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The eigenfrequencies and eigenfunctions of the modes of three laterally heterogeneous, anelastic, elliptical, rotating
models are calculated using the variational method. The basis set consists of the degenerate singlets of 11 multiplets of
a spherically symmetric model (four toroidal and seven spheroidal multiplets), giving a total of 351 trial functions. The
eigenfrequencies of the degenerate multiplets are clustered in a narrow frequency band around 250 s. The solution of
the resulting 351 X 351 complex, non-hermitian eigenvalue problem required about 30 s of CPU time on the Hitachi
$-810,20 supercomputer at the Computer Centre of Tokyo University. The power of present computational facilities
thus makes the variational method a practical approach for studying the Earth’s lateral heterogeneity. Using results
presented elsewhere, the variational method can be used to obtain the partial derivatives of the eigenfrequencies with
respect to a change in an initially laterally heterogeneous model.

The eigenfrequencies and eigenfunctions of the more accurate variational calculation substantially differ from those
of first order degenerate perturbation theory, which does not include coupling between multiplets. Our basis set
includes (S;, and (7T3,, which are well-known to be coupled by Coriolis terms. However, the results of the variational
calculations show that the degree of coupling between these two fundamental mode multiplets is comparable to their
coupling with nearby overtone multiplets that results from lateral heterogeneity.

Synthetic line spectra (without anelastic attenuation) are calculated for two earthquakes: the 1977 Indonesia event
and a 1978 deep event of Honshu, Japan, for the three laterally heterogeneous Earth structure models. There are
marked differences between the line spectra for three Earth models, and between the line spectra for the variational
method and those from first order degenerate perturbation theory for a given Earth model. In contrast, when anelastic
attenuation is included in the calculation of the synthetic spectra, the differences between Earth models, and between
perturbation theory and the variational method, become much less distinct. Resolving the Earth’s lateral heterogeneity
is thus likely to require the processing of large amounts of data in order to overcome the effects of anelasticity.

1. Introduction

The modes of laterally heterogeneous, anelastic
rotating, elliptical Earth models are generally
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found by the variational method, in which the
eigenfunctions are expanded as linear combina-
tions of the degenerate singlets of a spherically
symmetric, non-rotating, non-dissipative model;
the eigenfrequencies and expansion coefficients
are then found by solving a matrix eigenvalue
problem. In principle, a complete (and thus in-
finite) basis set would lead to exact eigensolutions
for a laterally heterogeneous, anelastic, rotating,



elliptical model; in practice, the cost, speed and
memory of presently available computational
facilities place an upper limit on the dimension of
the usable basis set. Progress in computer technol-
ogy has led to a rapid growth of this limit in the
recent past, and this trend may reasonably be
expected to continue.

The main topic of this paper is the computation
by the variational method of eigensolutions and
synthetic spectra for laterally heterogeneous,
anelastic, rotating, elliptical Earth models. This
yields forward model calculations that are as accu-
rate as is now possible, and allows quantitative
study of phenomena such as coupling between
multiplets. Using results presented by Tsuboi et
al. (1985) and by Tsuboi (1985) the variational
solutions presented in this study can be used to
obtain the partial derivatives of eigenfrequencies,
eigenfunctions and synthetic seismograms with re-
spect to an initially laterally heterogeneous,
anelastic, rotating, elliptical Earth model.

In this study we compare results obtained by
the variational method to those obtained using
first order degenerate perturbation theory and
quasidegenerate perturbation theory. First-order
degenerate perturbation theory (e.g., Madariaga,
1972) limits the basis set to the degenerate singlets
from a single unperturbed multiplet of the spheri-
cally symmetric model. Quasi-degenerate per-
turbation theory (e.g., Luh, 1973, 1974; Masters et
al., 1983; Park, 1985) limits the basis set to two or
three adjacent multiplets of the spherically sym-
metric model. On the basis of simple test cases,
Geller and Stein (1978), Morris and Geller (1982)
and Tanimoto (1982) concluded that a full varia-
tional procedure was probably required to obtain
an adequate representation of the modes of a
laterally heterogeneous model. However, the
geometries of these cases were special, and we
therefore perform numerical experiments for the
more realistic models considered in this study.

2. Variational solution of anelastic problems
We represent the eigenfunction and dual space

eigenfunction as linear combinations of the degen-
erate singlets of the spherically symmetric part of
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the model. We then express the Lagrangian as a
bilinear form in terms of the expansion coeffi-
cients of the eigenfunction and the dual space
eigenfunction. We finally use the fact that the
Lagrangian must be stationary with respect to an
arbitrary infinitesimal perturbation of the eigen-
function or the dual space eigenfunction (Ray-
leigh’s Principle) to obtain a matrix eigenvalue
problem for the expansion coefficients and the
eigenfrequency.

In this study we approximate the effect of
anelastic attenuation by using a complex shear
modulus. The potential energy matrix is therefore
complex and non-hermitian. However, the above
procedure (expanding the eigenfunction and dual
space eigenfunction in terms of trial functions,
computing the matrix elements, and then applying
Rayleigh’s Principle) is applicable whether or not
anelasticity (or the Earth’s rotation) is included in
the calculation. We therefore refer to this proce-
dure as the variational method for both the elastic
and anelastic problems. On the other hand,
Tanimoto (1982) and Park (1985) use the term
‘Galerkin method” when this method is applied to
the anelastic problem. Because the same proce-
dure is used whether or not anelasticity is in-
cluded, it seems desirable to use the term ¢ varia-
tional method’ for both the elastic and anelastic
cases. Some, but not all, texts follow this usage.
For example, Finlayson (1972) calls the procedure
for finding the eigenstates of a non-self-adjoint
problem the ‘adjoint variational method’. It should
be emphasized that the variational method is a
subset of the Galerkin method (e.g., Finlayson,
1972).

The term ‘Galerkin method’ essentially encom-
passes all cases in which an inhomogeneous dif-
ferential equation is solved by expanding the solu-
tion in terms of basis functions. This procedure
can be used whether or not the corresponding
homogeneous equation has any non-trivial solu-
tions (i.e., eigensolutions). For example, the wave
equation for a one-dimensional homogeneous
string with a fixed boundary at x = 0 has homoge-
neous solutions of the form u = sinkx. If such a
string has a radiation boundary condition, u’ +
iku =0, at its right-hand end, it is easy to see that
there are no non-trivial homogeneous solutions
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(e.g., Geller et al., 1985). Thus the inhomogeneous
problem cannot be solved by an eigenfunction
expansion, because there are no modes. On the
other hand, the inhomogeneous problem can be
solved by directly expanding the solution in terms
of some set of orthogonal functions, and solving
for their coefficients. This method of solution has
in fact been implemented by Spudich and Ascher
(1983) for seismic body wave problems in a
halfspace with a free surface and a radiation con-
dition at depth, and is an example of the more
general Galerkin method (or collocation method).

