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Abstract We conducted broadband dispersion survey by deploying two arrays of broadband ocean
bottom seismometers in the northwestern Pacific Ocean at seafloor ages of 130 and 140 Ma. By
combining ambient noise and teleseismic surface wave analyses, dispersion curves of Rayleigh waves were
obtained at a period range of 5–100 s and then used to invert for one-dimensional isotropic and azimuthally
anisotropic βV (VSV) profiles beneath each array. The obtained profiles show ~2% difference in isotropic βV in
the low-velocity zone (LVZ) at a depth range of 80–150 km in spite of the small difference in seafloor ages and
the horizontal distance of ~1,000 km. Forward dispersion-curve calculation for thermal models indicates that
simple cooling models cannot explain the observed difference and an additional mechanism, such as
sublithospheric small-scale convection, is required. In addition, the fastest azimuths of azimuthal anisotropy
in the LVZ significantly deviate from the current plate motion direction. We infer that these observations
are consistent with the presence of small-scale convection beneath the study area. As for azimuthal
anisotropy in the Lid, the peak-to-peak intensity is 3–4% at the depth from Moho to ~40 km. The fastest
direction is almost perpendicular to magnetic lineation in area A at 130 Ma and oblique to magnetic
lineations in area B at 140 Ma, suggesting complex mantle flow beneath the infant Pacific Plate surrounded
by three ridge axes. The intensity of azimuthal anisotropy in the LVZ is ~2%, indicating that radial anisotropy
is stronger than azimuthal anisotropy therein.

1. Introduction

The theory of plate tectonics has been widely accepted to explain surface features such as the lineations
of magnetic anomalies (Vine & Matthews, 1963) and the increase of sea depth with seafloor age caused
by cooling of the lithosphere-asthenosphere system (LAS) beneath the ocean (Davis & Lister, 1974).
Seismic surface-wave studies have verified the idea of cooling by obtaining uppermost mantle structure
including the low-velocity zone (LVZ) and overlying Lid at different seafloor ages (Harmon et al., 2009;
Maggi et al., 2006a; Nishimura & Forsyth, 1988). Recent body-wave studies revealed sharp velocity reduction
between Lid and LVZ called as G-discontinuity, which is one of the candidates of the oceanic
lithosphere-asthenosphere boundary (Bagley & Revenaugh, 2008; Kawakatsu et al., 2009; Kawakatsu &
Utada, 2017; Kumar & Kawakatsu, 2011; Revenaugh & Jordan, 1991; Rychert & Shearer, 2011).

Although the correlation between the seafloor age and the uppermost mantle structure is clearly shown by
tomography studies especially at seafloor ages younger than ~60 Ma, the deviation from average structures
or the cooling models has been discussed continually (e.g., Maggi et al., 2006a; Montagner, 1985; Ritzwoller
et al., 2004). Numerical studies also suggest the presence of small-scale convection (SSC) in the oceanic
asthenosphere (e.g., Huang & Zhong, 2005; Richter & Parsons, 1975), which is considered to reheat the
bottom of the oceanic lithosphere and causes shallower ocean depth and larger heat flow at old seafloor
compared to those of the half-space cooling model. Those surface observations have been fitted by
plate-cooling models with a certain plate thickness below which temperature is a constant value (Parsons
& Sclater, 1977; Stein & Stein, 1992). The detailed discussion has been, however, difficult due to the limited
lateral and vertical resolution of tomography models especially in the oceanic regions.

