
288 PhysicsoftheEarth andPlanetaryInteriors, 47 (1987)288—318
ElsevierSciencePublishersB.V., Amsterdam— Printedin The Netherlands

Variationalfreeoscillationcomputationsfor threelaterally
heterogeneousEarthmodels

SandraP. Morris 1*, RobertJ. Geller 1,2 Hitoshi Kawakatsu1* *

andSeiji Tsuboi2

‘DepartmentofGeophysics,StanfordUniversity, Stanforcl~California 94305(U.S.A.)
2 DepartmentofGeophysics,Facultyof Science,Tokyo University, Bunkyo,Tokyo,113 (Japan)

(ReceivedApril 9, 1986; revisionacceptedOctober1, 1986)

Morris, S.P.,Geller, R.J., Kawakatsu,H. and Tsuboi, S., 1987. Variational free oscillation computationsfor three
laterally heterogeneousEarth models.Phys.Earth Planet. Inter., 47: 288—318.

The eigenfrequenciesand eigenfunctionsof themodesof threelaterally heterogeneous,anelastic,elliptical, rotating
modelsarecalculatedusing thevariationalmethod.The basisset consistsof thedegeneratesingletsof 11 multipletsof
a sphericallysymmetricmodel (four toroidalandsevenspheroidalmultiplets),giving a total of 351 trial functions.The
eigenfrequenciesof thedegeneratemultiplets areclusteredin a narrowfrequencyband around250 s. The solution of
theresulting 351 x 351 complex,non-hermitianeigenvalueproblemrequiredabout30 s of CPU time on the Hitachi
S-810/20supercomputerat the ComputerCentreof Tokyo University.The powerof presentcomputationalfacilities
thus makes thevariational method a practicalapproachfor studying the Earth’s lateralheterogeneity.Using results
presentedelsewhere,the variationalmethod canbe usedto obtain thepartial derivativesof the eigenfrequencieswith
respectto a changein an initially laterally heterogeneousmodel.

The eigenfrequenciesandeigenfunctionsof the more accuratevariational calculationsubstantiallydiffer from those
of first order degenerateperturbation theory, which doesnot include coupling betweenmultiplets. Our basis set
includeso~32and

0T31, which arewell-known to becoupledby Coriolis terms.However, theresultsof thevariational
calculationsshow that thedegreeof couplingbetweenthesetwo fundamentalmodemultiplets is comparableto their
coupling with nearbyovertonemultiplets that resultsfrom lateralheterogeneity.

Syntheticline spectra(without anelasticattenuation)arecalculatedfor two earthquakes:the1977 Indonesiaevent
and a 1978 deep event of Honshu,Japan,for the threelaterally heterogeneousEarth structuremodels. Thereare
markeddifferencesbetweenthe line spectrafor threeEarth models,andbetweentheline spectrafor thevariational
methodandthosefrom first orderdegenerateperturbationtheoryfor a givenEarth model. In contrast,when anelastic
attenuationis included in thecalculationof thesyntheticspectra,thedifferencesbetweenEarthmodels,and between
perturbationtheoryandthevariationalmethod,becomemuchless distinct. ResolvingtheEarth’slateralheterogeneity
is thuslikely to require theprocessingof largeamountsof datain orderto overcometheeffectsof anelasticity.

1. Introduction found by the variational method, in which the
eigenfunctionsare expandedas linear combina-

Themodesof laterally heterogeneous,anelastic tions of the degeneratesinglets of a spherically
rotating, elliptical Earth models are generally symmetric, non-rotating, non-dissipativemodel;

the eigenfrequenciesand expansioncoefficients
are then found by solving a matrix eigenvalue

* Presentaddress:Texas Instruments,MS 3402 P.O. Box . .

405, Lewisville, TX 75067,U.S.A. problem. In pnnciple, a complete (and thus in-
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stituteof Technology,Pasadena,CA 91125U.S.A. for a laterally heterogeneous,anelastic,rotating,
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elliptical model; in practice, the cost, speedand the model. We then expressthe Lagrangianas a
memory of presently available computational bilinear form in terms of the expansioncoeffi-
facilities placeanupperlimit on the dimensionof cients of the eigenfunction and the dual space
theusablebasisset.Progressin computertechnol- eigenfunction. We finally use the fact that the
ogy hasled to a rapid growth of this limit in the Lagrangianmustbe stationarywith respectto an
recent past, and this trend may reasonablybe arbitrary infinitesimal perturbationof the eigen-
expectedto continue, function or the dual space eigenfunction(Ray-

Themain topic of thispaperis the computation leigh’s Principle) to obtain a matrix eigenvalue
by the variational method of eigensolutionsand problem for the expansioncoefficients and the
synthetic spectra for laterally heterogeneous, eigenfrequency.
anelastic,rotating, elliptical Earth models. This In this study we approximatethe effect of
yields forwardmodelcalculationsthatare as accu- anelasticattenuationby using a complex shear
rate as is now possible,and allows quantitative modulus.The potentialenergy matrix is therefore
study of phenomenasuch as coupling between complex and non-hermitian.However, the above
multiplets. Using results presentedby Tsuboi et procedure(expandingthe eigenfunctionanddual
al. (1985) and by Tsuboi (1985) the variational spaceeigenfunctionin terms of trial functions,
solutions presentedin this study can be usedto computingthe matrix elements,andthenapplying
obtain the partial derivativesof eigenfrequencies, Rayleigh’s Principle) is applicablewhetheror not
eigenfunctionsandsyntheticseismogramswith re- anelasticity(or the Earth’s rotation)is includedin
spect to an initially laterally heterogeneous, the calculation.We therefore refer to this proce-
anelastic,rotating, elliptical Earthmodel. dureas the variationalmethodfor boththe elastic

In this study we compareresults obtainedby and anelastic problems. On the other hand,
the variational method to those obtained using Tanimoto(1982) and Park (1985) use the term
first order degenerateperturbation theory and ‘Galerkin method’whenthis methodis appliedto
quasidegenerateperturbationtheory. First-order the anelasticproblem. Becausethe sameproce-
degenerateperturbationtheory (e.g., Madariaga, dure is used whether or not anelasticity is in-
1972) limits thebasis set to the degeneratesinglets cluded, it seemsdesirableto use the term ‘varia-
from a singleunperturbedmultiplet of the spheri- tional method’ for both the elastic and anelastic
cally symmetric model. Quasi-degenerateper- cases.Some,but not all, texts follow this usage.
turbationtheory(e.g.,Luh, 1973,1974; Masterset For example,Finlayson(1972)calls the procedure
al., 1983; Park,1985) limits the basisset to two or for finding the eigenstatesof a non-self-adjoint
threeadjacentmultiplets of the sphericallysym- problemthe ‘adjoint variationalmethod’.It should
metric model. On the basis of simple test cases, be emphasizedthat the variational method is a
Geller andStein(1978), Morris and Geller (1982) subsetof the Galerkin method (e.g., Finlayson,
andTanimoto (1982) concludedthat a full varia- 1972).
tional procedurewas probablyrequiredto obtain The term ‘Galerkin method’ essentiallyencom-
an adequaterepresentationof the modes of a passesall casesin which an inhomogeneousdif-
laterally heterogeneousmodel. However, the ferentialequationis solvedby expandingthe solu-
geometriesof these caseswere special, and we tion in terms of basis functions.This procedure
therefore perform numerical experimentsfor the can be used whether or not the corresponding
morerealisticmodelsconsideredin this study. homogeneousequationhas any non-trivial solu-

tions (i.e., eigensolutions).For example,the wave
equation for a one-dimensional homogeneous

2. Variationalsolution of anelastic problems stringwith a fixed boundaryat x = 0 hashomoge-
neoussolutions of the form u = sinkx. If such a