A string (or halfspace) with one free (or fixed)
and one radiation boundary condition is a physi-
cally unrealizable system, and has no non-trivial
homogeneous solutions. In contrast, the anelastic
systems we consider have sets of non-trivial homo-
geneous solutions (modes) that span the space of
possible motion *. These modes are stationary
states of the Lagrangian, just as are the modes of a
perfectly elastic system. We therefore use the term
‘variational method’ to describe the procedure
used in this study for calculating the modes of a
laterally heterogeneous, anelastic, rotating, ellipti-
cal model.

3. Theory, basis selection, and the eigenvalue prob-
lem

We seck linear combinations of the basis func-
tions which closely approximate the left (dual
space) and right (receiver space) eigenfunctions of
a laterally heterogeneous, rotating, anelastic model.
As in Morris and Geller (1982), the normal modes
of a laterally homogeneous, spherically symmetric,
non-rotating model are used as the basis, and
linear combinations of these functions are found
which make the Lagrangian of the laterally hetero-
geneous model stationary. The details of this pro-
cedure are given elsewhere (Morris and Geller,
1982; Morris, 1985) so only a brief discussion is
given here.

* This is true even if the anelastic system is defective. This can
be seen by considering a critically damped harmonic oscilla-
tor with one degree of freedom, whose modes are exp(— wy?)
and ¢ exp(— wyt). The defective modes (if any) of a system
with multiple degrees of freedom exhibit the same behavior.

The ket |k) represents a basis toroidal or
spheroidal eigenfunction of overtone n, angular
order /, and azimuthal order m. The ket |v) and
the bra (u| are, respectively, an eigenfunction of
the laterally heterogeneous model and the corre-
sponding dual space eigenfunction

|v>=§Ck|k> |k)=|n,l,m)

(1a)
(k| ={n,l,m|

(16)

C, and D, are unknown expansion coefficients
that will be found by solving the matrix eigenvalue
problem. There is no simple relation between C,
and D, for an anelastic, rotating model. Substitut-
ing the expansions for <u| and |v> into the
Lagrangian and taking the variation with respect
to D gives the matrix eigenvalue problem

(o’ T—wR—-V)C=0 (2)

where T is the matrix of kinetic energy terms, V is
the matrix of potential energy terms (including
anelasticity), R is the matrix of terms related to
the Coriolis force, and the elements of C are the
coefficients C, from (1). If we had taken the
variation with respect to C instead, we would have
obtained the matrix eigenvalue problem for the
left (dual space) eigenfunction’s expansion coeffi-
cients in place of (2). The elements of T and V are

(u| =ZDk<kl
k

Tew= (k" |p(r,0,0) k) (3)
and
Vi = (k" |E(r,0,9) | k) 4)

where p is the density operator, and E contains
the strain, gravitational, and rotational potential
energy operators. The strain energy operator in-
cludes both elastic and anelastic terms.

For any solution to (2), first-order degenerate
perturbation theory restricts the sum in (1a) and
(1b) to the 2/+ 1 degenerate singlets within a
single unperturbed multiplet. The solutions for
0332, for example, would consist of linear combi-
nations of only the 65 singlets of the degenerate
multiplet. In contrast the basis for the variational



procedure includes not only these 65 singlets, but
also as many other singlets as is numerically feasi-
ble.

Selection of the most appropriate basis for a
given set of computations is an important prob-
lem. Unfortunately, there is no clear method of
determining a priori which trial functions must be
included in the basis. Some effects can be predic-
ted by using the selection rules. For example, it is
well known that the Coriolis force and ellipticity
create coupling between toroidal and spheroidal
modes with angular orders differing by one: (.S,
—aT;41), and between toroidal modes or
spheroidal modes whose angular orders differ by
two: (,S,—,S,, and ,T,—,T,,,. Based on
some quasi-degenerate computations, Luh (1974)
and Masters et al. (1983) suggested that toroidal-
spheroidal Coriolis coupling is the single most
important effect in the frequency band below
about 3 mHz, but that aspherical structure be-
comes more important above those frequencies.

Unfortunately, as the effect of the lateral het-
erogeneity increases, the selection rules become
progressively less accurate in predicting which trial
functions will significantly contribute to any
particular eigenfunction. In some cases (e.g., Geller
and Stein, 1978, fig. 2) strong coupling may occur
even though the corresponding matrix element is
zero. The results of the variational calculation are
most important for those cases in which such
strong coupling occurs.

It appears that rules of thumb based on the
selection rules and the magnitude of the matrix
elements apply to calculations presented in this
study. However, the adequacy of the present basis
set must ultimately be confirmed by numerical
tests using a much larger set of which the present
basis is a subset. Extensive computational experi-
ments should be performed regarding this im-
portant question.

4. Solution of the eigenvalue problem

The derivation of the matrix elements is
discussed in detail elsewhere (Madariaga, 1972;
Luh, 1973, 1974; Woodhouse and Dahlen, 1978;
Woodhouse, 1980) and will not be repeated here.
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The matrix elements are summarized in the Ap-
pendix. Note that a minor error in the ellipticity
terms of Woodhouse (1980) is corrected.
Equation 2 contains both terms in « and «?, so
solving it directly would double the order of the
eigenvalue problem (Lancaster, 1966; Garbow et
al.,, 1977). (The term that is linear in w is due to
Coriolis forces.) To eliminate the w term, after
Woodhouse (1980) and Masters et al. (1983), the
matrix elements in (2) are approximated by

12
@Ry = (@ 0,) / Ry

where, w, is the unperturbed frequency of the
basis singlet | k). This approximation allows the
Coriolis terms to be combined with the potential
energy terms, and reduces (2) to the more
manageable form

WTC=V'C (5)

where V'’ is the sum of V and the Coriolis terms.

The eigenvalue problem in (5) was solved using
a program and algorithm similar to those in
EISPACK (Garbow et al, 1977). This method
simultaneously reduces the matrices on both sides
of (5), and then iterates on successively smaller
matrices to isolate the eigenvalues; O(N?) oper-
ations are required to compute all N eigenvalue/
eigenvector pairs.

The eigenvalue problems were solved using the
Hitachi S-810,/20 supercomputer at the Computer
Centre of the University of Tokyo. This super-
computer system has a maximum speed of about
800 MFLOPS and 64 Mbytes of physical memory
(128 MB as of July 5, 1986). At the time we made
these calculations, it did not have virtual memory
and we could use a maximum of 16 Mbytes for
one process. Therefore we could solve a 351 X 351
problem in core quite easily. A total of 30 s of
CPU time (of which 15 s were used by the
VPU —attached Vector Processing Unit) was re-
quired to solve a single 351 X 351 problem on the
HITAC S-810,/20 supercomputer. The cost was
about US$2.50 at the then prevailing exchange
rate. 10 CPU min were required to solve the same
problem on the Hitachi M-280H, a standard
mainframe system. The size of the basis set likely
to be required in the future will be at least
700-1000; therefore the use of a supercomputer is
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essential for this problem. Before using the Hitachi
supercomputer, a VAX 11/780 at Stanford
University was used for this calculation. It took
about 10 CPU h to solve the same problem on the
VAX 11/780. It is true that the amount of time
required to solve the problem was not only depen-
dent upon processor speed, but was also strongly
related to the amount of memory on the machine
used. However, it is obvious that both speed and
memory requirements for this relatively small
problem already exceed the limits of the ‘super-
mini’ class of computers.