Seismic azimuthal anisotropy is another physical property that reflects ancient and/or current flow in the
oceanic mantle related to plate motions. In early studies, body-wave azimuthal anisotropy below Moho
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discontinuity is used to infer ridge-perpendicular flow during the seafloor spreading (Raitt et al., 1971).
Surface-wave tomography studies obtained azimuthal anisotropy in the lithosphere with the fastest azimuths
perpendicular to magnetic lineations and ancient ridge axes (Debayle & Ricard, 2013; Smith et al., 2004).
Surface-wave studies also obtained anisotropic structures in deeper depths of up to ~200 km and showed
ridge-perpendicular flow frozen in oceanic lithosphere and the flow parallel to the current plate motion in
the oceanic asthenosphere (Maggi et al., 2006b; Nishimura & Forsyth, 1988; Tanimoto & Anderson, 1984).
By recent seafloor observations, the complexity of flow in the uppermost mantle is also revealed from litho-
spheric azimuthal anisotropy oblique to ancient ridge axes (Takeo et al., 2016; Toomey et al., 2007). The simi-
lar observation in the old oceanic lithosphere apart from current ridges has not been obtained yet.

For improving our understanding of the oceanic LAS especially in the middle to old seafloor ages of 60–
150 Ma, several seafloor observation projects have started in different regions in the Pacific Ocean in the
2010s almost concurrently (Baba et al., 2013; Lin et al., 2016; Shintaku et al., 2014). In this study, we show
the results from surface-wave array analyses of broadband ocean bottom seismometers (BBOBSs) that we call
“broadband dispersion survey,” as opposed to the conventional refraction survey, conducted in the north-
west Pacific Ocean under the Normal Oceanic Mantle (NOMan) project in 2010–2014.

2. Broadband Dispersion Survey Beneath the NW Pacific Ocean

Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014), together with
advances in the seismic analysis methodology (e.g., Shapiro & Campillo, 2004), have enabled us to resolve
the regional one-dimensional structure of the entire LAS, including seismic anisotropy (azimuthal and,
hopefully, radial), with deployments of ~10 BBOBSs (e.g., Lin et al., 2016; Takeo et al., 2013, 2014, 2016).
The multiband method for the ocean-bottom broadband dispersion survey utilizes seismic surface waves
at periods of 3–150 s (ambient noise for 3–30 s and teleseismic surface waves for 30–150 s or longer)
recorded by arrays of BBOBSs. This broadband dispersion measurement allows us to obtain one-dimensional
isotropic and anisotropic structure beneath the array from the surface to the LVZ, that is, the entire oceanic
LAS, without an a priori assumption for the shallow-most structure, the assumption often made for the
global surface wave tomography. We have conducted such surveys beneath the NW Pacific Ocean under
the NOMan project.

2.1. Data

The NOMan project is designed to understand the oceanic LAS and themantle transition zone in the “normal”
oceanic mantle by the collaboration of seismology (Takeuchi et al., 2017) and ocean electromagnetic studies
(Baba et al., 2013, 2017; Matsuno et al., 2017). There are two arrays in the northwest (area A) and southeast
(area B) of the Shatsky Rise (Figure 1). The numbers of BBOBS stations are 10 and 8 for areas A and B, respec-
tively. The instruments are BBOBS-NX (Shiobara et al., 2013) for five stations in area A, and conventional
BBOBSs (cf., Suetsugu & Shiobara, 2014) for other 13 stations. The interstation distances are 100–150 km,
and the array sizes are ~500 km. The observation period is from 2010 to 2014 including six different obser-
vation phases (the detail of the station information can be found at the following URL: http://ohpdmc.eri.
u-tokyo.ac.jp/dataset/campaign/obs/nomantle/station/index.html).

2.2. Broadband Dispersion Analysis

We applied surface-wave array analysis methods and inversion methods for obtaining one-dimensional iso-
tropic and azimuthally anisotropic βV profiles in each area (Takeo et al., 2013, 2014, 2016). The shear-wave
velocity, βV, is that of a vertically polarized horizontally propagating shear wave in a radially anisotropic media
defined by Takeuchi and Saito (1972), whose vertical structure mostly controls dispersion curves of Rayleigh
waves. Although βV is exactly same as VSV often used by other surface-wave studies, we denote it as βV
because it can be different from the velocity of SV waves that appears in seismology textbooks and body-
wave studies (Kawakatsu, 2016; Kawakatsu & Utada, 2017).