We representthe eigenfunctionanddual space string has a radiation boundarycondition, u’ +
eigenfunctionaslinear combinationsof the degen- iku = 0, at its right-handend, it is easyto seethat
eratesingletsof the sphericallysymmetricpart of there are no non-trivial homogeneoussolutions
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(e.g., Gelleret a!., 1985).Thus the inhomogeneous The ket k) representsa basis toroidal or
problem cannot be solved by an eigenfunction spheroidal eigenfunctionof overtonen, angular
expansion,becausethere are no modes.On the order 1, and azimuthalorder m. The ket I v) and
other hand, the inhomogeneousproblem can be the bra (u I are, respectively,an eigenfunctionof
solvedby directly expandingthe solutionin terms the laterally heterogeneousmodel and the corre-
of some set of orthogonalfunctions, and solving spondingdual spaceeigenfunction
for their coefficients.This method of solution has
in factbeenimplementedby SpudichandAscher I V) = ~ Ck 1k) I k) = I n,l,m)
(1983) for seismic body wave problems in a k

halfspacewith a free surfaceand a radiationcon- (la)
dition at depth, and is an exampleof the more ~ I = ~D~k (k = ~n,l,m I
generalGalerkinmethod(or collocationmethod). k

A string (or halfspace)with one free (or fixed) (lb)
and one radiationboundarycondition is a physi-
cally unrealizablesystem, and has no non-trivial
homogeneoussolutions. In contrast,the anelastic Ck and Dk are unknown expansioncoefficients

thatwill befound by solving thematrix eigenvalue
systemswe considerhavesetsof non-trivialhomo-
geneoussolutions(modes)that spanthe spaceof problem.There is no simple relationbetweenCk

and Dk for ananelastic,rotatingmodel.Substitut-
possible motion “. These modes are stationary
statesof the Lagrangian,just as arethe modesof a ing the expansionsfor <u and I v> into the
perfectlyelasticsystem.We thereforeusethe term Lagrangianand taking the variationwith respect

to D gives the matrix eigenvalueproblem
‘variational method’ to describe the procedure
used in this study for calculatingthe modes of a (w2T — caR — V)C = 0 (2)
laterally heterogeneous,anelastic,rotating, ellipti- whereT is the matrix of kinetic energyterms,V is
cal model. the matrix of potential energy terms (including

anelasticity),R is the matrix of terms relatedto

3. Theory,basisselection,and the eigenvalueprob- the Coriolis force, and the elementsof C are the
coefficients Ck from (1). If we had taken thelem variationwith respectto C instead,wewould have

Weseeklinearcombinationsof the basisfunc- obtained the matrix eigenvalueproblem for the
tions which closely approximatethe left (dual left (dual space)eigenfunction’sexpansioncoeffi-
space)and right (receiverspace)eigenfunctionsof cientsin placeof (2). The elementsof T andV are
a laterallyheterogeneous,rotating,anelasticmodel. Tk’k = <k’ I p(r,O,4) 1k) (3)
As in Morris andGeller(1982), the normal modes and
of a laterallyhomogeneous,sphericallysymmetric,
non-rotatingmodel are used as the basis, and ~k’k = ~k’ I E(r,9,4) I k) (4)
linear combinationsof thesefunctions are found where p is the densityoperator,and E contains
which makethe Lagrangianof the laterallyhetero- the strain, gravitational, and rotational potential
geneousmodel stationary.The detailsof this pro- energyoperators.The strain energy operatorin-
cedure are given elsewhere(Morris and Geller, cludesbothelasticandanelasticterms.
1982; Morris, 1985) so only a brief discussionis For any solution to (2), first-order degenerate
given here. perturbationtheory restrictsthe sum in (la) and

(ib) to the 21+ 1 degeneratesinglets within a
* This is trueevenif theanelasticsystemis defective.This can single unperturbedmultiplet. The solutions for

beseenby consideringa critically dampedharmonicoscilla- oS
32~for example,would consistof linear combi-

tor with onedegreeof freedom,whosemodesareexp(— w0t) nationsof only the 65 singletsof the degenerate
and t exp( — c0t). The defectivemodes(if any) of a system
with multiple degreesof freedomexhibit the samebehavior. multiplet. In contrastthe basis for the variational
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procedureincludesnot only these65 singlets,but The matrix elementsare summarizedin the Ap-
alsoas many othersingletsas is numericallyfeasi- pendix. Note that a minor error in the ellipticity
b!e. termsof Woodhouse(1980)is corrected.

Selectionof the most appropriatebasis for a Equation2 containsboth termsin ca and to
2, so

given set of computationsis an importantprob- solving it directly would double the order of the
lem. Unfortunately, thereis no clear method of eigenvalueproblem (Lancaster,1966; Garbow et
determininga priori which trial functionsmustbe a!., 1977). (The term that is linear in to is dueto
includedin the basis.Someeffectscan be predic- Coriolis forces.) To eliminate the to term, after
ted by usingthe selectionrules.For example,it is Woodhouse(1980) and Masterset a!. (1983), the
well known that the Coriolis force and ellipticity matrix elementsin (2) are approximatedby
createcoupling betweentoroidal and spheroidal / \1/2

modeswith angularordersdiffering by one: (~S
1 wRk~k= ~~

t”k”~k) Rk~k

— ±~), and between toroidal modes or where, tok is the unperturbedfrequencyof the
spheroidalmodeswhose angularordersdiffer by basis singlet I k). This approximationallows the
two: (~S

1— ,2~S1±2 and ~ — ~‘ “~±2’ Based on Coriolis terms to be combinedwith the potential
some quasi-degeneratecomputations,Luh (1974) energy terms, and reduces (2) to the more
and Masterset al. (1983) suggestedthat toroidal- manageableform
spheroidal Coriolis coupling is the single most W

2TC = V’C (5
important effect in the frequency band below
about 3 mHz, but that asphericalstructurebe- whereV’ is the sum of V andthe Coriolis terms.
comesmore importantabovethosefrequencies. The eigenvalueproblemin (5) wassolvedusing

Unfortunately, as the effect of the lateral het- a program and algorithm similar to those in
erogeneity increases,the selection rules become EISPACK (Garbow et a!., 1977). This method
progressivelyless accuratein predictingwhich trial simultaneouslyreducesthe matriceson both sides
functions will significantly contribute to any of (5), and then iterateson successivelysmaller
particulareigenfunction.In somecases(e.g.,Geller matricesto isolate the eigenvalues;0(N3) oper-
and Stein, 1978,fig. 2) strongcoupling may occur ationsare requiredto computeall N eigenvalue/
even thoughthe correspondingmatrix elementis eigenvectorpairs.
zero.The resultsof the variationalcalculationare The eigenvalueproblemswere solvedusingthe
most important for those cases in which such Hitachi S-810/20supercomputerat the Computer
strongcoupling occurs. Centre of the University of Tokyo. This super-

It appearsthat rules of thumb basedon the computersystemhasa maximumspeedof about
selection rules and the magnitudeof the matrix 800 MFLOPSand64 Mbytes of physicalmemory
elementsapply to calculationspresentedin this (128 MB as of July 5, 1986).At the timewe made
study. However, the adequacyof the presentbasis thesecalculations,it did not havevirtual memory
set must ultimately be confirmed by numerical and we could use a maximum of 16 Mbytes for
testsusinga much largerset of which the present oneprocess.Thereforewecould solve a 351 X 351
basis is a subset.Extensivecomputationalexperi- problem in core quite easily. A total of 30 s of
ments should be performed regarding this im- CPU time (of which 15 s were used by the
portantquestion. VPU—attachedVector ProcessingUnit) was re-

quiredto solve a single351 x 351 problemon the
HITAC S-810/20 supercomputer.The cost was

