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Glossary

Impulse

The word ’impulse’ is used in many areas in different ways. In classical mechanics, the impulse is the integral

of force with respect to time. It is also used to refer to a fast-acting force, which is often idealized by a step

function or a delta function. In this text, it is used to represent any functional form of pressure increase,

either static or transient, which can generate observable signals.

Magma, melt, liquid

Magma is a general name for molten rock. It is fluid but contains solid and gas inclusions in liquid matrix.

The matrix in magma is silicate melt (which is often called just ’melt’), and that in a hydrothermal system

is water.

Volatile

Volatile is compound in silicate melt. The major component is H2O, of which concentration is 1-5 wt%
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depending mainly on pressure and composition of the melt. It exsolves from melt and forms gas bubbles at

relatively low pressure (ca.100 MPa corresponding to the litho-static pressure around several kilo-meters).

The second major component is CO2,. Although its concentration is usually several ppm, some kinds of

melts may dissolve 3-30 wt% of CO2 at several GPa.

Long period seismic events

Long-period (or very long-period) seismic events are dominant in the period from about 1 s to more than a

few tens of seconds. These signals at volcanoes are considered to be generated by interaction or resonance

between volcanic fluid and the surrounding medium.

Ground deformation

Ground deformation is often observed at volcanoes when magma chambers inflate or deflate. Such ground

deformation is detected by geodetic measurements such as GPS, tilt or strain meters, and the deformations

often continue for a few tens of minutes to days or even months.

Magma chamber

Magma chamber is a storage system of molten magma. It is generally hard to detect, but is probably located

at from a shallow depth (ca.1 km) to a few tens of km beneath the volcanoes. The shape and size have not

been confirmed yet, but it is usually assumed to be rather round and hundreds to thousands of meters in

scale. A magma storage system which has a horizontal extent is called a sill, and one which has a vertical

extent is called a dike.

Rectified diffusion and rectified heat transfer

Rectified diffusion is a mechanism which can push dissolved volatiles into bubbles in a sound field. Bubbles

take in more volatiles during expansion than they discharge during contraction, mainly because of the

following two non-linear effects. Firstly, during expansion the bubble radius becomes larger so that the bubble

surface is also larger than the surface during contraction. Secondly, radial bubble expansion tangentially

stretches the diffusion layer and sharpens the radial gradient of the volatile concentration in the diffusion

layer, so that the volatile flux into the bubble. The mechanism also works to push heat into bubbles and

enhances evaporation in a liquid-vapor system. The rectified diffusion and heat transfer have been known

and studied in the mechanical and chemical engineerings.

Bubble collapse
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When the bubble is compressed, oscillates, or loses its mass by diffusion or phase change, it contracts to a

very small size and sometimes disappear. Bubble collapse indicates the contraction of a bubble and does not

necessarily indicate its disappearance.

1 Definition of the Subject and Its Importance

A volcano consists of solids, liquids, gases, and intermediate materials of any two of these phases. Mechanical

and thermo-dynamical interactions of these phases are essential in generating variety of volcanic activities.

In particular, the gas phase is mechanically distinct from the other phases and plays important roles in

dynamic phenomena of volcanoes. When we work on volcanic activities, we are almost certainly confronted

with physics problems associated with bubbles.

The roles of bubbles in volcanic activities have been investigated mainly in three aspects. Firstly, nu-

cleation, growth, and expansion of bubbles are considered to be the main force that brings the magma to

the surface [87, 62]. Secondly, a single bubble, if it is sufficiently large, may generate seismic waves when

it rapidly expands or accelerates in the volcanic conduit [95, 81, 13, 34], and may generate acoustic waves

in the air when it oscillates or bursts at the magma surface [94, 95, 84, 36]. Thirdly, existence of bubbles

can significantly reduce the sound velocity [16, 42] and increase attenuation and dispersion of the waves

[30, 44, 15]. This effect is considered to be relevant to many spectral features of seismic waves and air-waves

associated with volcanic activities [10, 3, 22, 45].

Studies on bubble dynamics relevant to the volcanology are spread over many research fields and cannot

be covered by a single paper. Good review papers and textbooks have already been published on bubble

phenomena in sound fields [70, 73, 72, 61] and on nucleation and growth of bubbles in magma [62]. In

this papert, we discuss several bubble dynamics phenomena selected from a particular point of view that

the bubbly fluid works as an impulse generator. Here ’impulse’ means a pressure increase, either static or

transient, which can generate any observable signal (e.g. earthquakes, ground deformations, airwaves, and

an eruption itself). Especially, we focus on the processes that the impulse is excited by non-linear coupling

between internal processes of a bubbly fluid and an external perturbation. The importance of these processes

have recently become noticed as a possible triggering mechanism of eruptions, earthquakes, and inflation of

a volcano [57, 64]. Although it is generally considered that stress perturbation caused by preceding events

is important, exact mechanisms to generate pressure increase which is required to trigger the subsequent

events are yet under discussion.

In the first place, factors controlling a single bubble dynamics are summarized as the elementary processes

in the bubbly fluid. Then two distinct liquid-bubble systems are considered, both of which are included in

a volcano. The one is a body of bubbly magma confined in an elastic chamber, where elasticity of the
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chamber, melt viscosity, and gas diffusion are important. The other is a hydrothermal system, where bubble

oscillation, evaporation, and heat transfer are important.

2 Introduction

Elementary processes in a single-bubble dynamics

Radial motion of a single bubble interacting with ambient pressure perturbation is the elementary process

controlling behaviors of the liquid-bubble mixtures. Although it appears quite simple, it contains various

mechanisms in plenty. The great variety of behaviors of a single bubble has attracted many scientists,

among which is Leonardo da Vinci [75]. Now results are used and studies are continued in many academic

and industrial areas such as mechanical engineering, chemical engineering, medical science, and earth science.