At a period range of 5–30 s, we extracted background Rayleigh waves in ambient noise by cross-correlating
seismograms in each pair of stations including the fundamental-mode Rayleigh wave (0S mode) at a period
range of 15–30 s and the first higher-mode Rayleigh wave (1S mode) at a period range of 5–10 s. These two
modes appear because of the energy concentration of 0S mode in the water layer at periods shorter than
~15 s for the seafloor depth of ~6,000 m (e.g., Harmon et al., 2007; Yao et al., 2011). In detail, the period
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range of phase-velocity measurements is 8–10 s for 1Smode in area A (Figure 2a) due to lower signal-to-noise
ratio at periods shorter than 8 s, probably because of the thick sediment layer in this area (Shinohara et al.,
2008) creating additional mode transition at a period of ~7 s (see an example in Tonegawa et al., 2015). At
a longer period range of 30–100 s, we analyzed teleseismic fundamental-mode Rayleigh waves by
assuming propagation of a plane wave in a local coordinate defined by Forsyth and Li (2005). Although we
analyzed Love waves, we will not describe the detail because the significant interference between higher-
and fundamental- mode Love waves cannot be resolved with our dataset of small array size (e.g., Foster
et al., 2014; Gaherty et al., 1996).

In the analyses of ambient noise and teleseismic waves, we measured average phase velocities (Figure 2a)
and their azimuthal dependences (Figures 3a and 3b) in each area. We then inverted for one-dimensional iso-
tropic (Figure 2b) and azimuthally anisotropic (Figures 3c and 3d) βV models in each area by assuming one
oceanic, three crustal, and nine mantle layers from sea surface to a depth of 150 km, and vertical smoothing
parameters same as our previous studies (Takeo et al., 2016).

Details of methods are described in Takeo et al. (2013, 2014, 2016) with two additional improvements in
phase-velocity measuring procedures in this study. For teleseismic analysis, B-spline functions are used to
obtain dispersion curves in our previous studies (Takeo et al., 2013), but here we inverted for one-dimensional
βV model for each event to obtain more realistic phase-velocity measurements (model-based approach; e.g.,
Cara & Leveque, 1987): each βV model has 14 independent layers from seafloor to a depth of 300 km without
any vertical smoothing, and we retain only the phase-velocity measurements to invert for final models. This

Figure 1. Map of BBOBS stations of the NOMan project marked by crosses in area A at a seafloor age of 130 Ma and area B
at a seafloor age of 140 Ma that are separated by a horizontal distance of ~1,000 km. The thick arrows represent fastest
azimuths at a depth shallower than ~20 km (blue) and deeper depths of ~80–100 km (red) determined in this study. The
thin arrows are the azimuths at depths shallower than ~20 km (blue) and deeper depths of ~50–80 km (red) by previous
studies: S08 (Shinohara et al., 2008) near area A and S14 (Shintaku et al., 2014) and T14 (Takeo et al., 2014) at southwest
of the Shatsky Rise. Thin white lines indicate the seafloor age fromMüller et al. (2008). The area of the largemap is shown by
a rectangle in the small semiglobal map at the bottom.
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improvement provides appropriate frequency smoothing (Figure 4) and better resolution to the pattern of
azimuthal anisotropy compared to B-spline expansions.

In addition, for both teleseismic and ambient noise analyses, average phase-velocity measurements (cave) are
obtained by fitting phase velocities by cave(1 + A2 cos 2(θ � ϕmax)), where θ is propagation azimuth, and A2
and ϕmax are intensity and fastest azimuth of azimuthal anisotropy shown in Figure 3c. If fitting of azimuthal
anisotropy is not employed as previous studies (Takeo et al., 2013, 2016), bias due to azimuthal anisotropy
appears in the average phase-velocity measurements especially at a period range of 30–80 s in area A
(Figure 4). The degree of bias is ~1% and not negligible, unlike our previous studies, due to limited azimuthal
coverage of raypaths and the NE-SW elongated array configuration in this study.