4. Solution of the eigenvalue problem about US$2.50 at the then prevailing exchange
rate.10 CPU mmwere requiredto solve thesame

The derivation of the matrix elements is problem on the Hitachi M-280H, a standard
discussedin detail elsewhere(Madanaga,1972; mainframesystem.The sizeof the basis set likely
Luh, 1973, 1974; Woodhouseand Dahlen, 1978; to be required in the future will be at least
Woodhouse,1980) andwill not be repeatedhere. 700—1000;thereforethe useof a supercomputeris
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essentialfor this problem.Beforeusingthe Hitachi 5. Laterally heterogeneousmodels
supercomputer,a VAX 11/780 at Stanford
University was used for this calculation. It took In subsequentsectionswe presenteigenvibra-
about10 CPU h to solve the sameproblemon the tion computationsfor threemodelsof the Earth’s
VAX 11/780. It is true that the amount of time lateralheterogeneity(Figs. 1 and2):
requiredto solve the problemwasnot only depen- (1) a slight modification of a regionalizedmodel
dentupon processorspeed,but wasalso strongly of lateral heterogeneityproposedby Dziewonski
relatedto the amountof memory on the machine and Steim (1982), in which lateral heterogeneity
used.However,it is obvious that both speedand extendsto a depthof 670 km.
memory requirements for this relatively small (2) A model that hasthe samepropertiesas (1)
problem already exceedthe limits of the ‘super- at depths shallower than 216 km, but which is
mini’ classof computers. laterallyhomogeneousbelow that depth.

At thetimethis work wasperformed,thelargest (3) A model that carrieslateralheterogeneityto
problem that could be run on the Hitachi was a depthof 216 km andusesOkal’s (1977) surface
about700 X 700 becauseof memorylimitations. It regionalization.The oceanicareasare subdivided
took 25 mm 34 s of CPU time to solve this into four regions,classifiedaccordingto age.
problem, of which about 7 mm was VPU time. The surfaceregionalizationof eachof the three
For this case,the matrix elementscould be stored modelsis expandedup to angularorder s = 40 (a
in core but to obtain the eigenvectors,it was surfacewavelengthof about 1000 km). Including
necessaryto usediskI/O. Thereforeabout90% of suchhigh order lateral heterogeneitycan signifi-
the CPU time was usedfor disk I/O rather than cantly affect the computedcoupling andsplitting.
computation. It is instructive to examine the However, the selectionrules requirethat laterally
computerresourcesrequiredby a problemof this heterogeneousstructurewith angularorder s ~ l +
size. Table I summarizesthe performanceof the 1’ mustbe includedin calculatingthe matrix ele-
algorithm on four different machinesfor a basis ment for couplingbetweenthe trial functionsfrom
sizeof 351. the /th and /‘th multiplets. Thus, for example,

laterally heterogeneousstructure up to angular
order s= 63 will affect the matrix element for
couplingbetweenoT3i and0S32.Therefore,if there
are suchsharpdiscontinuitiesin the lateralstruc-

TABLE I ture of the actualEarth(e.g., the ocean—continent
boundary)they mustbeincludedin the computa-

Summaryof computerresourcesrequiredto solve w
2TC V’C tions.Furtherwork is requiredto determinewhat

for a basis of 351 singlets . . .

proportionof the splitting andcoupling found in
Computer Physical Average CPUtime this study is due to the higher angular order

memory memory required portion of the above models. In the future, it

SS shouldbe possibleto determine,by comparingthe
resultsof the variationalcalculationsto observa-

Hitachi S810 64 Mbytes 16 Mbytes — 30 s
(Tokyo University) tions, the extent of the Earths short wavelength
VAX 11/780 8 Mbytes 4.5 Mbytes — 800 ~ laterallyheterogeneousstructure.
(StanfordUniversity) The first model, DS4O (Fig. 1), is basedon the
VAX 11/750 6 Mbytes 3.0 Mbytes — 1200 mm Dz.iewonski and Steim (1982) regionalizedmodel
~ 2 Mbytes 0.8 Mbytes > 2000 mm of lateral variations in J’~in the upper mantle.

(StanfordUniversity) This model, which was obtained from surface
wave data, containsthreezonesof lateral hetero-

The total memory required by the processwas about 5.8
geneitybetweenthe depthsof 80 and670 km, and

Mbytes. When the problem was run on the two-megabyte
VAX 11/750, it was less than half finished when a system usesa surfaceregionalizationwhich defines four
crashkilled it at 2000 CPUmm. regions: continent, young ocean,old ocean,and
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0 (1982) for model DS4O; model DS4O hassimply been trun-
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\‘elocity perturbationsin the mannersuggestedby Masterset
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tectonically active.Perturbationsto compressional tional methodandfirst orderdegenerateperturba-
velocity anddensitywere scaledto the perturba- tion theory. However, this question clearly re-
tions in j~çusingthe methoddescribedby Masters quiresfurther studyin the future. With the excep-
et a!. (1982), and the correspondingperturbations tion of the oceanicregions in model OK4O, the
to shear modulus and bulk modulus were modelswerescaledin the sameway, so the choice
computedfrom thesevaluesusingthe scalinglaws of scaling should not affect comparisonbetween
(d(ln ~p)/d(ln 3J’) = 0.4 and (d(ln 6J’~,)/d(ln theeigensolutionsfor modelsDS4O andTR4O. In
3J~ç)= 0.8). The secondmodel, TR4O, is identical addition, the main interest in comparingmodel
to model DS4O to adepthof 216 km, butcontains OK4O with the others is to examinethe effect of
no lateralheterogeneitybelow that depth. varying the propertiesshallowerthan 200 km Un-

The third model, 0K40 (Fig. 2), uses Okal’s der oceanic regions; thus, the fact that 0K40 is
(1977) surface regionalization, which defines scaledsomewhatdifferently under its oceanicre-
shield, Phanerozoicmountain,and trench/margi- gionsis of minor importance.
nal searegions,andwhich breaksup the oceanic
regionsinto four zones,basedon combinationsof
the eight ageclassificationsof Leeds(1975). Okal’s 6. Referencemodeland basisset
regionA correspondsto Leeds’ Ocean1, region B
is an averageof Leeds’ Oceans2 and3, region C The sphericallysymmetric referencemodel for
averagesOceans3—6, and regionD is an average this experimentwas takento be model 1066A of
of Oceans6—8. The variationsof shearvelocity, Gilbert and Dziewonski (1975). To make the
compressionalvelocity, and density with depth spherical harmonic expansionsof the perturba-
under each of Okal’s oceanic regions were ob- tions consistentwith this choice, we set the Y~
tamedby averagingthe appropriateLeedsocean (s = 0, 1 = 0) componentsof the model parameter
models (Fig. 2a). Since Okal did not specify the expansionsto zero. Sphericallysymmetricattenua-
propertiesunder the continentalor trench/margi- tion (Fig. 3a) was incorporatedin models DS4O,
nal seaportions of his models, the samevalues OK4O, and TR4O by applying the Q1 model of
wereusedfor thoseareasas for the DS4O model. Stein et a!. (1981) to the shearmodulusdistribu-
The Phanerozoicmountainand trench/marginal tion of model 1066A, ~s

0(r), and constructinga
sea regions were combined into one ‘tectonic’ sphericallysymmetricimaginarypart of the shear
region for this purpose.(Although it would have modulus (Fig. 3b), j~(r) = ~s0(r)Q