Factors which may control the radial motion of a bubble are the pressure difference between inside and

outside of the bubble, inertia and stress associated with deformation of the surrounding liquid, propagation

of pressure waves, heat and mass transport, phase transition at the bubble wall, chemical reactions, relative

translational motion between the bubble and the liquid, and so on. Because including all these mechanism

at the same time to calculate a behavior of a bubble is unrealistic, we need to make adequate simplification

and assumptions. Each mechanism has its own characteristic time scale in which the effect is dominant, and

its own effect on the bubble dynamics. Knowing the individual time scales and features is important, when

we want to understand and simulate a certain phenomenon correctly and efficiently. A brief review of some

representative mechanism with linearized analyses are presented in section 3 for this purpose. Based on the

results, geophysical phenomena and proposed models are discussed in the latter sections.

Bubbly Magma in an Elastic Rock as a Pressure Source

We consider a body of bubbly magma confined in an elastic rock. Pressure perturbations to the system

are caused by change of tectonic stress due to local earthquakes, surface unloading by dome collapse, passing

seismic waves from a near or distant source, depressurization of the chamber by degassing or magma leakage.

Dynamic response of the system may be relevant to subsequent activities of the volcano as follows.

Nishimura [64] investigated pressure re-equilibration between the bubbles, the melt, and the surrounding

elastic medium. It is assumed that the pressure of the system is suddenly decreased. After re-equilibration

the original magma pressure is partially or completely recovered or even exceeded, depending on the size

of the bubbles, stiffness of the elastic container, and the confining pressure. His model is used to explain

rapid pressurization of a magma chamber triggered by lava-dome collapse at Soufriere Hills Volcano [96],

and pressure recovery in a magma filling the chamber after explosive degassing to continue activities at

Popocatepetl Volcano [11]. Shimomura et al. [86] extended the formulation of [64] to calculate the time profile
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of the pressure recovery after sudden decompression. They showed that the time scale of the pressure recovery

is strongly controlled by the system parameters, which include stiffness of the elastic container, bubble

number density, diffusivity of the volatile in the melt, ambient pressure, and properties of the melt. Chouet

et al. [12] also calculated the time profile assuming the system parameters for Popocatepetl Volcano, and

compared the results with a particular source time function of a very-long-period seismic signal. Furthermore,

in the same year, Lensky et al. [53] independently developed a mathematically equivalent model considering

magma with CO2 bubbles in mantle rock. They interpreted the results as a possible pressurization mechanism

to initiate dikes in mantle which allows fast transport of magma.

There are in fact quite a few documented cases in which eruptions were triggered by local tectonic

earthquakes (e.g. [47, 68]), and wave propagation from a distant earthquake (e.g. [8, 54]). Recently, Manga

and Brodsky [57] have given a comprehensive review on the phenomena and possible mechanisms. Brodsky

et al. [8] investigated a possibility that a strain wave from a distant earthquake can increase the pressure in

a bubbly magma by rectified diffusion, which is a mechanism by which volatiles are pumped into a bubble

by cyclic expansion and contraction. However, it has turned out that the mechanism by itself can cause

negligibly small pressure increase [8, 29]. Several other mechanisms for long-range triggering have been

proposed, which include pressure increase from rising bubbles [55], sub-critical crack growth [6], and fracture

unclogging [7].

Acoustic Bubbles in Hydrothermal System

A hydrothermal system is another major source of pressure increase, long-period volcano seismic events

[46], and triggered seismicity [57, 88]. Behaviors of a single bubble and liquid-bubble mixtures in a hydrother-

mal system are quite different from those in a magmatic system, mainly because of the water viscosity which

is smaller than that of magma by more than several orders. We introduce several phenomena which are

particular to the hydrothermal systems in section 5.

Geyser activity is well known for intermittent activity of hot-water effusion. The effusion process looks

quite similar to volcanic eruptions, and some geysers are characterized by regular interval time and duration,

which are also recognized in particular types of eruptions and seismic activities. Consequently, the geysers

have been widely studied using seismological and geophysical techniques, as well as field observations, not

only for clarifying the mechanism of the geysers but also for understanding the volcanic activities (e.g.,

[43, 40, 39, 65]). Kedar et al. [40, 39] conducted an unique experiment at Old Faithful Geyser, Yellowstone.

They measured pressure within the geyser’s water column simultaneously with seismic measurements on the

surface. The data demonstrated that the tremor observed at Old Faithful results from impulsive events in

the geyser. The impulsive events were modeled by a collapse of a spherical bubble by cooling that occurred
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when the water column reached a critical temperature. Their data are reviewed in section 5 in relation to

other studies on the dynamics of gas and vapor bubbles.

3 Elementary processes in a single-bubble dynamics

Equation of Motion for the Bubble Radius

Motion of a bubble is in fact a fluid dynamical problem for the liquid surrounding the bubble. The simplest

model describing the behavior of a bubble is based on three assumptions: (1) the bubble is spherical, (2) the

liquid is incompressible, and (3) the motion is radial. Using the basic equations of fluid mechanics, which

are the continuity equation and the momentum equation, and the force balance at the bubble surface, the

first equation of motion for the bubble radius was obtained by Rayleigh [79]:

ρl

(
RR̈ +

3
2
Ṙ2

)
= p(R)− pl, (1)

where R is the bubble radius, ρl is the liquid density, p(R) is the pressure in the liquid at the bubble surface,

and pl is the pressure in the liquid at a large distance from the bubble. Using equation (1), Rayleigh [79]

solved the problem of the collapse of an empty cavity in a large body of liquid at a constant pl and showed

the characteristic collapse time is

τc = Ro

√
ρl/pl. (2)

The time τc is called Rayleigh collapse time and is one of the most important time scale in the bubble

dynamics.