At the time this work was performed, the largest
problem that could be run on the Hitachi was
about 700 X 700 because of memory limitations. It
took 25 min 34 s of CPU time to solve this
problem, of which about 7 min was VPU time.
For this case, the matrix elements could be stored
in core but to obtain the eigenvectors, it was
necessary to use disk I1/0. Therefore about 90% of
the CPU time was used for disk 1/0 rather than
computation. It is instructive to examine the
computer resources required by a problem of this
size. Table I summarizes the performance of the
algorithm on four different machines for a basis
size of 351.

TABLE I

Summary of computer resources required to solve w>TC =V'C
for a basis of 351 singlets

Computer Physical  Average CPU time
memory — memory required
available
to process
Hitachi S810 64 Mbytes 16 Mbytes ~30s
(Tokyo University)
VAX 11,/780 8 Mbytes 4.5 Mbytes  ~ 800 min
(Stanford University)
VAX 11/750 6 Mbytes 3.0 Mbytes ~ 1200 min
(Stanford University)
VAX 11/750 2 Mbytes 0.8 Mbytes > 2000 min

(Stanford University)

The total memory required by the process was about 5.8
Mbytes. When the problem was run on the two-megabyte
VAX 11/750, it was less than half finished when a system
crash killed it at 2000 CPU min.

5. Laterally heterogeneous models

In subsequent sections we present eigenvibra-
tion computations for three models of the Earth’s
lateral heterogeneity (Figs. 1 and 2):

(1) a slight modification of a regionalized model
of lateral heterogeneity proposed by Dziewonski
and Steim (1982), in which lateral heterogeneity
extends to a depth of 670 km.

(2) A model that has the same properties as (1)
at depths shallower than 216 km, but which is
laterally homogeneous below that depth.

(3) A model that carries lateral heterogeneity to
a depth of 216 km and uses Okal’s (1977) surface
regionalization. The oceanic areas are subdivided
into four regions, classified according to age.

The surface regionalization of each of the three
models is expanded up to angular order s =40 (a
surface wavelength of about 1000 km). Including
such high order lateral heterogeneity can signifi-
cantly affect the computed coupling and splitting.
However, the selection rules require that laterally
heterogeneous structure with angular order s </+
!” must be included in calculating the matrix ele-
ment for coupling between the trial functions from
the /th and /’th multiplets. Thus, for example,
laterally heterogeneous structure up to angular
order s=63 will affect the matrix element for
coupling between (T3, and ,S;,. Therefore, if there
are such sharp discontinuities in the lateral struc-
ture of the actual Earth (e.g., the ocean—continent
boundary) they must be included in the computa-
tions. Further work is required to determine what
proportion of the splitting and coupling found in
this study is due to the higher angular order
portion of the above models. In the future, it
should be possible to determine, by comparing the
results of the variational calculations to observa-
tions, the extent of the Earth’s short wavelength
laterally heterogeneous structure.

The first model, DS40 (Fig. 1), is based on the
Dziewonski and Steim (1982) regionalized model
of lateral variations in ¥, in the upper mantle.
This model, which was obtained from surface
wave data, contains three zones of lateral hetero-
geneity between the depths of 80 and 670 km, and
uses a surface regionalization which defines four
regions: continent, young ocean, old ocean, and
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Fig. 1. (a, top) Surface regionalization for Dziewonski and

Steims’ (1982) mode! of lateral heterogeneity (model DS40 in
this study). This regionalization is also used for model TR40.
(b, bottom) Perturbations to shear velocity as a function of
depth for models DS40 and TR40. The perturbations between
80 and 670 km are those proposed by Dziewonski and Steim

(1982) for model DS40; model DS40 has simply been trun-
cated below 216 km to form model TR40. The perturbations in
density and compressional velocity were scaled to the shear
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tectonically active. Perturbations to compressional
velocity and density were scaled to the perturba-
tions in ¥, using the method described by Masters
et al. (1982), and the corresponding perturbations
to shear modulus and bulk modulus were
computed from these values using the scaling laws
(d(In 8p)/d(In 8V,)=10.4 and (d(In 8V,)/d(In
8V,) = 0.8). The second model, TR40, is identical
to model DS40 to a depth of 216 km, but contains
no lateral heterogeneity below that depth.

The third model, OK40 (Fig. 2), uses Okal’s
(1977) surface regionalization, which defines
shield, Phanerozoic mountain, and trench /margi-
nal sea regions, and which breaks up the oceanic
regions into four zones, based on combinations of
the eight age classifications of Leeds (1975). Okal’s
region A corresponds to Leeds’ Ocean 1, region B
is an average of Leeds’ Oceans 2 and 3, region C
averages Oceans 3-6, and region D is an average
of Oceans 6-8. The variations of shear velocity,
compressional velocity, and density with depth
under each of Okal’s oceanic regions were ob-
tained by averaging the appropriate Leeds ocean
models (Fig. 2a). Since Okal did not specify the
properties under the continental or trench /margi-
nal sea portions of his models, the same values
were used for those areas as for the DS40 model.
The Phanerozoic mountain and trench/marginal
sea regions were combined into one ‘tectonic’
region for this purpose. (Although it would have
been slightly better to match some of the
trench/marginal sea regions to Dziewonski and
Steim’s (1982) young oceanic crust, the shear
velocity perturbations under the young oceanic
and tectonic regions of the Dziewonski and Steim
model are very nearly the same above 200 km.)
Also, in order that the depth range of lateral
heterogeneity would be the same for model OK40
as for model TR40, the model contains no lateral
variations shallower than 80 km. This effectively
combined Okal’s regions C and D, since they do
not differ below 80 km.

Masters et al. (1982) cautioned that eigensolu-
tions were sensitive to the choice of the scaling of
lateral variations in compressional velocity and
density to the shear velocity perturbations. Our
primary interest in this study is to make compari-
sons between the models, and between the varia-

295

tional method and first order degenerate perturba-
tion theory. However, this question clearly re-
quires further study in the future. With the excep-
tion of the oceanic regions in model OK40, the
models were scaled in the same way, so the choice
of scaling should not affect comparison between
the eigensolutions for models DS40 and TR40. In
addition, the main interest in comparing model
OK40 with the others is to examine the effect of
varying the properties shallower than 200 km un-
der oceanic regions; thus, the fact that OK40 is
scaled somewhat differently under its oceanic re-
gions is of minor importance.