1(r). For
been slightly better to match some of the simplicity, we chosenot to considerlaterally het-
trench/marginalsea regions to Dziewonski and erogeneousanelasticity; however, if desired, it
Steim’s (1982) young oceanic crust, the shear couldeasilybeincludedin the calculations.
velocity perturbationsunder the young oceanic The basis set for the computationsconsistsof
andtectonic regionsof theDziewonskiand Steim the degeneratesinglets of 7 spheroidal and 4
model are very nearly the sameabove 200 km.) toroidal degeneratemultiplets of model 1066A,
Also, in order that the depth range of lateral for a totalof 351 singlets(Table II), encompassing
heterogeneitywould be the samefor model OK4O a frequencyband of 3.943 to 4.035 mHz. This
as for modelTR4O, the model containsno lateral choiceof basis gavea set of modesthat: (1) were
variationsshallowerthan 80 km. This effectively of high enoughfrequencyto be affectedby the
combinedOkal’s regionsC and D, since they do zonesof heterogeneityin the models, (2) formed
notdiffer below 80 km. aneigenvalueproblemof manageablesizewithout

Masterset a!. (1982)cautionedthat eigensolu- all the modesinvolved being effectively degener-
tions weresensitiveto the choice of the scalingof ate, and (3) allowed fundamental-overtonecou-
lateral variations in compressionalvelocity and pling to be examinedin a region of the spectrum
density to the shearvelocity perturbations.Our where fundamentalmode Coriolis coupling (be-
primaryinterestin this studyis to makecompari- tween

0T35 and0S32)is important.
sonsbetweenthe models,andbetweenthe varia- Thedepth-dependentpartof the eigenfunctions
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Spherically Symmetric Attenuation Function from a set of modescomputedfor model 1066A
by Buland (1976), and the toroidal modeswere

0.01
Haar,personalcommunication,1982).

~ ~ (a) computedby similar programswritten locally (R.7. Eigenfrequencies

Our primary interestis to determinethe nature
3.Se*OB 4.5e+OB S.Oe+O6 of singlet splitting causedby laterally heteroge-

radius (m) neous structure.However, we begin by consider-

ing the splitting in a model including anelasticity,
Imaginary Part of Shear Modulus rotation and ellipticity, without including any

lateral heterogeneity.First we calculatethe split-
1 .Se+ ~ ting due to rotation andanelasticityalone(Fig. 4).

The horizontalaxis of Fig. 4 is therealpart of the
eigenfrequencyin mHz, and the vertical axis is

~b)
= 2 Im (wk)/Re(wk). We can see that the

So+09
effect of rotation doesnot in generalcausesizable
splitting of eigenfrequenciesin this frequency
range. However, the Coriolis coupling between

3.Se~0B
4.Se+O8 S.Se~OS

radius (m)
0T~ and0S32 is significant.

Next we include rotation, ellipticity and at-
Fig. 3. (a) Spherically symmetricQ~model of Stein et al
(1981) applied to models DS4O, TR4O, and 0K40. (b) The tenuationin (2). Figure 5 is a plot of the eigenfre-
complex part of the spherically symmetric shearmodulus re- quenciesfor this case.The width of splitting be-
suiting from p!~”(r)= p~f(r)/Q(r). comes larger becauseof ellipticity, but the cou-

pling betweenmultiplets is significant only for

OTM and0S32. Theresultsof our calculationshow
for all the degeneratemultiplets in the basis was the importanceof the ellipticity contribution, in
expressedas a seriesof cubic polynomials,after accordwith previousstudies.
Wiggins (1976).The spheroidalmodeswere taken We thenshow resultsthat include theeffect of

lateral heterogeneity. Figure 6a shows the ei-
genfrequenciesfor model DS4O. We also include

TABLE II the effect of rotation, ellipticity, and attenuation.
Unperturbed multiplets of model 1066A which formed the The horizontal axis and the vertical axis are the
basisset for the computations in this study sameas in Fig. 4. The variational frequenciesare
Basis Frequency plottedas ‘+‘ signs. Figure 6b is a referenceplot

multiplet (rad s~) (mHz) for the samemodel, showingthe positionsof the

2.5096385e-02 3.9942137e+00 first order perturbationtheory solutions for the
1T19 2.5172060e-02 4.0062578e+00 variousbasismultiplets. If first order perturbation
2T14 2.5242394e-02 4.0174518e+00 theory was sufficiently accurate(i.e., if the cou-

2.5106283e-02 3.9957890e+00 pling betweenmultiplets was negligible), the ‘+‘

2.5086936e-02 3.9927099e+00 signsin both figureswould coincide.Instead,Fig.
i~2O 2.4771513e-02 3.9425087e+00 6a showsthat mostof the first order perturbation

2.4921826e-02 3.9664318e+00

4

51i 2.5199956e-02 4.0106976e+00 theory solutions for model DS4O are seriously in
2.4886725e-02 3.9608453e+00 error. For example,the error in Q’ is 30% or
2.4855318e-02 3.9558467e+ 00 morein many cases.This is especiallysignificant

io~2 2.5350178e-02 4.0346061e+00 since, for this basis set, the matrix elementsaf-
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Fig. 4. Eigenfrequenciesfor rotationalsplitting (includingCoriolis coupling) for anotherwiselaterally homogeneous,sphericalmodel.
The sphericallysymmetric Q-‘ model shownin Fig. 3 is included. The realpart of the frequencyisplotted as horizontal axis. The

vertical axisis Q 2o~”/o~.

fected by anelasticitywere confinedto the diag- dencebetweensingletsin the two setsof solutions
onal. The differencesin ~ 1 for the two setsof cannotbe determined,but it is clearthat thereare
solutions are thus entirely due to coupling be- significant differences.
tween multiplets that is omitted by first order Wehavealso calculatedthe modesof a model
degenerateperturbationtheory. It is difficult to including only lateral heterogeneityand attenua-
determinethe magnitudeof error in the realparts tion (Fig. 7a) and including ellipticity, lateralhet-
of the eigenfrequencies,since an exact correspon- erogeneityand attenuation (Fig. 7b). Figure 7a

0 . 008 _____________________________________________
Rotation + E~1ipticity

0.006 _____ ~.I 20 fft~l II * 0 32

~1~, __
_________ Zr34

~ 0 . 004 3~IO nuuiii:ii ~T3o ~

s 4~h10 9 ~m*4I4-**

0,002

IO~2 -i-- 0

3.90 3.95 4.00 4.05

Frequency (mHz)

Fig. 5. Eigenfrequenciesfor rotationaland ellipticity splitting (includingCoriolis coupling) for anotherwise laterally homogeneous
model.Attenuationas shownin Fig. ~ is included. Horizontalandverticalaxesarethesameas Fig. 4.
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Fig. 6. (a, top) Eigenfrequenciesfor modelsDS4O ascalculatedby thevariationalmethodand by first orderdegenerateperturbation
theory. Rotation,ellipticity and attenuationarealso included.Thehorizontalaxis andthevertical axisare thesameas Fig. 4. The
variational solutionsareplotted as ‘+‘ signs. (b, bottom)Only the first-orderdegenerateperturbationtheory solutionsareplotted
andlabeled,asreferencepoints for part (a).

shows that the splitting of eigenfrequenciesof the Figures8 and9 containsimilar plots for mod-
modesfor model DS4Ois of almostthe sameorder els TR4O andOK4O. Thediscrepancybetweenthe
as that due to ellipticity (Fig. 5), however, the first-orderandvariationalsolutions is smallerfor
coupling of the modesis not large. The degreeof thesemodelsthan for DS4O, but this is expected,
couplingwill be discussedlater basedon the com- since model DS4O containsmuch moreextensive
puted eigenfunctions.By comparingFig. 7b with lateral heterogeneity.Again, the plots show that
Fig.6a wecanseethat the effect of rotation is not the Q ~of the first order degenerateperturbation
negligible,evenfor this frequencyrange. theorysolutionsis frequentlyseriouslyin error.
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Fig. 7. Eigenfrequenciesfor models DS4O. The horizontal axis and the vertical axis are the sameas Fig. 4. (a, top) ‘+‘ arethe
eigenfrequenciesfor model DS4O (only attenuationis added).(b, bottom) The eigenfrequenciesfor model DS4O (rotation and
ellipticity areadded),which canbecomparedto Fig. 6a.