Plesset [69] extended equation (1) including the effects of liquid viscosity and surface tension. The

generalized Rayleigh equation for bubble dynamics is called Rayleigh-Plesset equation[70]:

ρl

(
RR̈ +

3
2
Ṙ2

)
= pg − pl − 4ηl

Ṙ

R
− 2Σ

R
, (3)

where ηl is the liquid viscosity, and Σ is the surface tension. Equation (3) is valid for a Newtonian liquid

under conditions of negligible mass exchange at the bubble surface. A further generalized equation to which

these two restrictions do not apply is [71]:

ρl

(
Ru̇l +

3
2
u2

l

)
− J

[
2ul + J

(
1
ρg
− 1

ρl

)]
= pg − pl +

∫ ∞

R

3τrr

r
dr − 2Σ

R
, (4)

where ul is the radial liquid velocity at the bubble surface, J = ρl(ui− Ṙ) is the outgoing mass flux through

the bubble wall, ρg is the density of the gas in the bubble, and τrr is the normal radial stress. When the

interfacial mass flux J vanishes, ul = Ṙ as in the left-hand side of the original equation (3).

While the above equations consider a single bubble in an infinite melt, magmatic systems often contain

bubbles with some finite spacing. Cellular models of packing which include a finite volume of melt in
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interaction with each bubble have been employed for closely spaced bubbles [78]. When the elementary cell

is represented by a sphere with an outer radius of S, the equation corresponding to (3) is [75]:

ρl

[
RR̈

(
1− R

S

)
+

3
2
Ṙ2

(
1− 4

3
R

S
+

1
3

R4

S4

)]
= pg − pl − 4ηl

Ṙ

R

(
1− R3

S3

)
− 2Σ

R
. (5)

Equation (5) agrees with (3) for S →∞.

When there is no transport of heat or mass between the liquid and the bubble, the pressure in the bubble

is determined by the instantaneous bubble radius alone. Using the ideal gas approximation, we have

pgR
3γ = pgoR

3γ
o , (6)

where γ is the specific heat ratio, and the subscript o indicates the equilibrium value of the variable. Sub-

stituting (6) into (3) for pg and linearizing the equation, we obtain a damped oscillator equation:

Ẍ + 2bvẊ + ω2
oX = − p′l

ρlR2
o

, (7)

bv =
2ηl

ρlR2
o

, (8)

ωo =
1

Ro

√
3γpgo − 2Σ/Ro

ρl
, (9)

where X and p′l are defined by R = Ro(1 + X) and pl = pgo − 2Σ/Ro + p′l, respectively. Equation (7) is

useful to see the characteristic behaviors of a bubble and their time scales. The resonant frequency of the

bubble is ωo (rad.s−1). When the second term in the left-hand side of (7) dominates the first one in the

time scale of the resonant oscillation, namely when ωo < bv, the resonant oscillation is damped. In case of a

gas bubble with a radius of 10−3 m in magma (ρl = 2500 kgm−3) at 10 MPa (pgo − 2Σ/Ro = 107 Pa), the

frequency (ωo/(2π)) is about 20 kHz. The oscillation is damped when the viscosity is larger than 160 Pa.s.

This viscosity is relatively small for magma. According to these estimations, we see that the free oscillation

of a bubble in magma is possible in limited cases that the viscosity is small and the bubble is large. We also

see that the bubble oscillation is easily excited in water which has a viscosity about 10−3 Pa.s.

Liquid rheology

The shear rheology of the liquid surrounding the bubble is one of the controlling factors for the bubble

dynamics. According to experimental results, magma has viscoelastic nature, which is the most simply

represented by linear Maxwell model [98]. Then the normal radial stress τrr in equation (4) is related to the

corresponding strain rate ėrr by

τrr = µl

∫ t

0

exp
(
− t− t′

τ

)
ėrrdt′, (10)

where µl is the shear elasticity and τ is the relaxation time. In the limit of t ¿ τ , Maxwell relation (10) is

reduced to a linear elastic stress-strain relation as τrr = µlerr. While in the limit of t À τ , it is reduced to
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Newtonian viscous relation, that is a linear stress-strain rate relation as τrr = µlτ ėrr, where µlτ corresponds

to the Newtonian viscosity ηl.

Fogler and Goddard [21] first used the viscoelastic relation (10) in the generalized Rayleigh-Plesset

equation (4) without mass flux, and demonstrated that the influence of the viscoelastic effects on the radial

motion of a bubble is characterized by a dimensionless parameter called Deborah number De = τ/τc, which

compares the relaxation time τ and Rayleigh collapse time τc defined in (2): the influence is large when

τ À τc. Extending the formulation by Fogler and Goddard [21] to a cellular bubble, Ichihara [28] investigated

characteristic behaviors of the bubble in magmatic conditions. It is shown that, the elastic oscillation of a

bubble, which occurs in case of τ À τc, is in a frequency of order of MHz and with very small displacement

of the bubble wall because of the large shear modulus of the magma.

Change of the bubble radius in magma is mainly controlled by the viscosity except in magma with very

small viscosity in which the bubble oscillation is possible. Therefore, in most of the studies for bubble

growth in magma, effects of liquid inertia and viscoelasticity are not considered, and equation (3) or (5)

for Newtonian fluid is used with neglect of the left-hand-side terms representing the inertia [87, 78, 62, 2].

Barclay et al [2] analytically solved the problem of the viscosity-controlled bubble expansion for instantaneous

decompression, and showed the characteristic expansion time is

τv =
3ηl

4pl
, (11)

where pl is the pressure in the liquid. The time τv is one of the most important time scale in the bubble

dynamics in magma [2, 30], while the Rayleigh collapse time τc, which is controlled by the inertia, is important

in low-viscosity fluids including hydrothermal systems.