6. Reference model and basis set

The spherically symmetric reference model for
this experiment was taken to be model 1066A of
Gilbert and Dziewonski (1975). To make the
spherical harmonic expansions of the perturba-
tions consistent with this choice, we set the Y
(s =0, t =0) components of the model parameter
expansions to zero. Spherically symmetric attenua-
tion (Fig. 3a) was incorporated in models DS40,
OK40, and TR40 by applying the Q™! model of
Stein et al. (1981) to the shear modulus distribu-
tion of model 1066A, py(r), and constructing a
spherically symmetric imaginary part of the shear
modulus (Fig. 3b), w{'(r)=p(r)Q '(r). For
simplicity, we chose not to consider laterally het-
erogeneous anelasticity; however, if desired, it
could easily be included in the calculations.

The basis set for the computations consists of
the degenerate singlets of 7 spheroidal and 4
toroidal degenerate multiplets of model 1066A,
for a total of 351 singlets (Table II), encompassing
a frequency band of 3.943 to 4.035 mHz. This
choice of basis gave a set of modes that: (1) were
of high enough frequency to be affected by the
zones of heterogeneity in the models, (2) formed
an eigenvalue problem of manageable size without
all the modes involved being effectively degener-
ate, and (3) allowed fundamental-overtone cou-
pling to be examined in a region of the spectrum
where fundamental mode Coriolis coupling (be-
tween (T3, and 453, ) is important.

The depth-dependent part of the eigenfunctions
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Fig. 3. (a) Spherically symmetric Q! model of Stein et al
(1981) applied to models DS40, TR40, and OK40. (b) The
complex part of the spherically symmetric shear modulus re-

sulting from pi*(r) = pE(r)/Q(r).

for all the degenerate multiplets in the basis was
expressed as a series of cubic polynomials, after
Wiggins (1976). The spheroidal modes were taken

TABLE 11

Unperturbed multiplets of model 1066A which formed the
basis set for the computations in this study

Basis Frequency

multiplet (rad s~ 1) (mHz)

oI 2.5096385¢-02 3.9942137¢ +00
171 2.5172060e-02 4.0062578e+ 00
2Tha 2.5242394e-02 4.0174518e+ 00
3T10 2.5106283e-02 3.9957890e + 00
0512 2.5086936¢-02 3.9927099¢ + 00
155 2.4771513e-02 3.9425087e + 00
3506 2.4921826¢-02 3.9664318¢ +00
aS1 2.5199956e-02 4.0106976¢ + 00
659 2.4886725e-02 3.9608453¢ + 00
256 2.4855318e-02 3.9558467e+00
1052 2.5350178e-02 4.0346061e+ 00

from a set of modes computed for model 1066A
by Buland (1976), and the toroidal modes were
computed by similar programs written locally (R.
Haar, personal communication, 1982).

7. Eigenfrequencies

Our primary interest is to determine the nature
of singlet splitting caused by laterally heteroge-
neous structure. However, we begin by consider-
ing the splitting in a model including anelasticity,
rotation and ellipticity, without including any
lateral heterogeneity. First we calculate the split-
ting due to rotation and anelasticity alone (Fig. 4).
The horizontal axis of Fig. 4 is the real part of the
eigenfrequency in mHz, and the vertical axis is
Q0 '=2 Im (w,)/Re(w,). We can see that the
effect of rotation does not in general cause sizable
splitting of eigenfrequencies in this frequency
range. However, the Coriolis coupling between
oT5; and S5, is significant.

Next we include rotation, ellipticity and at-
tenuation in (2). Figure 5 is a plot of the eigenfre-
quencies for this case. The width of splitting be-
comes larger because of ellipticity, but the cou-
pling between multiplets is significant only for
oT3; and (S;,. The results of our calculation show
the importance of the ellipticity contribution, in
accord with previous studies.

We then show results that include the effect of
lateral heterogeneity. Figure 6a shows the ei-
genfrequencies for model DS40. We also include
the effect of rotation, ellipticity, and attenuation.
The horizontal axis and the vertical axis are the
same as in Fig. 4. The variational frequencies are
plotted as ‘+ signs. Figure 6b is a reference plot
for the same model, showing the positions of the
first order perturbation theory solutions for the
various basis multiplets. If first order perturbation
theory was sufficiently accurate (i.e., if the cou-
pling between multiplets was negligible), the ‘+’
signs in both figures would coincide. Instead, Fig.
6a shows that most of the first order perturbation
theory solutions for model DS40 are seriously in
error. For example, the error in Q™! is 30% or
more in many cases. This is especially significant
since, for this basis set, the matrix elements af-
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Fig. 4. Eigenfrequencies for rotational splitting (including Coriolis cou
The spherically symmetric Q™
vertical axis is Q1 = 20" /W

fected by anelasticity were confined to the diag-
onal. The differences in Q™! for the two sets of
solutions are thus entirely due to coupling be-
tween multiplets that is omitted by first order
degenerate perturbation theory. It is difficult to
determine the magnitude of error in the real parts
of the eigenfrequencies, since an exact correspon-

pling) for an otherwise laterally homogeneous, spherical model.

! model shown in Fig. 3 is included. The real part of the frequency is plotted as horizontal axis. The

dence between singlets in the two sets of solutions
cannot be determined, but it is clear that there are
significant differences.

We have also calculated the modes of a model
including only lateral heterogeneity and attenua-
tion (Fig. 7a) and including ellipticity, lateral het-
erogeneity and attenuation (Fig. 7b). Figure 7a

0.008
Rotation + Ellipticity
0.0086 N s —p
1920 S+ 032 W;%+
o .
I M+ S 2004
> 0.004 SR S—— s s 1 19
Riiszans =4
Sg W + + 451]
0.002 Sg s
1052 44w
3.390 3.95 4.00 4.05

Frequency (mHz)

Fig. 5. Eigenfrequencies for rotational and ellipticity splitting (including Coriolis coupling) for an otherwise laterally homogeneous
model. Attenuation as shown in Fig. 3 is included. Horizontal and vertical axes are the same as Fig. 4.
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Fig. 6. (a, top) Eigenfrequencies for models DS40 as calculated by the

variational method and by first order degenerate perturbation

theory. Rotation, ellipticity and attenuation are also included. The horizontal axis and the vertical axis are the same as Fig. 4. The
variational solutions are plotted as ‘+’ signs. (b, bottom) Only the first-order degenerate perturbation theory solutions are plotted

and labeled, as reference points for part (a).

shows that the splitting of eigenfrequencies of the
modes for model DS40 is of almost the same order
as that due to ellipticity (Fig. 5), however, the
coupling of the modes is not large. The degree of
coupling will be discussed later based on the com-
puted eigenfunctions. By comparing Fig. 7b with
Fig. 6a we can see that the effect of rotation is not
negligible, even for this frequency range.