8. Eigenfunctions as the modeshavedifferent eigenfunctions,direct
comparisonof the results for different modelsis

Each eigenvector found by the variational not meaningful.In the first type of plot (the upper
methodis specifiedby its 351 complexexpansion part of each figure) we show,for onesingletof the
coefficients. To display this information in a laterally heterogeneousmodel, the total powerof
meaningfulway, we presenttwo types of plots in the expansioncoefficients from each of the 11
Figs.10—12. Wearbitrarily pickedtwo singletsfor multiplets. In the upperpart of thesefigures we
each of the three laterally heterogeneousEarth plot the quantity
models:thosehaving the 70thand 225thsmallest 1/2
(real) eigenfrequencies.(Many more examplesof ,,P1= 2

theseplots are given by Morris, 1985.)Note that m
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Fig. 8. Plots of theeigenfrequenciesfor model TR4O. For furtherdetailsseecaption for Fig. 6.

where~Cf
1is the expansioncoefficientof -thebasis In the secondtype of plot (the lower part of

singlet I n, 1, m). The P
1 areplottedassticksand eachfigure), weshow the amplitudeof eachof the

are normalizedso that the largestvalue for each 351 expansioncoefficientsfor one of the singlets
solution equals100%. To permit the spheroidal of the laterally heterogeneousmodel. The expan-
contributionsto be moreeasilydistinguishedfrom sion coefficient~C,mrefersto thedegeneratesinglet
toroidal contributions, all ,~P1 correspondingto with angular order 1, azimuthal order m (with
spheroidal modes are plotted as negative,and respectto geographicalcoordinates)andovertone
thosecorrespondingto toroidal modesareplotted numbern. Eachsphericalharmonicis the surface
as positive. (All of thesequantitiesare of course dependentpart of the eigenfunctionof a singletof
positive.)Thus, theseplots show the relativecon- a laterally homogeneous,rotating model (ignoring
tribution of each basis multiplet to a particular Coriolis coupling).Thus,if rotationalsplittingwere
solution. the dominant effect, the computed expansion
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Fig. 9. Plots of theeigenfrequenciesfor model 0K40.For further detallsseecaptionfor Fig. 7.

coefficients could be- regarded as physically curate results, its eigenfunctionsdo have some
meaningful, as lateral heterogeneitywould be a physical relation to the Earth model, and are
minor perturbation. On the otherhand,if lateral coordinate independent. We therefore present
heterogeneityis as or more important than rota- plots of the expansioncoefficientsof the varia-
tional splitting, then the spherical harmonic ex- tional solutionsexpressedin terms of the singlets
pansion coefficients have no physical meaning, found by first order degenerateperturbationthe-
regardlessof the choice of coordinatesystem.As ory.
the latter is the casefor the computationsin this Theplot in the lower partof eachfigure shows
study, we seek a coordinate independentway of the results of projecting the variational solution
presenting the eigenfunctions computed by the onto the set of eigenfunctionscomputed by first
variational method. While first order degenerate orderdegenerateperturbationtheory. We use the
perturbationtheory doesnot give sufficiently ac- transformationC’ = P*C, where P is the matrix
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Fig. 10. (a, left) The expansion coefficients for the variational eigenfunctionof the 70th mode of model DS4O. (Top) The
contributionsto thesolutionsfrom eachmultiplet are summarizedasa singlestick, representingthetotal powerof theexpansion
coefficientswithin eachmultiplet. The sticks havebeen normalizedso that thelargestis of size 100%. For convenienceof display,
stickscorrespondingto spheroidalmultiplets areplotted as negative,while stickscorrespondingto toroidal multiplets areplottedas
positive. (Bottom) Projectionof the variationaleigenvectoron thefirst-order degenerationtheory solutions.The magnitudesof the
componentsof the projectedvectors are plottedat the W,e and Q~’valuesof the correspondingfirst-ordereigenfrequencies.The
largestmagnitudeis normalizedto size 1.0, and the different sizesof thecircles group the magnitudesof the inner productsat
intervalsof 0.2 (i.e., all inner productswith sizesbetween0.8 and1.0areplottedusingthelargestcircle,productsbetween0.6 and0.8
areplottedusingthenext smallercircle,and so on). (b, right) Variationaleigenfunctionof the225thmodeof model DS4O. Details
arethesameasFig. lOa.

of eigenvectors(expansioncoefficients) for first elementswith magnitudesbetween0.8and 1.0 are
order degenerateperturbationtheory. The trans- plotted using the largest circles, elementswith
formedvector C’ is normalizedso that thelargest magnitudesbetween0.6 and 0.8 are shown with
componenthasan absolutevalue of 1.0. We take the nextsmallersizecircle, andso on.
advantage of another aspect of the first order Significant coupling between multiplets is
degenerateperturbationtheorysolutions: eachhas clearly visible in all the plots. If first-order degen-
an eigenfrequency(real andimaginary parts) that erateperturbationtheorywas approximatelycor-
gives coordinatesat which to plot a symbol repre- rect, the plots in the upper part of each figure

senting the magnitudeof the normalized, trans- would showone stick of magnitude100%, and all
formed, expansion coefficients; this is how we others would be of negligible size. Instead,other
obtainthelower partsof Figs. 10—12. Thenormal- multiplets in the basis set routinely contribute
ized magnitudesof theelementsof C’ aregrouped 20—50% as much to the solution as the multiplet
in incrementsof 0.2 for plotting purposes,so that for which ,~P1= 100%.The stick plots for models
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Fig. 11. (a, left) Variationaleigenfunctionof the70th modeof model TR4O. Detailsarethe sameas Fig. lOa. (b, right) Variational
eigenfunctionof the225thmodeof model TR4O. Details arethesameas Fig. lOa.
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Fig. 12. (a, left) Variationaleigenfunctionof the 70th modeof model 0K40.Details arethesame as Fig. lOa. (b, right) Variational
eigenfunctionof the225th modeof model0K40.Details arethesameas Fig. lOa.



304

OK4O and TR4O show less pronouncedcoupling TABLE III
between multiplets than the figures for model Location, magnitudes,and sourcemechanismsof the two

DS4O,but in generalthe coupling in the plots for eventsusedin thecomputationsin this study

thesemodelsis still not negligible. It is also inter- Event Latitude Longitude Depth m~,M
9

esting to look at the plots for which the largest (deg.) (deg.) (km)

contribution to the solution comes from either 1. Sumbawa,Indonesia 11.09S 118.46E 15 7.0 7.9

0TM or 0S32. If only fundamentalmode coupling Aug. 19, 1977
was important in thesesolutions,theonly sticksof Staticmoment

significant size would correspondto these two = 24.e27
Source mechanism:multiplets—all other,, P1 would benegligible.This

m~,= —0.68
comescloseto beingtrue in someof the plots for = 0.68

models0K40 andTR4O. However,in general,the = o.o
figuresshow that othermultiplets do significantly ro= 0.0

contributeto thesecases.In fact, in Fig. 10, the = —0.195

contribution to the solution from 1S20 is larger th04~= 0.195
2. Honshu,Japan 32.OON 137.61E 439 6.9 —

than the contributionfrom Os32. March7, 1978
The lower parts of Figs. 10—12 show that the Staticmoment

largest expansioncoefficientscan correspondto = .52e27

several different degeneratemultiplets. Even in Sourcemechanism:
th~= 0.489caseswhere all sizable singlet contributions fall = 0.053

within one multiplet, thereare generally several
th~= —0.541

singletswhichsignificantly contributeto the solu- = 0.384

tion. Again, if first-orderdegenerateperturbation ry~= — 0.551

theory was substantiallycorrect, therewould be 0.121
one large circle on eachplot, and all the other All data aretaken from Silver andJordan(1983). Silver and

circles would be very small. In some cases this Jordancross-referencethesourcemechanisms.
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Fig. 13. (a, above)Comparisonof thevariational eigenfrequenciesof modelsDS4OandTR4O. The frequenciesfor model DS4O are
plottedas ‘+‘ signs,and thosefor model TR4O areplottedas circles.(b, top of p. 305)Comparisonof variationaleigenfrequencies
for modelsDS4O andOK4O.The circlesarethefrequenciesof model 0K40 andthe ‘+‘ signsrepresentmodel D540.(c, middle of p.
305)Comparisonof eigenfrequenciesfor modelsTR4O and OK4O. The ‘+‘ signs correspondto model TR4O; thecirclescorrespond
to model 0K40.
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Fig. 13 (continued).