3. Results
3.1. One-Dimensional Isotropy S Wave Velocity Profile

In the one-dimensional βV profile (Figure 2b), especially in area A, the velocity drops to values below 4.5 km/s
at depths deeper than 80 km from values above 4.6 km/s at depths shallower than 60 km. From the large
velocity contrast of ~5%, we define that the Lid and the LVZ exist at depths of 10–60 km and 80–150 km,
respectively. Although the velocity contrast is smaller with a value of ~3%, we also define the Lid and LVZ
at the same depth ranges in area B. As previous studies, we here simply interpret that the Lid and the LVZ
correspond to the lithosphere and the asthenosphere, respectively. The bottom of LVZ is not well defined
due to the limited period range of dispersion measurements and linear interpolation of velocity structure
at a depth range of 80–150 km in this study. It should be noted that rather constant velocities are observed
between depths of 10 and ∼60 km in two areas, indicating a Lid-like structure that is also seen in our earlier
study beneath the Philippine Sea (Takeo et al., 2013). The depth of Lid-to-LVZ transition is also of a recent
interest (e.g., Burgos et al., 2014; Yoshizawa, 2014); the largest changes occur around a depth range of 60–
80 km in both areas. The amplitude of the velocity reduction from the Lid to the LVZ in total is estimated
to be ∼6.5% and ∼3.7% in A and B areas, respectively.

3.2. Azimuthal Anisotropy Profile

The azimuthal dependence of phase velocity could be clearly observed for the analysis of ambient noise and
teleseismic waves (Figures 3a and 3b) both for the 1S mode at periods of 5–10 s and for the 0S mode at per-
iods of 17–50 s (Figure 3c). The inverted one-dimensional profiles have strong azimuthal anisotropy of 3–4%
at depths of 10–40 km in the top ~30 km of the mantle, and smaller anisotropy of 2% at deeper depths
(Figure 3d). The azimuth of maximum βV is NW-SE in area A and WNW-ESE in area B, which is slightly

Figure 2. (a) Average phase velocities of Rayleigh waves, cave, in area A (red circles) and B (black circles) and model phase
velocities (solid lines) in each area. Bone-dimensional azimuthally isotropic βV profiles. The light shades represent one
standard deviation ranges of bootstrap solutions as model uncertainties in each area. The dashed line is the ORMmodel by
Maggi et al. (2006a) used as a reference at depths deeper than 225 km in this study. The depth of 0 km corresponds to the
sea surface.
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rotated to WSW-ENE in the LVZ in area B (Figures 1 and 3d). Both the strength (3.5%) and the fast direction
(∼130°N) of azimuthal anisotropy in the sub-Moho mantle of area A are generally consistent with the results
of the active source Sn measurements (4.2% and 143°N) conducted at the eastern edge of the area by
Shinohara et al. (2008), although the fast direction is slightly rotated counter-clockwise toward the current
plate motion direction from the ancient spreading direction inferred from the magnetic lineations. The fast
directions (∼105°N) of area B exhibit no simple association either with the magnetic lineation or with the
current plate motion.

4. Discussions
4.1. One-Dimensional Profile: Lid-to-LVZ Transition

The largest change of βV occurs around a depth range of 60–80 km in the studied areas. It is of great interest
to compare such in situ direct measurements with the results of global tomography; for example, Burgos et al.
(2014) report, for Pacific Ocean sea-floors of crustal ages around 137.5 Ma, corresponding depths of
∼120 ± 10 km that are far too large compared with our measurements. It indicates that the usage of the