Figures 8 and 9 contain similar plots for mod-
els TR40 and OK40. The discrepancy between the
first-order and variational solutions is smaller for
these models than for DS40, but this is expected,
since model DS40 contains much more extensive
lateral heterogeneity. Again, the plots show that
the Q™' of the first order degenerate perturbation
theory solutions is frequently seriously in error.
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Fig. 7. Eigenfrequencies for models DS40. The horizontal axis and the vertical axis are the same as Fig. 4. (a, top) ‘+’ are the
eigenfrequencies for model DS40 (only attenuation is added). (b, bottom) The cigenfrequencies for model DS40 (rotation and

ellipticity are added), which can be compared to Fig. 6a.

8. Eigenfunctions

Each eigenvector found by the variational
method is specified by its 351 complex expansion
coefficients. To display this information in a
meaningful way, we present two types of plots in
Figs. 10-12. We arbitrarily picked two singlets for
each of the three laterally heterogeneous Earth
models: those having the 70th and 225th smallest
(real) eigenfrequencies. (Many more examples of
these plots are given by Morris, 1985.) Note that

as the modes have different eigenfunctions, direct
comparison of the results for different models is
not meaningful. In the first type of plot (the upper
part of each figure) we show, for one singlet of the
laterally heterogeneous model, the total power of
the expansion coefficients from each of the 11
multiplets. In the upper part of these figures we
plot the quantity

1,2
P = [E Fed 2]
L 1ACF
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Fig. 8. Plots of the eigenfrequencies for model TR40. For further details see caption for Fig. 6.

where ,C” is the expansion coefficient of the basis
singlet | n, I, m). The , P, are plotted as sticks and
are normalized so that the largest value for each
solution equals 100%. To permit the spheroidal
contributions to be more easily distinguished from
toroidal: contributions, all ,P, corresponding to
spheroidal modes are plotted as negative, and
those corresponding to toroidal modes are plotted
as positive. (All of these quantities are of course
positive.) Thus, these plots show the relative con-
tribution of each basis multiplet to a particular
solution.

In the second type of plot (the lower part of
each figure), we show the amplitude of each of the
351 expansion coefficients for one of the singlets
of the laterally heterogeneous model. The expan-
sion coefficient ,C/"refers to the degenerate singlet
with angular order /, azimuthal order m (with
respect to geographical coordinates) and overtone
number n. Each spherical harmonic is the surface
dependent part of the eigenfunction of a singlet of
a laterally homogeneous, rotating model (ignoring
Coriolis coupling). Thus, if rotational splitting were
the dominant effect, the computed expansion
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Fig. 9. Plots of the eigenfrequencies for model OK49. For further details see caption for Fig. 7.

coefficients could be- regarded as physically
meaningful, as lateral heterogeneity would be a
minor perturbation. On the other hand, if lateral
heterogeneity is as or more important than rota-
tional splitting, then the spherical harmonic ex-
pansion coefficients have no physical meaning,
regardless of the choice of coordinate system. As
the latter is the case for the computations in this
study, we seek a coordinate independent way of
presenting the eigenfunctions computed by the
variational method. While first order degenerate
perturbation theory does not give sufficiently ac-

curate results, its eigenfunctions do have some
physical relation to the Earth model, and are
coordinate independent. We therefore present
plots of the expansion coefficients of the varia-
tional solutions expressed in terms of the singlets
found by first order degenerate perturbation the-
ory.

The plot in the lower part of each figure shows
the results of projecting the variational solution
onto the set of eigenfunctions computed by first
order degenerate perturbation theory. We use the
transformation C’ = P*C, where P is the matrix
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Fig. 10. (a, left) The expansion coefficients for the variational eigenfunction of the 70th mode of model DS40. (Top) The
contributions to the solutions from each multiplet are summarized as a single stick, representing the total power of the expansion
coefficients within each multiplet. The sticks have been normalized so that the largest is of size 100%. For convenience of display,
sticks corresponding to spheroidal multiplets are plotted as negative, while sticks corresponding to toroidal multiplets are plotted as
positive. (Bottom) Projection of the variational eigenvector on the first-order degeneration theory solutions. The magnitudes of the
components of the projected vectors are plotted at the w,, and Q! values of the corresponding first-order eigenfrequencies. The
largest magnitude is normalized to size 1.0, and the different sizes of the circles group the magnitudes of the inner products at
intervals of 0.2 (i.e., all inner products with sizes between 0.8 and 1.0 are plotted using the largest circle, products between 0.6 and 0.8
are plotted using the next smaller circle, and so on). (b, right) Variational eigenfunction of the 225th mode of model DS40. Details

are the same as Fig. 10a.

of eigenvectors (expansion coefficients) for first
order degenerate perturbation theory. The trans-
formed vector C’ is normalized so that the largest
component has an absolute value of 1.0. We take
advantage of another aspect of the first order
degenerate perturbation theory solutions: each has
an eigenfrequency (real and imaginary parts) that
gives coordinates at which to plot a symbol repre-
senting the magnitude of the normalized, trans-
formed, expansion coefficients; this is how we
obtain the lower parts of Figs. 10-12. The normal-
ized magnitudes of the elements of C’ are grouped
in increments of 0.2 for plotting purposes, so that

elements with magnitudes between 0.8 and 1.0 are
plotted using the largest circles, elements with
magnitudes between 0.6 and 0.8 are shown with
the next smaller size circle, and so on.

Significant coupling between multiplets is
clearly visible in all the plots. If first-order degen-
erate perturbation theory was approximately cor-
rect, the plots in the upper part of each figure
would show one stick of magnitude 100%, and all
others would be of negligible size. Instead, other
multiplets in the basis set routinely contribute
20-50% as much to the solution as the multiplet
for which ,P,=100%. The stick plots for models



0.008

0.008

1/0

0.004

0.002

Solution 70 ,

Mode! TR40

f = (3.861130 , 5.368004e-03) mHz

100
&
§ 50
Y 0OFr
E L
g SOt
-100 & I |

3.95 4 4.05
Frequency (mHz)
U g <<

Prrp—— Ll L
amcecs
Sumromenc o

- =O0DGe o

=od)

sooe o
L L

3.85 4 4,

Frequency (mHz}

oS

1/0

303

Solution 225 , Model TR40
f = (4.002257 , 8.922803e-03) mHz

100
50
8]
-50

RELATIVE POWER

-100 I 1
3.95 4

Freguency (mHz)

4.05

g.008

0.008 {

W A ungamet

Saem——s, @

Proms wa=

0.004 +

0.002 -

t L

3.85 4 4.05

Frequency [mHz)

Fig. 11. (a, left) Variational eigenfunction of the 70th mode of model TR40. Details are the same as Fig. 10a. (b, right) Variational
eigenfunction of the 225th mode of model TR40. Details are the same as Fig. 10a.
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OK40 and TR40 show less pronounced coupling
between multiplets than the figures for model
DS40, but in general the coupling in the plots for
these models is still not negligible. It is also inter-
esting to look at the plots for which the largest
contribution to the solution comes from either
oT3; or oS5,. If only fundamental mode coupling
was important in these solutions, the only sticks of
significant size would correspond to these two
multiplets—all other , P, would be negligible. This
comes close to being true in some of the plots for
models OK40 and TR40. However, in general, the
figures show that other multiplets do significantly
contribute to these cases. In fact, in Fig. 10, the
contribution to the solution from ,S,, is larger
than the contribution from (.S;,.