appearsto happen,but in generaldoesnot. We haveshown that thereare significant dif-
Thecross-hairsin the lowerhalf of Figs. 10—12 ferences between the results of the variational

show the real and imaginary parts of the eigen- eigensolutioncalculations and those from first
frequencyof the singlet whose expansioncoeffi- order degenerateperturbation theory. We now
cients are plotted. Note that in many (although comparethe eigenfrequencies(computedby the
not all) casesthe largest transformedexpansion variational method)for the threedifferent Earth
coefficientscorrespondto the singletscalculated models.Figure 13a—c show that thereare poten-
by first order degenerateperturbation theory tially observabledifferencesin the split eigenfre-
whoseeigenfrequenciesare close to the variational quenciesof the threelaterallyheterogeneousEarth
solution’s eigenfrequency. models.
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Fig. 14. (a, left) Syntheticamplitudeandphasespectraat thesiteof theIDA station,BDF, for themechanismof the1977 Sumbawa
earthquake,and for model DS4O. Syntheticspectrafor the variational solution (the thickestline), first orderperturbationtheory
(medium thickness)and a laterally homogeneousEarth (the thinnest),are presented.The amplitude scaleis in cm-s. (b, right)
Absolutevalue of theexcitationcoefficients(line spectra)for thethreesetsof eigensolutionsusedto computethesyntheticspectrain
Fig. 14a. The excitation coefficients for the variational method are plotted pointing upward, those for first-order degenerate
perturbationtheory areshownpointingdownward,and thecoefficientsfor model 1066Aareshownasasterisks.

9. Syntheticspectra trenchand the 1978 Honshuevent, a deep-focus

earthquake, occurring near the bottom of the
Syntheticspectrafor eachof the threelaterally seismic zone 250 km west of the Bonin Islands.

heterogeneousEarth models are calculatedusing Sourceparametersusedfor thesyntheticsare given
the eigensolutionscalculatedby the variational in TableIII. The depthsand sourcemechanisms
method.Forcomparison,wealso showthe spectra were obtainedfrom tables 1 and 2 of Silver and
calculated using the first order degenerateper- Jordan(1983). Theseeventswerechosenbecause
turbation theory eigensolutions,and those for a the earthquakeswereat very different depths(15
laterally homogeneous,nonrotating model. We and439 kin, respectively).All of the syntheticsare
presentspectrafor two earthquakes:the Sumbawa calculatedfor a receiverat the site of the IDA
event of 1977, a large, shallow, normal event stationBDF, but the spectrafor all threecompo-
located seawardof the easternend of the Java nentsof groundmotion are given.Additional ex-
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Fig. 15. (a, left) Spectrafor model TR4O. OtherdetailsarethesameasFig. 14a.(b, right) Line spectrafor Fig. iSa.Otherdetailsare
thesameas Fig. 14b.

amplesof thesespectraare givenby Morris (1985). whereu,~is the left (dual space)eigenfunction,v~
The eigenfrequenciesand the left and right is the right eigenfunction,o~is the realpart of the

eigenfunctionsfor each of the threemodels were eigenfrequency,a5 is the imaginary part of the
used in the following formulation for the excita- eigenfrequency,(u5)11 is the derivative of the
tion of the modes of a rotating, anelasticEarth locally cartesiani componentof displacementwith
(Geller and Tsuboi, 1987). In the frequencydo- respectto thej-th locally cartesianderivative,and
main, the displacement,w(r,co) excitedby a point summationover i and j is implied.
moment source, M,~(as defined by Aki and In this study only frequencydomain excitation
Richards,1980) is given by calculationsare presented.However, results are

1/ / \ \ 1 / ~. also presentedthat could easilybe usedto calcu-
j~u ~r ))- -~M iv ~r) . . .

w(r,co) = ‘~ ° ~ “~ ‘~ for c1Re> o late excitation in the time domain. To give the
— (ci,~+ ia5)

2) completeexcitation formula in the time domain,

(6a) following GellerandTsuboi,we first define inter-
mediate terms for the amplitude and phaseof

and eachmodeat eachpoint.

[(u~(ro)),,j.1wcj]vn*(r) F 1
w(r,o) = / 2’ for WRC<O . [(u

5(r0))11.M~1jv5(r)
n iwt~c,~

2— (—o~+ ia
5) ) B5(r) exp(i�~(r))= 2 (7)

(~+ia )
(6b)
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Fig. 16. (a, left) Spectrafor model 0K40.OtherdetailsarethesameasFig. 14a. (b, right) Line spectrafor Fig. i6a. Otherdetailsare
the sameas Fig. i4b.

The displacementexcited by a point moment first-order degenerateperturbation theory solu-
tensor is thengivenby tion, andthe lightest line is the syntheticobtained

from themodesof thesphericallysymmetricmodel
w(r, t) = ~ B5 (r) [(cos( a.~t + ~ (r)) . exp(— a5t)) 1066A. In the excitationcoefficientplots,the coef-

1 8 ficients for first-order perturbation theory are
— cos(~5(r)j ( ) plottedas negative,those for the variationalpro-

The excitation coefficientsB5(r) could be usedin cedureareplotted as positivesticks,andthosefor
a straightforward fashion to computesynthetic model 1066A are plotted as asterisks.The line
seismogramsif they are desired. spectrafor the variational,first order perturbation

Figures 14—19 show synthetic amplitude and theory, andsphericallysymmetricsyntheticsdiffer
phase spectra and excitation coefficients coin- greatly from one another.The errors in the syn-
puted at BDF. The heaviestline in eachspectral thetics calculatedby the two less accuratemeth-
plot is the syntheticobtainedfrom the variational ods generally seem to be worsefor the Honshu
solution, the medium line corresponds to the synthetics than for the Sumbawasynthetics.This
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Fig. 17. (a,left) SpectraatBDF site for mechanismof Honshudeep earthquakeandmodel DS4O. Other detailsarethesameasFig.
14a. (b, right) Line spectrafor Fig. 17a. Otherdetailsarethe sameas Fig. 14b.

is probablybecausetheovertones,whosesplitting tion, the coupling that can be clearly seenin the
is moresensitiveto lateralheterogeneitythan the syntheticline spectracannotbe clearly seenwhen
fundamentals,have larger relative amplitudesfor anelasticityis includedin the syntheticspectra.
the deepevent. This may have potentially important implica-

Figures 10—12 appear to show that there is tions.Thefact that observedspectraseemto show
substantialcoupling betweenmultiplets. On the distinct peaksfor 0S32 and 0T31 is often cited as
otherhand,thesyntheticspectrain Figs. 14—19 do an argumentagainstsignificant coupling between
not show a grossdisparitybetweenthe variational multiplets.However,Figs. 14—19 clearly showthat
method spectraand thosefor a laterally homoge- anelasticity can have the effect of obscuringthe
neous Earth. In fact, the variational spectraap- underlying strong coupling that actually is oc-
pear in generalto show largepeaksroughlywhere curring. Developing data processingmethodsto