Figure 3. (a) Azimuthal dependence of phase velocity anomalies, γ, of Rayleighwaves in area A at periods of 8 s (1S mode) and 19 s (0Smode) obtained from ambient
noise and at a period of 41 s (0S mode) obtained from teleseismic surface waves. The red dots are measurements. The dotted lines are fitting lines. The effect of
water depth, γw, and source heterogeneity of ambient noise, γs, are subtracted from anomalies at periods of 8 and 19 s (see detail in Takeo et al., 2016). (b) Those in
area B. (c) Peak-to-peak intensity, 2A2, and the fastest azimuth, ϕmax, of the azimuthal dependence of phase velocities in each area. The red and black colors
correspond to areas A and B, respectively. (d) One-dimensional profiles of βV azimuthal anisotropy in each area. The three thick arrows on top correspond to the
azimuths perpendicular to magnetic lineations in areas A (red filled) and B (black filled) and the azimuths of current plate motion (white filled). Thin white-filled red
arrows indicate the refraction survey result of Shinohara et al. (2008) for sub-Moho anisotropy.
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depth derivatives of global tomographic models to infer the physical con-
dition of the LAS in the ocean needs to be carefully conducted and that
importance of incorporating regional measurements into large-scale
tomographic modeling to advance our understanding of the LAS beneath
the ocean (e.g., Kawakatsu & Utada, 2017).

Although surface wave dispersion measurements alone cannot constrain
the depth interval of these changes, if they occur within an interval
smaller than 30 km, G-discontinuity might be observed from body-wave
analyses. In fact a velocity reduction of ∼5% occurs in the depth range
of 60–80 km that is comparable, though slightly smaller and shallower,
to the reported G-discontinuity estimates via RF analysis (~80–85 km
and 7–8%) by Kawakatsu et al. (2009) and Kumar et al. (2011) beneath
the northeastern edge of area A. Since surface-wave dispersion curves
are less sensitive to the gradient of boundary, model with such a sharp
velocity boundary can also fit the dispersion curves in area A. In area B,
however, such a strong discontinuity unlikely explains the dispersion
curve. We thus consider that a significant G-discontinuity can only exist
beneath area A.

4.2. One-Dimensional Profile: Regional Variation of LAS

While the Lid profiles are quite similar and indistinguishable within the model uncertainty between two
areas, the difference between areas A and B in the LVZ is well resolved. The phase velocity of the
fundamental-mode Rayleigh wave in area B is 1.5% faster than that in area A at periods of 40–100 s
(Figure 2a). As a result, the βV value in area A is estimated to be ~2% lower than that in area B (Figure 2b)
in a depth range of 80–150 km in the LVZ. Although a similar pattern of βV variation in two areas in the Lid
and/or LVZ can be recognized in recent tomography models with horizontal resolutions of ~1,000 km
(Burgos et al., 2014; Debayle & Ricard, 2013; Schaeffer & Lebedev, 2013), we could constrain the variation
quantitatively without horizontal smoothing in this study because we used records directly above each area
independently; in addition, we could constrain the depth of variation much better because we reduced the
trade-off between Lid and LVZ velocities by analyzing surface waves at periods shorter than 30 s in the
ambient noise.

The velocity difference of 2% in the asthenosphere corresponds to a temperature difference of ~250 K assum-
ing the pyrolite model (Stixrude & Lithgow-Bertelloni, 2005, 2011). To evaluate whether this difference can be
explained by the small difference in seafloor ages, we calculated synthetic dispersion curves for several ther-
mal models of oceanic uppermost mantle including half-space with a potential temperature of 1,350 °C and a
plate-cooling model with a plate thickness of 125 km and a potential temperature of 1,350 °C (Parsons &
Sclater, 1977). The adiabatic temperature gradient is also introduced with a gradient of 0.3 K/km. We first con-
struct vertical shear-wave velocity structures (Figure 5a) by using the pyrolite model. The pyrolite model is
based on experimental results and gives average shear-wave velocity, VS = (βV + βH)/2, where βH and βV mod-
els can be obtained from Love and Rayleigh waves, respectively. Since there is no Love-wavemeasurement in
this study, we assumed the intensity of radial anisotropy to be 4% (βH/βV = 1.04) from Moho to a depth of
225 km. We also fixed the seismic attenuation structure to that of a global standard seismic model (PREM;
Dziewonski & Anderson, 1981). As shown by results in Figure 5b, the observed phase velocities in area B could
be fitted by the half-space coolingmodel, whereas those in area A could be fitted by the plate-cooling model.
Although these results are under the strong assumptions of seismic radial anisotropy and seismic attenuation
described above, we emphasize that neither of two thermal models could fit dispersion curves in two areas
simultaneously and therefore that the small difference in the seafloor ages is not enough to produce the
large velocity difference of ~2% in the LVZ.