The lower parts of Figs. 10-12 show that the
largest expansion coefficients can correspond to
several different degenerate multiplets. Even in
cases where all sizable singlet contributions fall
within one multiplet, there are generally several
singlets which significantly contribute to the solu-
tion. Again, if first-order degenerate perturbation
theory was substantially correct, there would be
one large circle on each plot, and all the other
circles would be very small. In some cases this

TABLE III

Location, magnitudes, and source mechanisms of the two
events used in the computations in this study

Event Latitude Longitude Depth m, M,
(deg)  (deg) (km)

1. Sumbawa, Indonesia 11.09S 118.46E 15
Aug. 19,1977
Static moment
= 24.¢27

Source mechanism:
m,,=—0.68
H1gg = 0.68
Mgy =00
=00
A, =—0.195
7h0¢ = 0195

2. Honshu, Japan 32.00N 137.61E 439 69 -
March 7, 1978
Static moment

=.52¢27

Source mechanism:

m,, = 0.489

g9 = 0.053

Hg, =—0.541
Mg =0.384

Py =—0.551
#rgy = —0.121

70 79

All data are taken from Silver and Jordan (1983). Silver and
Jordan cross-reference the source mechanisms.
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Fig. 13. (a, above) Comparison of the variational eigenfrequencies of models DS40 and TR40. The frequencies for model DS40 are
plotted as ‘+’ signs, and those for model TR40 are plotted as circles. (b, top of p. 305) Comparison of variational eigenfrequencies
for models DS40 and OK40. The circles are the frequencies of model OK40 and the ‘+’ signs represent model DS40. (¢, middle of p.
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Fig. 13 (continued).

appears to happen, but in general does not.

The cross-hairs in the lower half of Figs. 10-12
show the real and imaginary parts of the eigen-
frequency of the singlet whose expansion coeffi-
cients are plotted. Note that in many (although
not all) cases the largest transformed expansion
coefficients correspond to the singlets calculated
by first order degenerate perturbation theory
whose eigenfrequencies are close to the variational
solution’s eigenfrequency.

We have shown that there are significant dif-
ferences between the results of the variational
eigensolution calculations and those from first
order degenerate perturbation theory. We now
compare the eigenfrequencies (computed by the
variational method) for the three different Earth
models. Figure 13a—c show that there are poten-
tially observable differences in the split eigenfre-
quencies of the three laterally heterogeneous Earth
models.
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Fig. 14. (a, left) Synthetic amplitude and phase spectra at the site of the IDA station, BDF, for the mechanism of the 1977 Sumbawa
earthquake, and for model DS40. Synthetic spectra for the variational solution (the thickest line), first order perturbation theory
(medium thickness) and a laterally homogeneous Earth (the thinnest), are presented. The amplitude scale is in cm-s. (b, right)
Absolute value of the excitation coefficients (line spectra) for the three sets of eigensolutions used to compute the synthetic spectra in
Fig. 14a. The excitation coefficients for the variational method are plotted pointing upward, those for first-order degenerate
perturbation theory are shown pointing downward, and the coefficients for model 1066A are shown as asterisks.

9. Synthetic spectra

Synthetic spectra for each of the three laterally
heterogeneous Earth models are calculated using
the eigensolutions calculated by the variational
method. For comparison, we also show the spectra
calculated using the first order degenerate per-
turbation theory eigensolutions, and those for a
laterally homogeneous, nonrotating model. We
present spectra for two earthquakes: the Sumbawa
event of 1977, a large, shallow, normal event
located seaward of the eastern end of the Java

trench and the 1978 Honshu event, a deep focus
earthquake, occurring near the bottom of the
seismic zone 250 km west of the Bonin Islands.
Source parameters used for the synthetics are given
in Table III. The depths and source mechanisms
were obtained from tables 1 and 2 of Silver and
Jordan (1983). These events were chosen because
the earthquakes were at very different depths (15
and 439 km, respectively). All of the synthetics are
calculated for a receiver at the site of the IDA
station BDF, but the spectra for all three compo-
nents of ground motion are given. Additional ex-
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Fig. 15. (a, left) Spectra for model TR40. Other details are the same as Fig, 14a. (b, right) Line spectra for Fig. 15a. Other details are

the same as Fig. 14b.

amples of these spectra are given by Morris (1985).

The eigenfrequencies and the left and right
eigenfunctions for each of the three models were
used in the following formulation for the excita-
tion of the modes of a rotating, anelastic Earth
(Geller and Tsuboi, 1987). In the frequency do-
main, the displacement, w(r,w) excited by a point
moment source, M,; (as defined by Aki and
Richards, 1980) is given by

wir,w)=3 [(ll,,(ro)),,j- Mij]"n(l')
T el v

for wg, >0

(62)

and
W(l’,w) = Z [(ll’: (rO))i,j . Mj]vn*(l')

n iw(wz— (—an+ian)2)

for wg. <0

(6b)

where u,, is the left (dual space) eigenfunction, v,
is the right eigenfunction, o, is the real part of the
eigenfrequency, «, is the imaginary part of the
eigenfrequency, (u,),; is the derivative of the
locally cartesian i component of displacement with
respect to the j-th locally cartesian derivative, and
summation over i and j is implied.

In this study only frequency domain excitation
calculations are presented. However, results are
also presented that could easily be used to calcu-
late excitation in the time domain. To give the
complete excitation formula in the time domain,
following Geller and Tsuboi, we first define inter-
mediate terms for the amplitude and phase of
each mode at each point.

[(“n("a))i,j' Mj]vn(r)

2
(o, +ia,)

B, (r) exp(ie,(r)) = (7)
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Fig. 16. (a, left) Spectra for model OK40. Other details are the same as Fig. 14a. (b, right) Line spectra for Fig. 16a. Other details are

the same as Fig. 14b.

The displacement excited by a point moment
tensor is then given by

w(r,t) =Y B,(r)[(cos(o,? + ¢, (r)) - exp(— 1))
—cos(e, (r)] (8)

The excitation coefficients B,(r) could be used in
a straightforward fashion to compute synthetic
seismograms if they are desired.