Definition of the viscous expansion time corresponding to (11) is different depending on problems and

literatures. The time scale of the entire expansion of a bubble for instantaneous decompression is represented

by (11) using the reduced pressure for pl [2]. Volumetric oscillation of a bubble in an acoustic field is prevented

by the viscous resistance if the period is shorter than τv, in this case with the initial static pressure for pl [30].

When the bubble expansion is driven by a constant gas pressure, which occurs at the initial stage of diffusion-

drive gas expansion when the gas is efficiently supplied from the liquid, the bubble grows approximately as

R ∼ Ro exp[t∆p/(4ηl)] [92, 62], where ∆p is the pressure difference. In this case, τv = 4ηl/∆p. The last case

is discussed again later in the section of mass transport.

Liquid Compressibility

The effect of liquid compressibility on radial motion of a bubble was first considered in connection with

underwater explosions [14, 41]. Liquid compressibility allows energy transport as a pressure wave so that it
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causes radiation damping. Noting that the effect is considerable in case of a violent oscillation or collapse

of a bubble, several mathematical approaches were proposed to include the effect in the equation of bubble

radius. According to mathematical and numerical studies by Prosperetti and Lezzi [77], which compared

the proposed equations, the following Keller’s equation [41] is widely accepted as the most adequate form.

ρl

[(
1− Ṙ

cl

)
RR̈ +

3
2

(
1− Ṙ

3cl

)
Ṙ2

]
=

(
1 +

Ṙ

cl
+

R

cl

d

dt

)(
pg − pl − 4ηl

Ṙ

R
− 2Σ

R

)
, (12)

where cl is the sound speed in the liquid. Although Prosperetti and Lezzi [77] further proposed to use the

liquid enthalpy at the bubble wall instead of the pressure for the best accuracy, equation (12) is generally

used in literatures.

Comparing (12) and (3), we can see that the correction terms due to the liquid compressibility have the

order of Ṙ/cl. It means that the correction is considerable only when the bubble wall velocity becomes as

large as the sound speed of the liquid. By applying [1 + (Ṙ/cl) + (R/cl)d/dt]−1 to both sides of (12) and

linearizing the equation, Prosperetti [74] derived the acoustic damping coefficient, which corresponds to bv

in (8) for the viscous damping, as bac:

bac =
ω2Ro

2cl
, (13)

where ω is the angular frequency of the oscillation. The acoustic damping is the more significant when the

bubble is the larger and the oscillation frequency is the higher.

Effects of liquid compressibility on bubble dynamics in a highly viscous liquid are not understood com-

prehensively. Derivation of (12) and the related studies were performed thinking of liquids with ordinary

viscosities like water. Therefore, the Reynolds number Re = ρlRocl/ηl was presupposed to be large. On

the other hand, the viscosity of magma can be large enough to make Re very small. In this case, the same

mathematical approximation is not necessarily applicable. Yamada et al. [99] pointed out this problem and

solved the equations including viscous force associated with volumetric strain rate. Although the equation

of motion for the bubble radius appears not to be affected by the compressibility when the system is initially

hydrostatic, the velocity field around the bubble is different from the incompressible solution, even if the

wall velocity is much smaller than the acoustic velocity.

There is arguments whether the equation of radial motion of a bubble surrounded by a finite volume of

liquid needs correction terms for the compressibility. However, it seems to be negligible in magma, which

is evaluated as follows [28]. In case that the bubble is surrounded by an elastic shell, contribution of the

compressibility to the bubble expansion is δcR = Ro(pg − pl)(1 − R3
o/S3

o)−1(3Kl)−1, where Kl is the bulk

modulus of the liquid, which is the reciprocal of the compressibility [48]. We can evaluate δcR/Ro < 10−3,

because Kl ∼ 1010 − 1011 Pa for magma [98], the realistic pressure difference, pg − pl is not much larger

than 107 Pa, and the volume fraction of the bubbles, R3
o/S3

o , is reasonably assumed to be smaller than the
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close-packing limit (∼ 0.74). The change of pg due to δcR is δcpg/pgo ∼ −3δcR/Ro, which is also in the same

order. When the shell deforms viscously, displacement due to non-volumetric deformation grows, while that

from the volumetric deformation remains in the same order.

Heat and Mass Transport

Each equation of motion for the bubble radius includes pg, which is the pressure of the gas in the bubble,

as we see in (3), (5), and (12). Equation (6) is available to calculate pg only for an adiabatic process. In

fact, when a bubble expands, the pressure and temperature in the bubble decreases. Then heat and volatile

components flow into the bubble from the surrounding liquid. The opposite occurs when a bubble shrinks.

The internal processes which control pg are schematically shown in Figure 1. These transport effects are

essential in most of actual systems including magmatic and hydrothermal systems.

Growth of a bubble by the mass diffusion in an over-saturated liquid is one of the fundamental problem.

Based on purely dimensional considerations, an approximate growth law is given by

RṘ =
κglρl(Co − Ceq)

ρg
, (14)

where κgl is the diffusivity of the volatile in the liquid, Co is the dissolved volatile concentration at a large

distance from the bubble, and Ceq is the equilibrium concentration at the given pressure [70, 62]. From

(14) we find that, asymptotically, R ∼ √
2κglρl(Co − Ceq)t/ρg. This expression is not valid at t → 0

making Ṙ → ∞. In the initial stage, the diffusion is very efficient and the bubble growth is controlled

by viscous resistance [92, 62]. In this stage, R ∼ Ro exp[t∆p/(4ηl)] as discussed in the section of liquid

rheology. The approximate time of the transition from the viscosity-controlled exponential solution to the

diffusion-controlled square-root solution is found by Navon and Lyakhovsky [62] to be

τvd ∼ [−15− 10 log(Pe)]ηl/∆p, (15)

where Pe = ∆pR2
oη
−1
l κ−1

gl is Pecret number that compares the time scales of viscous expansion and diffusion.