One possible cause of the difference is the effect of the Shatsky Rise formed at the northern tip of the young
Pacific Plate at 127–146 Ma (Nakanishi et al., 1999) that might have caused thermal and chemical alternation
in the mantle beneath this region at the era. As explained below, however, both thermal and chemical
anomalies seem difficult to create lateral heterogeneity only in the current LVZ, which we interpret as the
asthenosphere. The thermal anomaly that created the thick crust of the Shatsky Rise should have

Figure 4. Comparison of the average phase-velocity measurements by the
one-dimensional model-based approach of this study with correction of
azimuthal anisotropy (circles) to those without correction of azimuthal ani-
sotropy (solid lines) and by B-spline expansion with correction of azimuthal
anisotropy (dashed lines) for areas A (red) and B (black).
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dissipated already. The chemical anomaly (Korenaga & Sager, 2012) can stay in the lithosphere, but not in the
asthenosphere due to shear flow by the plate motion except for the case that the depleted viscous mantle
has remained as a root of thick crust for more than 100 Ma. Such a high-velocity root has a potential of
leaving ~1% anomaly of VS (Schutt & Lesher, 2010). We consider that this interpretation is not likely
because the intensity of anomaly is not enough to explain our observation of ~2%, and such an anomaly
should be also seen in the current oceanic lithosphere. There is an observation of low-velocity root
beneath Ontong Java plateau, but the sign of anomaly is opposite, and its origin is not yet fully
understood (Richardson et al., 2000).

Another possible cause is the sublithospheric SSC predicted in the old oceanic uppermost mantle from the
1970s (e.g., Richter & Parsons, 1975). The SSC transfers heat from the deeper mantle to the bottom of the
lithosphere, reheats, and creates small-scale lateral heterogeneity in the LVZ. Since dispersion curves in area
A can be fitted by the plate-cooling model, reheating beneath LVZ seems to have occurred or been occurring
now. In area B, the uppermost mantle might have been cooled only by conduction for 140 Ma as discussed by
Korenaga and Korenaga (2008) for entire oceanic mantle without the anomalous crust, or convection might
be also occurring in a manner that does not alter the thermal profile significantly. One simple interpretation is
that a current downwelling exists beneath area B and is observed as a thermal profile cooler than the aver-
aged profile of conductive mantle represented by the plate-cooling model.

Electrical conductivity profiles in two areas show a similar variation in a sense that the low conductivity layer,
which is typically associated with Lid or lithosphere, is thicker in area B compared to area A (Baba et al., 2017).
Integrated modeling of seismic and electrical signatures of the studied areas is currently in progress.

4.3. Anisotropy Profile (Lid/Lithosphere): Ancient Mantle Flow Oblique to Spreading Axis

The fastest azimuth of seismic anisotropy has been revealed to be perpendicular to magnetic lineations for
several areas around the Shatsky Rise (Figure 1) both at the sub-Moho depth (Shinohara et al., 2008; Takeo
et al., 2014) and at deeper depths of ~50–80 km (Shintaku et al., 2014). Oikawa et al. (2010) also examined
two lines of seismic survey and concluded that the line perpendicular to magnetic lineation is faster at the
southwest of the Shatsky Rise.

