Review of Geo-neutrinos and Borexino

Stefano Davini University of Houston

NMR-2013, Tokyo

Outline

- Today (Jul 25): Review of Geo-neutrinos and Borexino
 - review of **Borexino** detector
 - antineutrino analysis

- Tomorrow (Jul 26): What we found with Borexino
 - geo-neutrino **results**
 - implications

Why measure geo-neutrinos?

"Direct messenger of abundances and distributions of radioactive elements within our planet"

Distribution of radioactivity in Earth

Radiogenic contribution to heat balance

Pieces of information on complex geo-physical phenomena

G. Bellini et al. (Borexino Collab.) PLB **696** (2010) 191-196 G. Bellini et al. (Borexino Collab.) PLB **722** (2013) 295-300

The Borexino Experiment

Underground Experiment Under 3500 Meters Water Equivalent Laboratori Nazionali del Gran Sasso (Gran Sasso National Labs) Assergi, ITALY

The Borexino Detector

Ultrapure organic liquid scintillator ~278 tons of scintillator (PC) ~75 tons of fiducial mass ~2200 PMTs on the SSS

> **External Water Tank shielding** for n and γ **Cherenkov** detector for μ

Borexino scintillator 9-10 orders of magnitude more radiopure than anything on Earth

Neutrino detection in Borexino

Anti-neutrinos detection in Borexino

Coincident delayed event

Prompt $\bar{\nu}_e + p \rightarrow e^+ + n$,

Threshold *E_{thr}* = 1.8 *MeV* Energy of anti-nu

 $E_{\text{prompt}} = E_{\bar{\nu}_e} - 0.784 \,\text{MeV}.$

Delayed ($\tau \sim 254 \ \mu s$) $n + p \rightarrow d + \gamma$ Detected energy: 2.2 MeV

Time-Spatial coincidence: clear signature of anti-nu detection

Some anti-nu from **238U** and **232Th above energy threshold** Anti-nu from **40K under energy threshold**

Energy Spectrum of anti-neutrinos in Borexino

Borexino Detector response and calibration

Borexino Collab. JINST 7 (2012) P10018

Reactor antineutrinos (1)

Main **background** for geo-nu searches. In **Italy** there are **NO** active **nuclear** power **plants**, so this background in **Borexino** is **low**.

$$\begin{split} N_{react} &= \sum_{r=1}^{R} \sum_{m=1}^{M} \frac{\eta_m}{4\pi L_r^2} P_{rm} \times \\ &\times \int dE_{\bar{\nu}_e} \sum_{i=1}^{4} \frac{f_i}{E_i} \phi_i(E_{\bar{\nu}_e}) \sigma(E_{\bar{\nu}_e}) P_{ee}(E_{\bar{\nu}_e}; \hat{\theta}, L_r), \end{split}$$

To **estimate** the number of **reactor anti-nu** in **Borexino** we considered **all** 446 nuclear **cores** in the **world** operating in the period used for the analysis (2007-2012)

Reactor antineutrinos (2)

We expect in Borexino

S reactor = (90.3 ± 5.2) TNU N reactor = (33.3 ± 2.4) events

1 TNU = 1 event/year/ 10^{32} protons Data analysis exposure: (613 ± 26) ton *year N protons= (3.69 ± 0.16)* 10^{31}

Source	Uncertainty
	[%]
$\phi(E_{\bar{\nu}})$	3.5
Fuel composition	3.2
$ heta_{12}$	2.3
P_{rm}	2.0
Long–lived isotopes	1.0
E_i	0.6
θ_{13}	0.5
L_r	0.4
$\sigma_{ar{ u}p}$	0.4
δm^2	0.03
Total	5.8

Borexino Collab. PLB 722 (2013) 295-300

Data Selection

2010: 256 ton* year, data between December 2007 and December 2009
2013: 616 ton * year, data between December 2007 and August 2012

Energy cuts

Select geo-nu and reactor-nu energy region (slide 8)

Space-Time cuts

Select only **delayed coincidences** (slide 7) 2 consecutive events distance < 1 meter With time delay between 20-1280 μs

Cosmogenic cuts:

Remove events after a muon crossing Borexino

Pulse shape cuts

Remove alphas

Details in Borexino collab. PLB **722** (2013) 295-300

Backgrounds mimicking anti-nu interactions in Borexino

Background source	Events
Cosmogenic ⁹ Li and ⁸ He	0.25 ± 0.18
Fast neutrons from μ in Water Tank (measured)	< 0.07
Fast neutrons from μ in rock (MC)	< 0.28
Non-identified muons	0.080 ± 0.007
Accidental coincidences	$\textbf{0.206} \pm \textbf{0.004}$
Time correlated background	0.005 <u>+</u> 0.012
(γ,n) reactions	< 0.04
Spontaneous fission in PMTs	$\textbf{0.022} \pm \textbf{0.002}$
(α,n) reactions in the scintillator [²¹⁰ Po]	$\textbf{0.13} \pm \textbf{0.01}$
(α ,n) reactions in the buffer [²¹⁰ Po]	< 0.43
TOTAL	$\textbf{0.70} \pm \textbf{0.18}$

Conclusion ...

Borexino is suited for detecting geo-neutrinos: low backgrounds, high mass, no nuclear reactor nearby

See my talk *What we found with Borexino* for the results! Parallel Section *Mantle and deep Earth*, Jul 26, 14:10

