ScanPyramids Muography Projects at Commissariat à l'Energie Atomique

Muographers 2017

Simon Bouteille

CEA/DRF/IRFU/DPhN | IRIS Instruments

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

Instrument design

MultiGen 2D v2 detector

- Evolution of prototype
- Multiplexed resistive Micromegas with 2D strip readout •
- Measured 2D efficiency above 96%
 - Good homogeneity
- Efficiency plateau •
 - Larger than prototype
- Degraded resolution (300µm)
 - Cluster size
 - Resistivity homogeneity
- Nearly 100% industrialized
 - Only the resistive foil is made at CERN or Saclay

particle

• **36 detectors** produced and tested

Telescope design

Enclosure	Flight case Thermal and EM shielding
Gas supply	2 10L premix bottles
Power supply	AC + truck battery
Power consumption	40W
Detectors	4 MultiGen 2D v2
Detector manufacturer	ELVIA industry
Weight	~130kg
Connectivity	3G
Storage	2TB (>90 days of data)

First ScanPyramids campaign

Context

- Participation was not foreseen
 - First discussions began in December 2015
- Complementary technology
 - Japanese scintillators and emulsions
 - Gas leaks incompatible with confined environment
- Image pyramid North-East edge
 - Known cavity to detect
 - Notch point of reference
 - Sensitivity from outside is better for the pyramid outer layer

Temperature tests

- Oven up to **55°C**
 - Reached maximum for electronics
 - Steady current above $30^{\circ}C$
 - Current leakage through the coverlay
 - Appears also with metallic Micromegas
 - Stable detector gain
- Outside down to 6°C
 - Test during hail shower

Temperature dependence of the detector current

Telescope installation

- Telescopes were shipped and stored at Cairo faculty of engineering •
- One week of final configuration and setup •
 - One day at the faculty
 - At Giza
- Telescope **placement optimized** for sensitivity •
 - Cos² effect
 - Solid angle effect
 - Contrast effect $(\Delta \rho / \rho)$ •
- Telescopes placed inside tents for guard • convenience

Sensitivity to the known chamber with respect to the point of view

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

Data taking

- Three months long
 - June 2016 to August 2016
- Stopped when gas bottles were exhausted
 - <1L/h flow
- Voltage T and P adjustments were complicated
 - Offsets : $T(Air) \neq T(Gas)$
- Frequent 3G disconnection
 - Egyptian team rebooted connection several times a week
- Uneven gas flow due to T variations
 - Bubbling stopped at night

Triggering rate of two telescopes

Temperature variation measured inside one telescope

Analysis (1/2)

- Seeked signal can be seen through the muon flux gradient
- Computer vision inspired analysis
- + Gradient calculation \sim applying filters
 - \cdot Convolution with kernel matrix
- Sobel gradient calculation
- Canny edge detection algorithm
 Precise edge positioning
- Hints on known chamber

Muon flux angular distribution

Sobel flux gradient of the edge region

Detection of the pyramid edge with the Canny algorithm

Analysis (2/2)

- Slices parallel to the edge method
- Corresponds to nearly constant contrast zone
- Independent detection of the known cavity with two telescopes data
 - Combined excess of 144,6 \pm 22,5 muons
 - 6, 4σ excess
- Independent detection of a new cavity with two telescopes data
 - Combined excess of 129,1 \pm 22,7 muons
 - 5,7 σ excess

Known cavity muon excess measured by one telescope

Unknown cavity muon excess measured by one telescope

Second ScanPyramids campaign

Goal

- At least 2 cavities exist on North-East edge
- Cavities may exist on all three other edges
 - Predicted by ramp theories
- 3 telescopes for 3 remaining edges
 - 1 on North
 - 2 on South

First campaign Second campaign

Telescope upgrades

- Gas monitoring
 - (T,P) probes inside the gas volume
- Detector changes •
 - · Installation of the best detectors in term of gas tightness
- Amplitude feedback •
 - Voltage dependence on signal amplitude itself
 - $U(t + \Delta t) = U(t) \alpha(S(t) S_T)$
 - Use online tracking to filter computed amplitude
 - Greatly increased stability
 - Patented

•

Amplitude variation through time before and after the amplitude feedback implementation

Signal amplitude and temperature variations

Data taking

- January 2017 to April 2017
- Sandstorms
 - Tents torn off several times
 - No telescope movements observed
- 3G connectivity problems remain
 - Humidity during the night ?
- Better voltage adjustments
 - First thanks to inner probes and less leaks
 - Then thanks to the amplitude feedback

01-7106

Analysis

- Same methods as previous missions
- Some anomalies found
 - Nothing significant enough
- Further analysis still ongoing
- Tends to disprove inner ramps theory

North-West edge muon flux map

16

tan(φ)

Toward the

future

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

MIMOSA

- Telescope collection surface upgrade
 - $0.25m^2$ to $1m^2$
- Limit resource consumption increase
- Maintain transportability
 - Foldable design
- Detector upgrade
 - DLC resistive layer
 - Better resolution
 - First tests are promissing

HVPS v2

- Dedicated card for high voltage and gas supply
 - Upgrade of existing design
- 5 HV power supply
 - Enough for 4 detectors
 - Made by CAEN
 - <0,4W each
- Up to 2 electronic flow controllers/meters operation
 - Allow for **semi-sealed operation**
 - Maintain overpressure inside the detectors
 - Made by Bronkhorst

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

Conclusion

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

- Three telescopes have been design, built and shipped to Egypt in less than 6 months
- They were successfully operated during two 3 monthes long data taking campaign
 - Enduring harsh conditions of the Giza plateau
- Proof that gaseous Micromegas detector are suitable for muographing campaigns in the wild
- These campaigns unveiled unknown an unknown cavity inside Khufu's Pyramid and maybe more in the future...

Backup

Muographer 2017 | Simon Bouteille CEA/DRF/IRFU/DPhN | IRIS Instruments

Toward sealed operation

- Gas tightness
 - Seals can be replaced by gluing
 - Better gas tightness at the cost of repairing capabilities
 - Down to 0,04mL/h leaks
- Gas recycling
- Developed by HARPO collaboration
 - Circulating turbine
 - Gas filter
 - Remove contaminants (O2,H2O,...)
- Ongoing test
 - Detector material **outgassing**

First campaign Second campaign Third campaign