In area A, the intensity and the fastest azimuth of azimuthal anisotropy at depths shallower than 20 km of this
study are consistent with the result of seismic refraction survey by Shinohara et al. (2008). The fastest azimuth
is subparallel to the azimuth perpendicular to magnetic lineations (Figure 1). This result roughly agrees with
the conventional view that themantle flow perpendicular to the ridge axis aligns olivine crystals, frozen in the
lithosphere, and is observed as the fastest azimuth parallel to the spreading direction inferred from the strike
of transform fault (Raitt et al., 1971) or from the azimuth perpendicular to magnetic lineations (e.g., Smith
et al., 2004). The slight difference between the fastest azimuth and the spreading direction is also observed
in the Eastern Pacific Rise (Toomey et al., 2007).

Figure 5. (a) Thermal models and corresponding VS models for a half-space cooling model with a potential temperature of
1,350 °C (solid lines) and a plate-cooling model by Parsons and Sclater (1977) that has a potential temperature of 1,350 °C
and plate thickness of 125 km (dashed lines). The seafloor ages are 130 Ma in area A (red) and 140 Ma in area B (black).
(b) Phase-velocity measurements (circles) and model phase velocities corresponding to two thermal models (solid and
dashed lines).
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In area B, on the other hand, the fastest azimuth at depths shallower than 20 km is oblique to the spreading
direction by ~70° and inconsistent with the conventional view. In the south Pacific Ocean, azimuthal aniso-
tropy in the lithosphere is also observed to be oblique to the azimuths perpendicular to magnetic lineations
by ~50°, but parallel to the plate motion during seafloor spreading (Takeo et al., 2016); the discrepancy is cre-
ated because the magnetic lineations are formed by Pacific-Farallon spreading at 60 Ma, whereas the plate
motion during the seafloor spreading was mostly governed by faster Pacific-Antarctic spreading. Similarly,
at 140 Ma when seafloor in area B is formed, the mantle flow might have been very complex; the seafloor
spreading process of the old Pacific Plate at seafloor ages greater than 100 Ma might be different from the
current one because of the complication due to the Pacific Plate being surrounded by three ridge axes with
three different old oceanic plates: the Izanagi Plate at the northwest, the Farallon Plate at the northeast, and
the Phoenix Plate at the south (Nakanishi et al., 1989, 1992, 1999). Due to the three ridges around the Pacific
Plate and additional three ridges between those old oceanic plates, the tectonics might be quite different
from the conventional plate tectonics developed in the current Atlantic Ocean or the eastern Pacific Ocean
where one strong ridge dominates.

Furthermore, the Shatsky Rise was created in 127–146 Ma at the triple junction of the Pacific, Izanagi, and
Farallon plates. The horizontal radial flow from the Shatsky Rise due to the excess of vertical upwelling can
also simultaneously explain fastest azimuths in areas A and B. To verify these interpretations, future study
about the numerical simulation of the six-ridge system is needed. The comparison between simulation
results and observations, such as spreading rates and anisotropy fastest azimuths, may reveal the mantle
dynamics beneath the infant Pacific Plate.

4.4. Anisotropy Profile (LVZ/Asthenosphere): Support for Sublithospheric SSC?

Our in situ measurement of azimuthal anisotropy for the LVZ offers the first direct such estimates in NW
Pacific where the global tomography often gives a good fit with the prediction from the plate motion direc-
tion (e.g., Becker et al., 2014; Debayle & Ricard, 2013; Montagner, 1985; Tanimoto & Anderson, 1984). Results
shown in Figures 1 and 3 indicate that, at deeper depths, the fastest azimuths slightly rotates clockwise com-
pared to shallower depths in area A and anticlockwise in area B and that the observed fast directions do not
coincide with those of the absolute plate motion, indicating that the mantle flow history in the astheno-
sphere is more complicated. van Hunen and Čadek (2009) showed that sublithospheric SSC that is expected
to occur for the old LAS should result in the deviation of the fast direction from the large-scale flow direction
dictated by the plate motion. Together with the large difference in the 1-D isotropic profiles in two areas, we
suggest that our observation might indicate the first direct evidence for the occurrence of SSC beneath the
old NW Pacific Ocean. It should be noted that the averaged azimuth between two areas roughly gives the
azimuth of the current plate motion direction. Even under the existence of SSC, the tomographic image of
azimuthal anisotropy in lower resolution might give fastest azimuths parallel to the plate motion direction
as the conventional view.

