A Geant4 framework for generic simulations of atmospheric muon detection experiments

Nicola Mori

University of Florence and INFN Florence

MUOGRAPHERS – Tokyo (JP), 12 Nov 2014

Atmospheric muon simulations

- Relevant for a large number of applications:
 - Geology/geophysics
 - Archaelogy
 - Nuclear waste monitoring
- Many possible simulation scenarios
 - Different detectors * different targets
- Some common features/needings:
 - Generation of atmospheric muon flux
 - Normalization to acquisition time
 - Overall detector layout (e.g. tracking layers)

Atmospheric muon simulations

- Goal: a fast and reliable deployment of Monte Carlo simulation code for different scenarios, allowing for as much code-reusage as possible
- Step 1: develop an experiment-independent simulation framework, tackling the common MC issues (geometry definition, simulation setup, output etc.)
 - Must be easily extensible in order to allow for experiment-specific bits
- Step 2: implement muon-specific, scenario-independent features
 - Muon generator, detector, normalization tools etc.
- Step 3: implement scenario-specific bits
 - Volcano, storage silo etc.

Step 1: the generic MC framework

- GGS: Generic Geant4 Simulation
 - Developed at INFN Florence to serve as common MC base for many experiments (e.g. Calet, Gamma400, MuRay/MURAVES, ...)
- Based on Geant4 (http://geant4.cern.ch/)
- Generic: works with any geometry
 - Generic implementations of all the Geant4 mandatory user classes
 - Except for experiment geometry, of course...
 - Generic energy-deposit and MC truth data objects
 - Adaptive output based on Root (http://root.cern.ch)
 - Readout and offline data analysis objects
- Extensible via runtime plugin libraries
 - Geometry, hits, particle generators, user-defined hooks

- Detector geometry: a C++ Geant 4 geometry class implementing N pairs of X-Y detector layers made of PVT
 - Fully configurable: size, number of planes, shape of detector elements etc.
 - Runtime configuration via options file
 - no need to recompile the plugin for each combination of parametrs → less room for errors
 - Quick and dirty solution for rapid deployment
 - A more accurate, specific detector geometry can be defined, if needed

- Muon flux generator: two implementations (GGS plugin)
 - Implementation 1: based on a theoretical model (H. Tanaka *et al.*, Hyperfine Interactions 138 (2001))
 - Implementation 2: based on ground meas. with a magnetic spectrometer (L. Bonechi *et al.*, Intl. Cosmic Ray Conf. Proc. (2005), 283)

- Normalization tool: graphical Qt interface
 - # of generated events \rightarrow generation time
 - Numerical integration of $\Phi(E_k, \theta)$

🗙 💿 🛞	SimToFluxScaler	\odot	۲
Flux type:	Ground v		
Energy range [GeV]:	0.1	120	
Theta range [deg]:	0	80	
Phi range [deg]:	180		
Gen surf. area [m^2]:	100		
Generated events:	1e10		
Go	Data taking days: 18.1003days		

Step 3: the experiment-specific stuff

- Built on top of muon-specific stuff as GGS plugins
- Essentially: a GGS plugin geometry with target (storage silo, volcano, ...) and the desired number and placements of detectors

Step 3: the experiment-specific stuff

A pictorial view

Summary

- A full-featured software stack for Monte Carlo simulations of atmospheric muon detection experiments has been designed and developed
- The main design goals (code reusage, fast deployment, customizability) have been achieved
- The software has already been used in production environments
- Scientific papers presenting results obtained with the MC software will appear soon