Figures 14-19 show synthetic amplitude and
phase spectra and excitation coefficients com-
puted at BDF. The heaviest line in each spectral
plot is the synthetic obtained from the variational
solution, the medium line corresponds to the

first-order degenerate perturbation theory solu-
tion, and the lightest line is the synthetic obtained
from the modes of the spherically symmetric model
1066A. In the excitation coefficient plots, the coef-
ficients for first-order perturbation theory are
plotted as negative, those for the variational pro-
cedure are plotted as positive sticks, and those for
model 1066A are plotted as asterisks. The line
spectra for the variational, first order perturbation
theory, and spherically symmetric synthetics differ
greatly from one another. The errors in the syn-
thetics calculated by the two less accurate meth-
ods generally seem to be worse for the Honshu
synthetics than for the Sumbawa synthetics. This
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Fig. 17. (a, left) Spectra at BDF site for mechanism of Honshu deep earthquake and model DS40. Other details are the same as Fig.
14a. (b, right) Line spectra for Fig. 17a. Other details are the same as Fig. 14b.

is probably because the overtones, whose splitting
is more sensitive to lateral heterogeneity than the
fundamentals, have larger relative amplitudes for
the deep event.

Figures 10-12 appear to show that there is
substantial coupling between multiplets. On the
other hand, the synthetic spectra in Figs. 14-19 do
not show a gross disparity between the variational
method spectra and those for a laterally homoge-
neous Earth. In fact, the variational spectra ap-
pear in general to show large peaks roughly where
053, and (T, should be. This result might appear
paradoxical: if the eigenfunction of each singlet
shows substantial coupling, one might expect the
spectra to show comparable evidence of coupling.
However, due to the smoothing effect of attenua-

tion, the coupling that can be clearly seen in the
synthetic line spectra cannot be clearly seen when
anelasticity is included in the synthetic spectra.

This may have potentially important implica-
tions. The fact that observed spectra seem to show
distinct peaks for ,S;, and (73, is often cited as
an argument against significant coupling between
multiplets. However, Figs. 14-19 clearly show that
anelasticity can have the effect of obscuring the
underlying strong coupling that actually is oc-
curring. Developing data processing methods to
allow the recovery of data on such strong coupling
is thus a major problem in observational long
period seismology.

Figures 14-19 show significant differences in
the phase and amplitude spectra of all three mod-
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Fig. 18. (a, left) Spectra at BDF site for mechanism of Honshu deep earthquake and model TR40. Other details are the same as Fig,
14a. (b, right) Line spectra for Fig. 18a. Other details are the same as Fig. 14b.

els in nearly every plot. Also, the differences be-
tween the two models of ocean lateral heterogene-
ity (TR40 and OK40) are just as large as the
differences between those two models and the
deep heterogeneity model DS40. It should be pos-
sible, therefore, to differentiate effects of region-
alization of shallow heterogeneity from effects of
deep lateral heterogeneity using the information in
the phase as well as the amplitude spectrum, i.c.,
the waveform.

10. Discussion

The synthetic spectra presented here indicate
that the variational computations have the poten-

tial to distinguish between different regionaliza-
tions of lateral heterogeneity, and to resolve in the
depth extent of lateral heterogeneity. Thus, the
variational procedure provides a powerful tool for
testing theoretical models of lateral heterogeneity
in the Earth.
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APPENDIX: MATRIX ELEMENTS

The integrals used to construct the energy matrices for the eigenvalue problem are summarized here.
They are substantially the same as those of Woodhouse (1980), although they are in a slightly different
form and the ellipticity integrals are somewhat different. With the exception of the angular order 2
perturbation introduced by ellipticity, it is assumed that none of the lateral variations in material
properties affect the core/ mantle boundary or any other liquid/ solid interface. Thus, the boundary terms
described by Woodhouse and Dahlen (1978) are omitted (except those related to ellipticity). If one does
use a model containing lateral variations in properties at a liquid/ solid interface, these terms would have
to be included. In addition, the model is assumed to be locally isotropic.
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Terms relating to attenuation are not given explicitly, but they can be constructed from the elasti-
city integrals by substituting ¥™ = xQ¢' and/or p™ = pQ;" for x/(r) and p/(r), respectively (Wood-
house, 1980). Since lateral variation in the attenuation structure of the Earth is not well defined, only
the effects of a spherically symmetric u™™ are incorporated in the work discussed in this paper. In addi-
tion, only terms for the upper halves of the energy matrices are given. The elasticity, gravitational,
ellipticity, and rotational terms for the lower halves can be constructed using the Hermitian property of
those terms, and the spherically symmetric attenuation terms are symmetric about the diagonals of the
matrices.

Recently Geller (1987) has suggested that Woodhouse and Dahlens’ (1978) energy integrals for
the self-gravitation terms are incorrect. If Geller’s suggestion proves to be correct, the integrals given
below must be revised. However, since the results in the present paper are for modes with a period of
about 250 sec, the self-gravitation terms are not important in the calculations presented in the body of
this paper.

Notation and Common Terms
Let a toroidal mode of a spherically symmetric Earth model be of the form:

tk>, = ,Wi(r) I + D]* T™6.,0) k>, = In,lm>,

and let spheroidal modes be of the form:
k> = U (r) RP©,0) + 1 + D%, V,(r) S/0,0) k> = Inlm>

where ,W,(r), ,U;(r) , and ,V,(r) are the solutions to the radial parts of the equations of motion,
T0,0) , R™(0,0) , and S/"(6,¢) are fully normalized vector spherical harmonics :

m _ 1 1 aYlm(e!q)) _ aYlm(e’q))
OO = T or [0’ sind —ap— 30 ]
RFO® = [¥r©09.0,0)

gy _ 1 FO0) 1 VIO
T [0’ % S0 o ]

and Y/(6,9) is an orthonormalized, complex scalar spherical harmonic as defined by Jackson (1975).
The gravitational potential field associated with a spheroidal mode will be represented by ¢; . In the
expressions which follow, ,W;(r) will be abbreviated to W, ,-W;.(r) will be abbreviated to W’, and
similarly for the other radial functions. Also, W = dW/dr, W’ = dW’/dr, etc. In addition, it is assumed
that the modes of the spherically symmetric model are normalized such that:

<k’ 1po(r) k>, = s
and

<kk, Ipo(r)|k>‘s = 8,;",,

Next, expand the density, shear modulus, and bulk modulus distributions of the laterally hetero-
geneous model in terms of spherical harmonics:
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s t=-s s t=—s

KO8 = 3 Y K ()Y (6.0)

§ 1=-s

In addition to these terms, the perturbations to material propertics and the gravitational potential caused
by ellipticity are given by Dahlen (1968) as:
_ -

d
our 00 = |22 |27 e viag)
- 2 1
_|4n |2 Ao(r) o
b 00 = | F |3 eI 1200
" 1/2
d
w00 = |2 | 2™ yoeg