0S32 and~TM shouldbe.This result might appear allow therecoveryof dataon suchstrong coupling
paradoxical: if the eigenfunctionof eachsinglet is thus a major problem in observationallong
shows substantialcoupling, one might expect the period seismology.
spectrato show comparableevidenceof coupling. Figures 14—19 show significant differencesin
However, dueto the smoothingeffect of attenua- thephaseandamplitudespectraof all threemod-
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Fig. 18. (a,left) Spectraat BDF site for mechanismof Honshudeepearthquakeandmodel TR4O. Otherdetailsarethesameas Fig,
14a.(b, right) Line spectrafor Fig. 18a.OtherdetailsarethesameasFig. 14b.

els in nearlyevery plot. Also, the differencesbe- tial to distinguish betweendifferent regionaliza-
tweenthe two modelsof oceanlateralheterogene- tions of lateralheterogeneity,andto resolvein the
ity (TR4O and OK4O) are just as large as the depth extent of lateral heterogeneity.Thus, the
differences between those two models and the variationalprocedureprovidesa powerful tool for
deepheterogeneitymodel DS4O. It shouldbe pos- testing theoreticalmodels of lateralheterogeneity
sible, therefore,to differentiateeffects of region- in the Earth.
alization of shallow heterogeneityfrom effects of
deeplateralheterogeneityusingtheinformation in
the phaseas well as the amplitude spectrum,i.e., Acknowledgments
the waveform.
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APPENDIX: MATRIX ELEMENTS

The integralsusedto constructthe energymatricesfor the eigenvalueproblem are summarizedhere.
They are substantiallythe sameas thoseof Woodhouse(1980), although they are in a slightly different
form and the ellipticity integrals are somewhatdifferent. With the exceptionof the angular order 2
perturbation introduced by ellipticity, it is assumedthat none of the lateral variations in material
propertiesaffect thecore/mantleboundaryor any otherliquid/ solid interface.Thus,the boundaryterms
describedby WoodhouseandDah.len (1978)are omitted (exceptthoserelatedto ellipticity). If one does
usea model containinglateralvariationsin propertiesat a liquid/ solid interface,thesetermswould have
to be included.In addition, the model is assumedto belocally isotropic.
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Termsrelating to attenuationare not givenexplicitly, but they canbe constructedfrom theelasti-
city integralsby substitutingi~m= KQ ~ and/or j.t~’~= ~ ~ for iç(r) and l.t.(r), respectively(Wood-
house,1980). Since lateral variation in the attenuationstructureof the Earth is not well defined, only
the effectsof a sphericallysymmetric~fmareincorporatedin thework discussedin this paper. In addi-
tion, only terms for the upperhalvesof the energy matricesare given. The elasticity, gravitational,
ellipticity, and rotational terms for the lower halvescanbe constructedusing theHermitian property of
thoseterms,and the sphericallysymmetric attenuationtermsare symmetricaboutthe diagonalsof the
matrices.

Recently Geller (1987) has suggestedthat Woodhouseand Dahlens’ (1978) energy integrals for
the self-gravitation terms are incorrect. If Geller’s suggestionprovesto be correct, the integralsgiven
below mustbe revised. However,sincethe results in the presentpaperare for modeswith a period of
about 250 sec, the self-gravitationterms are not importantin the calculationspresentedin the body of
this paper.

Notation and Common Terms

Let a toroidal modeof a sphericallysymmetricEarthmodel be of the form:

k>
2 = ~W1(r) [1(1 + 1)]½T1

m(0,~) k>
1 = In,l,m>1

and let spheroidalmodesbe of the form:

k>2 = 5U,(r) R1
m(94) + [1(1 + l)]b0~~V

1(r) Sr(e,~) k>2 = tn,l,m>2

where ,, WI (r) , ,~U1(r) , and ,~V1(r) are the solutions to the radial parts of the equationsof motion,
Tr(e4) , Rj”(04) , andSf’(04) are fully normalizedvectorsphericalharmonics

T
m e — 1 0 1 ~Yr(0,~) ayr(e,~) -

~ — [1(1+ 1)11/0 ‘ sinO ~4 ‘

Rr(e4) = [Yr(o
1~)~o1o]

s
tm e ) - 1 0 ~Yr(o,~) 1 ~Yr(e,~) -~ ‘~ - [1(1 + 1)]½ ‘ ~0 ‘ sinO ~

and Yr(0,~) is an orthonormalized,complex scalarspherical harmonicas definedby Jackson(1975).
The gravitationalpotential field associatedwith a spheroidalmodewill be representedby 4~ . In the
expressionswhich follow,

5W1(r) will be abbreviatedto W, 5’W,’(r) will be abbreviatedto W’, and
similarly for the other radial functions.Also, W = dW/dr, W’ = dW’/dr, etc. In addition, it is assumed
that the modesof the sphericallysymmetricmodel arenormalizedsuchthat:

<k’ Ipo(r)Ik>1
6k~k -

and - - -

<k’ Ipo(r)Ik>
2 = ~k’k -

Next, expandthe density, shearmodulus,and bulk modulusdistributions of the laterally hetero-
geneousmodelin termsof sphericalharmonics:
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p(r,O,q) = ~ p (r) Y (0,4) , ji(r,0,4) = ~ ~.t (r) Y. (8,4)

K(r,0,4)) = 1ç (r) Y~(0,4)

In addition to theseterms, theperturbationsto materialpropertiesand the gravitationalpotential caused
by ellipticity are givenby Dahlen(1968)as:

½
4it 2 ap0(r)

= -~ r E(r) ~r Y2(0,4)

p~(r,O,~)= [~]~-~ r e(r)~~ Y°(0~)

½

K~(r,84) = [~]-~ r e(r)~~ Y°(8~)

~~(r,84) = [~] “~ r e(r) d~)o(r)-! ~2 r2] Y~(O4)

where c(r) is the ellipticity of the Earth as a function of radius, 4)o(r) is the gravitational potential
energyof the Earth,and~ is the rotational frequencyof the Earth. In the following equations,c = e(r)
,ê=d~Jdr,and40=~o(r).

Now definesomeconstantswhich occur frequently:

— [1‘(1’ + 1) + 1(1 + 1) — s(s + 1)J

a1 2

— [1(1 + 1)+s(s + 1)—l’(l’+ 1)]

a2— 2

— [l’(l’ + 1) + s(s + 1) — 1(1 + 1)]

a3 2

a4=a1 [l’(l’+ 1)+1(1 + 1)—s(s + 1)—2]— [1(1+ 1)][l’(l’+ 1)]

and, following Luh (1973, 1974) andWoodhouse(1980), define:

F’ = 2U’ — l’(l’+l)V’ , F = 2U — l(l+1)V

z’ dW’W’ z-~T W
— dr r ‘ — dr r

= (U’—V’) + ~‘ , x = (U—V) +

The surfaceintegralsto be evaluatedreduceto:

Ii = sj Y~’
t(O,4) Y:(e4) Yr(e4) d~T~
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1 ½
= [(2! + 1) (~ + 1) I

<is 00 is I’O><I sm t I is i’m’>
4it(21’+l) ]

‘2 = sj ~ x V Y~’4(94)) Y~(94) (V Yr(94) ) d~

(1+1 ‘—s+l) (l+s—l ‘+1) (s+l’—l+l)= [(21+1) (2s+1) (1’-i-l+s+2)
it (21’-t-3) (l’-t-l+s+3) j

i
• ~- < I s m t I 1 s 1’ m’ > < (1+1) (s+1) 0 0 I (1+1) (s+1) (i’+l) 0 >

½
1(1+1) — 3m2 ______________________________

13 ~ ~‘ (21—1)(21+3) + ~fl1fl1’ ~ [(i—rn) (i+m) (i’+l—rn) (i’+l+m) 1

2 L (21—1) (21+1) (21’+3) (21’+l) j
1½

3 1 (l’—m) (l’+rn) (i+1—rn)(I+1+rn) I
+ ~mm’ ö(l+

2)l’ ~ L (21’—1) (21’+l) (21+3) (21+1) j
1½ r 1½

14 = ~ ~(I+1)l’ [(l’+m)(l’—m) I I (i+rn)(i—m) I
(21’-t-1)(21’—1) J + ~ ~l(I’+1) L (21+1)(2i—1) j

where(Is 001/si’ 0), (Ismt isi’ m’), etc., are Clebsch-Gordancoefficients(Merzbacher,1970), * de-
notesthe complex conjugatetranspose,and S1 is the surfaceof a unit sphere.13 and 14 are essentially
specialcasesof I~and12which appearin the rotation andellipticity integrals(for which s = 2).