4.5. Anisotropy Profile: Intensity

The intensity of azimuthal anisotropy is stronger at depths above 40–50 km in Lid than that at deeper depths
both in areas A and B. The similar intensity reduction with depth is observed in other parts of Pacific from
seafloor array experiments (Lin et al., 2016; Takeo et al., 2016). The strong azimuthal anisotropy at the shallow
part is consistent with the observed strong Pn and Sn anisotropies by seismic refraction surveys (Raitt et al.,
1971; Shinohara et al., 2008). The weaker azimuthal anisotropy at the deeper part is also consistent with
tomography results, although the absolute intensity depends on the choice of damping parameters (Smith
et al., 2004).

One possible cause of the vertical variation in the intensity is the strain accumulation at the top of astheno-
sphere near the ridge that is frozen in the lithosphere. The strong (~4%) radial anisotropy observed in the LVZ
(Nettles & Dziewonski, 2008), however, suggests that the intensity of azimuthal anisotropy is smaller than that
of radial anisotropy. The stronger radial anisotropy in the LVZ is inconsistent with A-type olivine crystals that
have similar intensity of azimuthal and radial anisotropy (Crampin, 1977) and might be formed by the layer-
ing structure (e.g., Kawakatsu et al., 2009) and/or the AG-type olivine (Mainprice, 2007; Song & Kawakatsu,
2012, 2013). For more detailed discussion, we need to evaluate the effect of higher mode to the Love-wave
dispersion curve and estimate radial anisotropy beneath each array in the future.
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5. Summary

We analyzed records of 18 BBOBSs deployed at two arrays in the northwestern Pacific Ocean near the Shatsky
Rise by the NOMan project. At a period range of 5–30 s, we extracted the fundamental- and the first higher-
mode Rayleigh waves in ambient noise by cross-correlating continuous seismograms. In a period range of
30–100 s, we analyzed teleseismic Rayleigh waves. For each method, we obtained average dispersion curves
and its azimuthal dependence for each array, which are then used to obtain one-dimensional isotropic and
azimuthally anisotropic βV profiles beneath each array. The obtained isotropic profiles have a gradual velocity
drop at depths between 60 and 80 km that corresponds to the transition from the Lid to the LVZ. The esti-
mated βV value in the Lid is ~4.65 km/s both in areas A and B. The value in the LVZ is ~4.4 km/s in area A
and ~4.5 km/s in area B. This difference cannot be explained by the small difference in the seafloor ages:
130 Ma in area A and 140 Ma in area B. Additional forward dispersion-curve calculation for several thermal
models revealed that the structure beneath area A is consistent with the plate-cooling model, whereas that
beneath area B is consistent with the half-space cooling model. This result suggests that the SSC might have
reheated the bottom of oceanic lithosphere in area A. The fastest azimuths of azimuthal anisotropy in the LVZ
significantly deviate from the current plate motion direction that is also consistent with the presence of sub-
lithospheric SSC beneath the study area. The fastest azimuth of azimuthal anisotropy in the Lid is almost per-
pendicular to magnetic lineations in area A, while it is significantly oblique in area B. This result suggests the
complexity of the mantle flow direction beneath area B in the past due to interactions between six ridge axes
during the infancy of the Pacific plate. The intensity of azimuthal anisotropy in the LVZ is ~2% peak-to-peak,
indicating that radial anisotropy is stronger than azimuthal anisotropy therein.
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