It is noted that equation (15) is validated for Pe < 10−2, that is for relatively large viscosity and small

bubble radius [62]. If we consider ∆p ∼ 106 Pa and κgl ∼ 10−11 m2s−1, this condition is satisfied when

R2
oη
−1
l < 10−19, that is ηl > 107 Pa.s when Ro ∼ 10−6 m, and ηl > 109 Pa.s when Ro ∼ 10−5 m. Then

the corresponding times are τvd > 50 s and τvd > 5000 s, respectively. Lensky et al. [51] have suggested

that the change of the characteristic behavior of the bubble expansion over the time scale τvd generates a

non-linear response of the liquid-bubble mixture to the pressure perturbation, which may cause amplification

of a pressure wave. Coupling of effects of viscosity and diffusion on the bubble expansion also occurs through

the material properties, because magma viscosity and water diffusivity are strongly influenced by the amount

of dissolved water, which is the major volatile component in magma [50, 4].
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Matsumoto and Takemura [60] numerically solved a complete set of equations for the radial dynamics

of a bubble including conservation equation for mass, momentum, and energy in the bubble, heat and

mass diffusion in the liquid, and heat and mass exchange between the gas and the liquid by diffusion and

evaporation/condensation. Except in extremely rapid phenomena as the cases they treated, approximation

of a spatially uniform pressure in the bubble is adequate [74]. With this approximation, the computational

load is considerably reduced [63, 38, 9]:

It is necessary to consider non-uniform temperature distribution and compositions, in order to quantify

the amounts of energy exchange between the bubble and liquid and energy loss associated with the non-

equilibrium process. Time scales required to recover uniform temperature and composition in the bubble are

controlled by diffusion processes and are much longer than that to attain uniform pressure, which is controlled

by the pressure wave propagation in the bubble. Assuming representative values of the thermal diffusivity,

κT ∼ 10−5 (m2s−1), and the inter-diffusivity of the components in the gas phase, κgi ∼ 10−7 (m2s−1) [38],

development of thermal and material diffusion layers all over the bubble with radius of 10−3 m takes ∼ 0.1

s and ∼ 10 s, respectively. The time range of 0.1 -10 s is exactly what studies on seismoacoustic phenomena

in volcanology are mainly concerned with. It takes even longer time to recover uniform concentration of

volatile components in the liquid around the bubble. Therefore approximation of uniform temperature and

compositions are not always adequate.

Again we introduce results from the linearized theory for a periodic acoustic field. The bulk modulus of

a bubble, Kg, is defined as:

Kg = −R

3
∂pg

∂R
, (16)

which is generally a complex number. The elasticity and the energy loss associated with volumetric change

of a bubble are represented by the real and imaginary parts of Kg, respectively. Then the damping factor

and the resonant frequency for the bubble oscillation, which correspond to (8) and (9), respectively, are [74]:

bt =
3Im(Kg)
2ρlωR2

o

(17)

ωo =
1

Ro

√
3Re(Kg)− 2Σ/Ro

ρl
. (18)

In case of an adiabatic process for an ideal gas, where equation (6) holds, Kg = γpgo and (18) agree with

(9). While in case of an isothermal process, Kg = pgo. In these two extreme conditions, Im(Kg) = 0 and

there is no thermal damping.

In order to include the effect of non-uniform temperature distribution in the bubble, we have to solve the

energy equation with the continuity of temperature at the bubble surface. Assuming that the pressure in

the bubble is uniform, the temperature at the bubble wall is constant, which is supported by the large heat
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capacity of the liquid compared with that of the gas, and the pressure perturbation is periodic (∝ eiωt), the

effective bulk modulus, Kg, is represented as [74]:

pgo

Kg
=

1
γ
− 3(γ − 1)

γ
iχ

[√
i

χ
coth

(√
i

χ

)
− 1

]
, (19)

χ =
κT

ωR2
. (20)

When the mass transfer is controlled by the diffusion of the volatile component in the liquid phase, the

diffusion equation in the liquid and the equilibrium condition at the bubble surface are added. Then the

effective bulk modulus which includes both the heat and mass transport is

pgo

Kg
=

1
γ
− 3(γ − 1)

γ
iχ

[√
i

χ
coth

(√
i

χ

)
− 1

]
− 3Ag

√
αgiχ

(√
i

χ
+
√

αg

)
, (21)

Ag =
ρlpgo

ρgo

∂Ceq

∂p
, (22)

αg =
κgl

κT
, (23)

where Ceq is the saturation concentration at pgo [30]. Equation (21) has the last term in addition to (19),

which represents the effect of the mass transfer. The dimensionless parameter, Ag, represents the ratio of

the volatile mass going into the gas phase from a unit volume of the liquid phase by decompression to the

mass change in a unit volume of the gas phase due to expansion.

Figure 2 shows the relevant range of the dimensionless parameters, Ag and αg, for an H2O bubble in

magma [30]. As temperature decreases or pressure increases, Ag decreases (Figure 2) because of the following

two reasons. With decreasing temperature, ρ−1
go decreases. In case of magma, Ceq(p) is approximately

proportional to
√

p [26] so that ∂Ceq/∂p decreases with increasing pressure.