5|
d
0ur 8.0) = [4—5"] {%re(r) WO Lare | e

where &(r) is the ellipticity of the Earth as a function of radius, ¢o(r) is the gravitational potential
energy of the Earth, and Q is the rotational frequency of the Earth. In the following equations, € = &(r)
,é = d€/dr ,and¢0=¢0(r) .
Now define some constants which occur frequently:

A+ D+1I+1D—s(s +1)]

a, =

2
Qi+ D+ss+D -+ D]
an = 5
@'+ +ss+1D)-1(1 +1)]
as =

2
ag=a; '+ H+I0+D-s@+ 1) -2]-0d + DIE + 1))

and, following Luh (1973, 1974) and Woodhouse (1980), define:

Fre 207 - 1'(1'+1)V . F= 2U —I(I+1)V
r Y —
aw’ w’ aw w
Z' = - —_— 7 = e —
dr r ’ dr r
X'=-(—g—:v—’)+V' , X=LU—312-+V

The surface integrals to be evaluated reduce to:
I = | YP"(0.0) Yi(0.0) Y"(6.0) dQ
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where (Is00(/sl’0), (Ismt|lsl’m"), etc., are Clebsch-Gordan coefficients (Merzbacher, 1970), * de-
notes the complex conjugate transpose, and S; is the surface of a unit sphere. I and I, are essentially
special cases of I, and I, which appear in the rotation and ellipticity integrals (for which s = 2),

Toroidal-Toroidal Matrix Elements

Elasticity integrals:

Tew = XX Jarr? W Woplryar Iy
s t

, wW'w
Vir IO rf"zlls'(”) [alz Z+a4_r,_]d’11
s t

Rotational integral:

Ck’k = 8,,,,,,'811'2”1 o ,_[po(r)WW’r2dr

Ellipticity integrals (s =2 in aq, a,, as, ay):

Tk'k=‘§-, rPa,(ré+3e)poW Wdrl,

Vi =% ,j o(r) { re [(azl’(l'+1)+6a1 YW'W + (as [(I+1) + 6 a YW'W ]

— (ré+e) [a4 WW+a, r2(@ZZ-W'Z-WZ) ] —era, (WZ + WZ')}dr I,
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Spheroidal - Spheroidal Matrix Elements
Elasticity integrals:

Ter =X % ,[rpir) U'U+a,V'V)dr
$ t

Vie =X % ,j{ rExir) (U +F) (U +F)

2 . .
+ () [ a,Vv +a, r*X’'Xx + % U’ - FHQU-F)

}dr I,

UF + UF’+4—qr—U

Gravitational integrals:

, 1 4¢
Vin = rj r* pi(r) { 8nG po(r) U'U - - __Er_o.

ddo

I. 'I ﬂ ’ r _a_l
+UG + UG+ . Vor+ Vo) + o dr

V'U +UV) } d I

UV + —UTK UV —2FY

} dr Il

a; ’ ’
+ ,_[rzpo(r)-ai)r—{azU—:/+a3—g2—‘:——U'F—UF’}dr 1,

+ [ polr) 04(r) { SG+) U +a %

corl | v B oy

Rotational integrals:

Cer = Sy dumw2Qom ,[rPplr) (VV+UV' +UV )dr
2

Vit = 80 Spmr 5 Q7 [8,,,,,—1(z+1) o) (VV + UV + UV ) dr ]

Ellipticity integrals (s =2 in a,, a,, as, a, ):

Ten = % ,jrzpo(r) [8(a3UV’+a2U’V) +(ré+38)(a1VV'+UU')}dr I,
Ver = f 277 [ M- K+pi0)R | & 1y
where:
. -, V’ -, . V
K= U+F)|U +(a3—2)-T ]+(U +F") U+(a2—2)7]

’

L Lrere) {(U+F) F’—U'+2a3VT + (U'+F")

2g

F—U+202‘¥':|}
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Toroidal - Spheroidal Matrix Elements
In the expressions which follow, the toroidal mode is the *‘primed’” mode.

Elasticity integrals:

Tex =X X | r2pir) W'V Ldr
s t

Vie =X Y - ) [r2 Z’X + 2a-1) WV ] L dr
s t

Gravitational integrals:

d
Vit =X % .fr {p}(r) %o

W¢1+—WU—d'r—j|

——po(r) [-&WUWS [UW'—W’U—ZW’F+ UZV' ”}dr I,

|




Rotational integral (s = 2):

Cer = 2i0Q 8pim L, [ polr) r* (asU-a,VIW'dr

Ellipticity integral (s = 2):

Tk'k = 2 lm 8m'm 14 rj po(r) r2 [S(W’U - 3W’V) el réW,V ] dr

Vir = 2im 8pm 1y, [ 72 {po(r)R + Ho(r M — o(r)K }4’
where:
. . . 2a,+1 ..
M = ¢ [W’ 2V—U+3TU— ( - )V]—VW'
MELAS PR el G RV G Vi T PR AR
r r r r
_ 2V o-Fy + a2
3r r?
—ré _u.;_(U_V) - (2a1—2)—WTV + —2W—(2U—F) + VW’ ]
r r 3r
K = - (e +20) w0
"
9 - ‘
R =¢ |2 [EW'U -WU -WU ] + 2w 2~ anG oW
dr r r
+ éW’¢1

Diagonals of the Energy Matrices

The terms given above all come from perturbations made to the starting spherically symmetric
Earth model. Before the matrices can be used to solve for the modes of the laterally heterogeneous
model, a factor of 1.0 must be added to the diagonal elements of the kinetic energy matrix and the
squares of the unperturbed frequencies must be added to the appropriate diagonal elements of the poten-
tial energy matrices. This is in order to incorporate the effects of the spherically symmetric portions of
the density, bulk modulus, and shear modulus. Essentially, it converts the matrices from being
perturbation energy matrices to being full energy matrices for the Earth model under consideration.

Selection Rules

The number of matrix elements which must be computed is reduced considerably by applying the
selection rules for the Clebsch-Gordan coefficients (Merzbacher, 1970) :

@ <lsmtllsl/m>=0ifm+tzm’
®b) <ts00t1sl’0>=01if l+s+1" isodd

(¢) 1,U',and s must satisfy |l -1l <s<l+1’
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The second selection rule means that matrix elements involving unperturbed modes within the same
multiplet (ie, n=n" and /=1") are affected only by lateral heterogeneity of even angular order.
Therefore, as Madariaga (1972) and others have noted, solutions obtained by first-order degenerate
perturbation theory contain no information about lateral heterogeneity of odd angular order. Solutions
obtained by the general Rayleigh-Ritz variational approach, on the other hand, do contain such

information.
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