Toroidal-Toroidal Matrix Elements

Elasticity integrals:

Tk’k = ~ rf a1 r
2 W’ W p~(r)dr ‘I

S I

Vk’k = ~ Jr2 j.L(r) Z’ Z + a
4 WW ] dr I~

SI t. r

Rotational integral:

Ck’k = 8mm’ 611’ 2 m Co �~,5 p0(r) W W’ r
2 dr

Ellipticily integrals (s = 2 in a
1,a2, a3, a4):

~

Vk’k ~rJP~fr) { re [(a2l’(l’+1)+6ai)l~”W+(a3i(i+1)+6ai)W’l~ J
+a1 r

2(Z’Z —i~”z—i~’z~]_er2ai(l~T’Z +l4~’)}dr 13
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Spheroidal - SpheroidalMatrix Elements

Elasticity integrals:

Tk’k = ~ rf’~ p~(r) (U’ U + a1 V’ V) dr I~

Vk’k~~

+~(r) [a4V’V+a1r
2X’X +~(2U’_F~X2U_F)] } dr Ii

Gravitational integrals:

1 1 dq
0 U’U

Vk’k ~f,.2 p.~!(r)18itGpo(r)U’U—-~---~—U’F+UF’+4—

+U’~1+U~1’±~(V’~1+V~1’)+~~ (V’U+U’V)} dr ii

+ j p~(r) ~(r) { s(s+1) U’U + a2 ~ [U’~ + — U’V — 2F’V ]
+a3-~ [u~’+2~L_üv’_2P’V’] }dr I~

+ rSr2po(r)~~ [a~-~-~+a3-~- —U’F _UF’} dr i~

Rotational integrals:

Ck’k = 6iz’6mm’21(~1wmrS?
2Po(r)(V’V+UV’+U’V)dP

Vk’k = öii’ 6mm’ .a ~2 — i(~1) rS r2 p
0(r) (V’V + (IV’ + U’V ) dr ]

Eiiipticizy integrals ( s = 2 in a1, a2, a3, a4 ):

Tk’k = ~ ~f’2 p0(r) (a3 UV’+a2 U’V) + (r~+3e) (a1 W’+ UU’) ] dr 13

= ~ r
2 e [J.Lo(r) M — ic

0(r) K + p0(r) R ] dr 13

where:

K=(U+F)[U’+(a3_2)L]+(U’+F~[U+(a2_2)~]
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M = - (2U-F) [2~’+a3 [3~~4v’]] (2U’-F’) [2~+a2 [3~~~]]

(U-V) 1I a2U’—a1V’—a3l(l+1)~—l+(a3l(l+1)+6a1)~
r rJ r

(U’-V’) 11 . V
+ + I a3U — a1V — a2 l’(l’+l)— + (a21’(l’+1~+6a1)~

r r] r

- (r~+e) Iai 11. (U-V) 1 i(U’-V’) ~ [~(U-V) 1
~ 1—~-[Iv+ IIr JL r r J
1~, (U’-V’) 11 w’ (2U-F) r~,F’ V’ 1—V IV + I I+a4—~—— 3 L ——2a3— I

r Jj r
rj

(2U’—F’)
1U+-~—2a ~

3 2 2j5

R=F [r~i’+4itGPorU’+~~U’]+F’ [r~i+4itGPo d~
0 1rU+—U I

dr dr J
— (a2U’V + a3UV’) d40 1 1 d40 r ]

r ~ L
61JU’_+ IatV_1’~’+1~~

dr
+ {aiV’ — l(1+1)U’] ~ ] — (rê+3e) I 2a

1
2e ~ [t~1V’÷~1’V ]

2V d40 1 1 , 2V’ d40 11
+ U’ + 8itGp0U — a2 — ~ J + U [2~’~+ 8itGp0U — a3 ~ j ~

r

Toroidal - Spheroidal Matrix Elements

In the expressionswhich follow, thetoroidal modeis the “primed” mode.

Elasticity integrals:

Tk’k1111~~rJr
2Psfr)~4”1’1

2th~
S I

Vk’k ~ Tf~fr)[r2Z’X +2(a1—1)W’V ] I2dr
S I

Gravitational integrals:

Vk’k ~ Jr {p.(r) [~~~1+f W’U ±~2.1
dr j

1 1d4~ I
- -~ po(r) L -i-- W’U + ~ L UW’ - W’U - 2W’F + ~ ] ] }dr ‘2
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Rotational integral (s = 2):

Ck’k = 2 io)c2 6m’m L1 J p0(r) r
2 (a

3U—ajV)W’dr

Ellipticity integral (s = 2):

Tk’k = 2 im öm’m 14 r~ p0(r) r
2 [~(W’u — 3W’V) — rEW’V ] dr

Vk’k = 2 im 6m’m 14 J r2 { po(r)R + ~t
0(r)M — ~(r)K

where:

3U (2a2-i-1)
M=s W’ 2V-U+—- V -VW’

r r

+ ~i - 7V + 51~1)V - l(l’±1)+8U ] -

2W’ .
— —(2U--F) +

r r

— rc -
11~-(U—V)— (2a

1—2)--V + ~‘—(2U—F)+ VW’
r r 3r

K =

R = E [-~~[~~w’U — W’U — W’U ] + 2W’±~- 4IrGP0(r)UW’]

+ iW’41

Diagonals of the Energy Matrices

The terms given aboveall comefrom perturbationsmadeto the starting sphericallysymmetric
Earth model. Before the matricescan be used to solve for the modesof the laterally heterogeneous
model, a factor of 1.0 must be addedto the diagonalelementsof the kinetic energy matrix and the
squaresof theunperturbedfrequenciesmustbe addedto the appropriatediagonalelementsof the poten-
tial energy matrices.This is in order to incorporatethe effects of the sphericallysymmetricportionsof
the density, bulk modulus, and shear modulus. Essentially, it converts the matrices from being
perturbationenergymatricesto being full energymatricesfor the Earthmodel underconsideration.

SelectionRules

The numberof matrix elementswhich mustbe computedis reducedconsiderablyby applying the
selection rules for the Clebsch-Gordan coefficients (Merzbacher, 1970)

(a) <lsmtllsl’m’>=Ozfrn+r�m’

(b) <lsOOIisl’O> = 0 if l+s+l’ isodd

(c) 1,!’, andsmustsatisfy Il — l’I <5 � 1 + 1’
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The secondselection rule meansthat matrix elementsinvolving unperturbedmodes within the same
multiplet (i.e., n = n’ and 1=!’) are affected only by lateral heterogeneityof even angular order.
Therefore, as Madariaga(1972) and others have noted, solutions obtainedby first-order degenerate
perturbationtheory contain no information aboutlateral heterogeneityof odd angularorder. Solutions
obtained by the general Rayleigh-Ritz variational approach, on the other hand, do contain such
information.
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