The effective bulk modulus of a bubble for some selected values of the parameters in the range is presented

in Figure 3 [30]. The thick broken lines in the figure are obtained by (19), which includes only the heat

transport. In this case, the real part approaches the isothermal bulk modulus and the adiabatic one in the

low and high frequencies, respectively. The mass transport makes the bubble stiffness (Re(Kg)) smaller,

which is the more significant in the lower frequency regime. It is because the bubble has more time to take

in and out the volatile from the liquid in a cycle of the pressure perturbation.

The imaginary part for each parameter set has a local peak around

ω ∼ τ−1
T = 15κT R−2

o , (24)

which is the characteristic frequency of the energy loss due to heat transfer. In case of Ro = 10−3 (m)

and κT = 4 × 10−6 (m2s−1), which is the value for H2O at 10 MPa and 1273 K [5], the corresponding

frequency (ω/(2π)) is 9.5 Hz. The imaginary part of Kg including the diffusion effect has another peak at
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the characteristic frequency of the energy loss due to the mass transport. The frequency is approximately

represented by

ω ∼ τ−1
g = 9αgκT A2

gR
−2
o , (25)

which is usually smaller than τ−1
T [30]. It is noted that the above model assumes a single bubble in an infinite

liquid. When the oscillation period is very long, interaction of the diffusion layers of the adjacent bubbles

has to be considered [15].

When the mechanism of the mass exchange between the liquid and the bubble is the evaporation/condensation

at the bubble wall, the latent heat plays an important role. Then the thermal diffusion equation in the liquid

and the balance between the heat flux through the bubble surface and generation of the latent heat should

be added [19, 24]. The corresponding bulk modulus of the bubble is represented as [24]:

pgo

Kg
=

1
γ
− 3(γ − 1)

γ

(
1− cpgTo

L

)2

iχ

[√
i

χ
coth

(√
i

χ

)
− 1

]
− 3Av

√
αT iχ

(√
i

χ
+
√

αT

)
, (26)

Av =
ρlcplTopgo

(ρgoL)2
, (27)

αT =
κTl

κT
, (28)

where cpg and cpl are the heat capacity at constant pressure in the gas and the liquid phases, respectively, L

is the latent heat, and κTl is the thermal diffusivity in the liquid. In obtaining equation (26), the Clausius-

Clapeyron relation: (dp/dT )sat = Lρg/T , and thermodynamic relations for an ideal gas are used.

Equation (26) has the same form as (21) except cpgTo/L. This difference is due to the temperature

change at the bubble wall. The dimensionless parameter, Av, corresponds to Ag and has a similar physical

meaning, which represents the ratio of the mass going through the phase change in a unit volume of the

liquid phase to the mass change in a unit volume of the gas phase due to expansion. Although the equation is

similar, the possible range of the parameter is different (Figure 2). As a result, the frequency dependence of

Kg is also different as is shown in Figure 4. Comparing the figure with Figure 3, we can see that the energy

loss of the vapor bubble due to the phase change is significant in a frequency range higher than that due to

diffusion. The frequency range is comparable with that of the heat transfer, but the amount of energy loss

is much larger. The vapor bubble loses its elasticity, which is represented by Re(Kg), in the lower frequency

as well.

Under the action of the sound field, there is a net transport of heat into the bubble by a non-linear process

called rectified heat transfer [97]. In the evaporation/condensation system, the order of the non-linear effect

is so large that it affects the amplitude and damping of the oscillation in the linear regime [24]. Equation

(26) does not include the effect. Some works investigating the effect of rectified diffusion process in triggering

an eruption or an earthquake are introduced in the later sections.
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Translational Motion

So far we have neglected the translational motion of a bubble relative to the liquid. The translational

motion is considered to be considerable when the displacement is comparable or larger than the diffusion layer

in the liquid surrounding the bubble. In an acoustic field with frequency ω, this condition is represented by

U/ω <
√

κ/ω, where U is the translational speed and κ is the relevant diffusivity. The translational velocity

of a spherical bubble driven by buoyancy is estimated by U = kρlR
2
ogη−1

l , where g is the gravitational

acceleration. Although k = 1/3 for a pure liquid, k = 2/9 is used for most of actual liquid, which is not

perfectly pure, because the pro-surface components concentrate on the bubble surface to make the surface

less mobile[49]. These approximation hold for relatively slow velocity, which satisfies Ret = 2ρlRoUη−1
l ≤ 1.

Then the condition in which the translational motion has a minor effect on the heat and mass transfer is

ω >
R4

κ

(
kρlg

ηl

)2

. (29)

Assuming k = 2/9, R = 10−3 (m), κ = κgl = 10−11 (m2s−1), ρl = 2500 (kgm−3), ηl = 105 (Pa.s) for a

magma-H2O system, ω > 3 × 10−4 (rad.s−1) and U = 6 × 10−6 (m.s−1). For water-vapor system, on the

other hand, we assume k = 1/3, κ = κTl = 10−7, ρl = 1000, ηl = 10−3. Then, if R = 10−5, ω > 1 and

U = 3 × 10−4, and if R = 10−4, ω > 104 and U = 3 × 10−2. According to these estimations, we can see

that the translational motion is negligible for most of cases with magma except basalt, which has relatively

small viscosity (ηl < 102) and large diffusivity (κgl ∼ 10−9), while it is considerable in hydrothermal systems

except for very small bubbles and the time scale is very short. As an example, the effect on thermal collapse

of a vapor bubble is introduced later.

Another effect of the translational motion is its mechanical coupling with the radial motion. Because a

bubble has to move the surrounding liquid in order to make itself move, it is subject to the inertial force of the

liquid, which depends on its volume [49]. Therefore when the bubble volume changes, the force also changes.

According to this consideration, an equation of the translational motion of the bubble is approximately

represented as [100]:

U̇ = − 3
R

ṘU + 2g − 3
4

CD

R
|U |U, (30)

where CD is the non-dimensional drag coefficient, which is given as a function of Ret.

