Muography on Puy de Dôme

C Cârloganu LPC Clermont Ferrand IN2P3/CNRS

Proof of Principle for Muographic Imaging of Volcanoes

- 4 layers of 6 Glass Resistive Plate Chambers (GRPC)
- GRPC: gaseous detector with glass electrodes
- Applied voltage: 7.5 kV
- 1.2 mm gap filled by a gas mixture chosen for its ionizations properties
- 1layer:~1m²
- Readout cells of 1 cm² (~ 40000 cells in total)
- Using a 5 MHz clock and autotriggered
- Remotely monitored from web interface

Avalanche mode: mean MIP charge 2.6pC, RMS: 1.6pC

<u>M. Bedjidian</u> et al, "Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter", JINST 6:P02001,2011

Efficiency vs. HV & track incident angle

MURAY-TOMUVOL 2013 campaign on Puy de Dôme

ToMu Vol

TOMUVOL 2015-2016 campaign on Puy de Dôme

- Very preliminary results on the CDC 2015-2016 campaign
- 99.6 effective days of data taking
- 1 m² detector

ToMu\vol

TOMUVOL 2015-2016 campaign on Puy de Dôme

For the moment, systematic uncertainty estimated from comparison between data and model in the free sky

ToMu\vol

First results from MC

Background depends on volcano topography close to detector

Puy de Dôme as reference site for muography and beyond

- Experimentation site with • electricity
- network
- •easy to host researchers
- •easy to access
- close to Clermont labs

- very detailed muon flux estimates available
- reference set of muographic data
- topography well known (LIDAR)

(Puy de Dôme and central part of the Chaîne des Puys)

 Sampling: 10 points/m² (200 millions of ground échoes)
Planimetric Precision: 10 cm
Altimetric Precision: 10 cm
DTM Resolution: 50 cm

Collaboration LiDARverne (2011)

PUY-DE-DOM

GeoPhen

Disent UNESCO

ToMuVol

Puy de Dôme - a well "calíbrated volcano"

- very detailed muon flux estimates available
- reference set of muographic data
- topography well known (LIDAR)
- gravimetric measurements available
- electrical resistivity measurements available (and more to come, see Catherine's talk tomorrow)

- around 2500 relative gravity measurements
- High resolution differential GPS positioning at the gravimeter tripod center average accuracy: 1.6
 cm in planimetry and 2.3 cm in altimetry

Conclusion

Updated results expected to be released for beginning 2018 (joint inversion of muography + gravimetry)

Puy de Dôme muography reference site

- permanent muography observatory; external
- collaborators more than welcomed
- reference site for developing joint, multi-probe imaging