrequency 
is not known, we use co• (ø) as the initial guess. For the 
initial guess of the eigenvector, we use the unper- 
turbed mode, C•øm ) = 6•m. After each iteration, the 
Rayleigh quotient is used to estimate the new eigenfre- 
quencies, i.e., 

C• V C• (i•) (•(•))•: • r c•' 
Because of the choice of the initial guess, the first 

iteration yields exactly the same eigenvector as 
second-order perturbation theory. After several itera- 
tions have resulted in convergence, we normalize the 
eigenfunction, 

E c,,,,, I,'•> 
I•.>: TM (15) 

where 

• = c• r c•. (10) 
The number of operations required by our iterative 

method is proportional to N z. 

Numerical Example 

We apply our new method to exactly the same prob- 
lem considered by Geller and Stein[1978]' a one- 
dimensional inhomogeneous string with a jump in the 
stiffness and the density at the center. We use N=41 
(41 trial functions, centered around the nth unper- 
turbed mode), so we can obtain a direct comparison 
with Geller and Stein's variational test. Our results are 

shown in Figure 1, 2 and 3. 
In Figures I and 2, we show results for modes from 

n=l to n=21. The convergence of the iterative method 
is extremely good. Figure I shows that four iterations 
are sufficient to obtain excellent convergence of the 
frequencies to the exact solution for all of the modes 
UP to r•=21. The expansion coefficients for each per- 
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Figure 2. Successive expansion coefficients for modes 
•=1 to 21. The center "stick" in each box gives the 
coefficient of the original eigenfunction in the expansion 
of the perturbed mode. Sticks to the left and right indi- 
cate coefficients of original eigenfunctions successively 
higher and lower respectively. The coefficients of modes 
an even distance from the original mode (.forbictder• 
modes) are zero after the first iteration, but converge to 
their correct values after further iterations. 



Kawakatsu and Geller: New Iterative Method 1197 

10 •0 

n 

Figure 3. Eigenfrequencies from the iterative method 
(after convergence) compared to the exact solution 
(stars). Agreement is excellent until about •. =40. 

turbed mode (in terms of the unperturbed modes) are 
plotted in Figure 2. Note that in the first iteration the 
coefficients for the modes which are an even distance 

away from the "parent mode," are zero because of the 
selection rules for the matrix elements. In later itera- 

tions, however, these •'orb/dden modes have nonzero 
coelTmients. 

Figure 8, in which we extend the calculation up to 
m=50, shows the discrepancy between the exact solu- 
tions and the approximations from above about n=40. 
This is because the perturbation is so large that the 
Rayleigh quotient no longer yields a good approxima- 
tion of the eigenvalue. In this case, the iterative 
method does not converge to the correct solution. 
However, Figure M of Geller and Stein [1978] shows that 
for m=31 or m=•l, the expansion coefficient of the 
"parent mode" in the exact solution is much smaller 
(and is almost zero for •.=41) than the coefficients of 
neighboring modes. In other words, the iterative 
method appears not to succeed in cases where it no 
longer is appropriate to think of the perturbation to 
the laterally homogeneous problem as "small ø'. 

Disc ussion 

When we are finding even the lowest modes of a 
realistic laterally heterogeneous earth model, the 
number of trial functions will rapidly become 
extremely large. For example, if we want to find the 
split eigenfrequencies and eigenfunctions of 0S10 (21 
split singlets) we might reasonably use a basis set, [•> 
consisting of both spheroidal and torsional modes, 
[k I •r•>, where k, 1 and m are overtone, angular order 
and azimuthal order number, respectively. If we use 
all unperturbed singlets with /c=0 to 4, 1=0 to 21 and 

•r•=-L to L, we will have a basis set, in> with about 
N•4400 modes. If the iterative method proposed in 
this paper proves applicable to this case, the reduction 
in the number of computations clearly will be enor- 
mous. 

When the exact eigenvalue is not known, i.e., 
der (V-•T) •' O, solving (11) and (12) gives a solution, 
C•, for which 

= (0 ..... .,0)' 

whe re 

der (V - r•T) 
= dt(A) ' ( 

B•hen our iterative method converges to a solution, we 
can test for its correctness by checking 6,•. (Because 
convergence was obtained, the other elements will be 
equal to zero.) Thus, d n will be a very good criterion for 
testing a solution obtained using the iterative method. 

To apply our method to a problem for which the 
original unperturbed eigenvalue problem has degen- 
erate multipiers, first order perturbation theory must 
first be used to split the multipicts into non-degenerate 

successfully applied this technique to a heterogeneous 
square membrane and a simple laterally heterogene- 
ous sphere. Their results also suggest the efficacy of 
the iterative method. 

The success of the present iterative method sug- 
gests that there might exist another iterative method, 
which is uniformly convergenL, in solving such diago- 
nally dominant matrix eigenvalue problems. We are 
currently working on this problem. 
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