From the first term in the right-hand side, we see that the translational motion is decelerated by the

bubble expansion. Although it had been theoretically recognized for long time, it was quantitatively justified

by experiments recently [66]. The effect of the translational motion on the radial motion is represented with

a term, ρU2/2. This term can usually be neglected [37, 66] except in cases with very strong oscillation [17].
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4 Bubbly magma in an Elastic Rock as a Pressure Source

Model Overview

Here we consider a magma chamber filled with compressible viscous melt and numerous tiny H2O gas

bubbles (Figure 5) [78, 86]. The magma chamber is confined in an elastic rock. When perturbation is given

to the system, pressure may increase by interaction of the elastic deformation of the chamber, expansion

of the bubbles, and gas diffusion from the melt to the bubble. Recently, the process has been discussed

in several literatures in relation to the observed volcanic phenomena [64, 86, 53, 12, 96, 8, 29], which are

presented in Introduction.

The melt and bubbles are expressed by the cell model [78], in which multiple spherical bubbles of a

constant radius are uniformly packed. Each bubble is surrounded by a finite volume of the melt, represented

by an elementary cell. The elementary cell is spherical, in which a single gas bubble located at the center.

It is assumed no interaction between neighboring elementary cells such that all gas bubbles grow in the

same manner. This simplification enables us to examine bubble growth processes in the entire chamber by

studying the growth of just a single bubble, which is represented by equation (5).

The main mechanism to increase the pressure is diffusion of the volatile. It is the slowest process of the

bubble dynamics as is described in the previous section. It is certainly longer than the period of resonant

oscillation of the individual bubbles so that the inertia terms in (5) are neglected. It is also longer than the

time scale of the heat transport within the bubble as is shown in Figure 3 so that we may assume uniform

and constant temperature within the bubble. Then the mathematical model for the elementary cell consists

of three equations, which represent radial motion of the bubble, volatile diffusion in the melt, and ideal gas

approximation, respectively, and three boundary conditions, which are phase equilibrium and mass flux at

the bubble surface and no mass flux at the external boundary of the cell element.

Interaction Between Melt and Elastic Medium

The volumetric change of the bubbles and the melt due to the pressure change is compensated by the

elastic deformation of the chamber. Here we consider the initial pressure and stress conditions in relation

to physical process which brings about the condition, since the relations have not always been mentioned

clearly in the previous literatures. We assume quasi-static deformation of the chamber, where the pressure

of the melt is balanced by the elastic stress applied by the wall of the chamber. The volumetric change can

be caused by (a) pressure change within the chamber and (b) stress change in the surrounding rock (Figure

6). Each process is individually represented by

pl − po = µ̄pδVp/Vo, (31)
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−σ∞ = µ̄eδVe/Vo, (32)

where Vo is the initial equilibrium volume of the chamber, σ∞ is the ambient stress change, δVp and δVe are

the volumetric change due to (a) and (b), respectively, and µ̄p and µ̄e are corresponding effective stiffness

of the wall. Each effective stiffness depends on the elasticity of the rock, the geometry of the chamber, and

the applied stress field. For the simplicity, we approximate µ̄p = µ̄e = µ̄. Then the total volumetric change,

δV , is given by

pl − po − σ∞ = µ̄δV/Vo, (33)

The two perturbations to cause the volumetric change have not been clearly distinguished in the previous

literatures. The mathematical treatment by [86] assumed that pl − po = −∆p is given at t = 0. They

considered that this pressure drop is caused by decrease of the ambient stress field by a certain amount, say

σ∞ = −∆σ. On the other hand, the assumption of [12] is that the pressures in all of the bubble, the melt,

and the rock are lower by ∆p than the saturation pressure for the dissolved volatile concentration at t = 0.

Strictly, the consequent processes are different depending on what causes the pressure perturbation. If the

pressure drop of ∆p occurred firstly within the chamber, that is pl − po = −∆p and σ∞ = 0, the chamber

would initially shrink according to (33). If it is caused by ambient stress drop first, that is pl − po = 0

and σ∞ < 0. Then the chamber would initially expand. In either case, the initial response is almost

instantaneous, which is controlled by elasticity of the rock and compressibility of the melt. The major

deformation occurs later and is controlled by volumetric change of the bubbles.

Response to Sudden Decompression and Characteristic Time for Pressure Recovery

There are three important parameters to characterize the response of the system to the pressure drop,

which are useful for comparing the model and the field observations. The first one is the re-equilibrated

pressure pf . The second is the final bubble radius, Rf . The third is the characteristic time of the recovery

process, Tgrowth.

The first and the second are calculated by consideration of the equilibrium condition alone and can be

calculated semi-analytically [64]. On the other hand, Tgrowth is determined by numerical calculation of the

set of equations described above. Shimomura et al. [86] investigated the recovery processes and presented

that Tgrowth depends on the stiffness of the chamber (µ̄), initial bubble radius (Ro), number density of the

bubbles (N), volatile diffusivity in the melt (κgl), initial pressure (po), the pressure drop (∆p), and the melt

properties in a complicated manner.

The corresponding study for the bubble growth in an open space, where the pressure is constant regardless

of the bubble expansion, was presented by Prousevitch et al.[78]. They assumed an initially supersaturated
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condition, in which both plo and pgo are lower than the saturation pressure of the volatile dissolved in the

melt. They investigated the final bubble radius and the time to reach it, which correspond to Rf and Tgrowth,

respectively. They also presented effects of initial bubble radius (Ro), number density of the bubbles (N),

volatile diffusivity in the melt (κgl), initial pressure (po), and initial super-saturation.

A simple theory to estimate the time scale of re-equilibration is useful to compare the model with

observations, but has not been determined yet. Here we test two hypotheses.

1. The recovery time is comparable with the time scale in which the diffusion layer develops over the

entire shell, that is τ1 = (Sf −Rf )2/κgl.

2. Based on a dimensional analysis of the simplified diffusion equation (14), Lensky et al. (2006) proposed

τ2 = (R2
f/κgl)(ρgf/ρl)(Co − Cf )−1, where ρgf and Cf are the final gas density in the bubble and

the volatile concentration remained in the melt, both of which are functions of pf . They obtained

this equation based on the approximation that the quasi-static mass flux through the interface is

(Co − Ceq(pg))/R.

The re-equilibration times, Tgrowth, obtained by Shimomura et al. [86] and Prousevitch et al. [78] are

compared with the above models in Figure 7. Comparing Tgrwoth-τ1 (black symbols) and Tbrowth-τ2 (white

symbols), we see that the general trend of Tgrowth is better estimated by τ1 than by τ2 in both confined

and open systems. However, it should also be noted that τ1 still has systematic errors which are indicated

by gray frames. The errors are more dominant in the confined system (Figure 7a). It is indicated that the

simple estimation does not include all the factors relevant to the re-equilibration time and it is not necessarily

applicable to the wider range of the parameters.

Re-equilibration processes

Here we discuss different re-equilibration process depending on the cause of the pressure drop and the

relevant initial conditions. Three representative solutions are presented in Figure 8-Figure 10. They are

obtained for the standard basaltic system [86], but only viscosity is varied from 50 Pa.s for (a) to 106 Pa.s

for (b).

Figure 8 is the case in which the stress drop occurs in the ambient rock first. It is generated by, for

example, surface unloading by dome collapse [96] and stress change after a local earthquake. The condition

is represented by σ∞ = −∆σ at t ≥ 0 while pl = pg − 2Σ/Ro = po at t = 0. According to (33), the chamber

expands instantaneously, and pl drops by ∆p. Then the initial condition assumed by [64, 86] is attained.

Response of pg is not instantaneous [62]. Due to the difference between pg and pl, the bubble expands

according to (5) to decrease pg. Then difference between pg and the equilibrium pressure for the volatile

17



concentration in the melt occurs to make the volatile flow into the bubble to re-increase pg. As the bubbles

grow, the entire volume of the magma (δV ) increases to enlarge the chamber elastically. Then the elastic

stress µ̄δV/Vo increases pl according to (33). The re-equilibration proceeds in this way [86].

Figure 9 is the case in which the pressure in the bubble as well as those in the melt and the ambient

rock is lower than the saturation pressure for the initial volatile concentration in the melt at t = 0. This

condition occurs, if bubbles are mixed with the super-saturated melt instantaneously or the bubbles are kept

in the supersaturated mixture without interaction and suddenly allow the diffusion. Mathematically, the

initial condition is equivalent to those assumed by [12] and [78]. The condition is represented by pl − po =

pg − 2Σ/Ro − po = σ∞ = −∆p at t ≥ 0. Diffusion of the volatile into the bubble starts, which increases

pg first. Then pg − pl expands the bubble and the chamber to increase pl in the same way as the previous

case. Practically, the difference between Figure 8 and Figure 9 occurs only in the very short period in the

beginning, and the subsequent increase of the pressure and volume of the chamber may look the same from

outside.

Figure 10 is the case in which the pressure drop occurs in the melt and in the bubble, while the stress

in the ambient rock is unchanged. The condition is represented by pl − po = pg − 2Σ/Ro − po = −∆p

and σ∞ = 0. Although the assumed initial condition is rather imaginary, this case is presented in order to

demonstrate how the response can be different depending on the way the system is ’decompressed’. In fact,

it is more realistic that pl drops first, while pg remains at the initial value. This situation may occur by small

leakage of the melt from the system. In this case, the melt pressure just recovers almost instantaneously,

because the container compresses the melt according to (33) and bubbles also compress the melt. No other

significant change is expected. On the other hand, if both pl and pg drop, as in Figure 10, the pressure still

recovers rapidly, but bubbles are compressed. Because the mechanical balance of the bubble and the melt is

attained with pg − 2Σ/R = pl according to equation (5), pg has to become larger when R decreases. Then

pg exceeds the equilibrium pressure for the volatile in the melt to make the volatile dissolve into the melt.

Rectified Diffusion

So far, we discussed responses of the system to a stepwise pressure drop. When the perturbation is caused

by a seismic wave from an external source, the system is subject to a cyclic disturbance. Rectified diffusion is

a mechanism which can push dissolved volatiles into bubbles in a sound field. Bubbles take in more volatiles

during expansion than they discharge during contraction, mainly because of the following two non-linear

effects [27, 18]. Firstly, the interface is larger during expansion than during contraction. Secondly, radial

bubble expansion tangentially stretches the diffusion layer and sharpens the radial gradient of the volatile

concentration in the diffusion layer, so that the volatile flux into the bubble is enhanced.
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Brodsky et al. [8] discussed the possible pressure increase of a bubbly magma confined in an elastic rock

by this mechanism. Using the solution by Hsieh and Plesset [27] for a periodic system, they considered

that, even though the net pressure changes are determined by the pre-existing oversaturation, the rectified

diffusion accelerates the pressure increase and may break the balance which had been stabilized the system

prior to the oscillation. Ichihara and Brodksy [29] improved the solution by including resorption of gas as

the pressure increase and development of the diffusion layer around the bubble in a self-consistent way. It is

then shown that rectified diffusion is not faster than the ordinary diffusion and its contribution to the net

pressure change is at the most 2× 10−9 of the initial pressure regardless of the pre-existing oversaturation.

5 Acoustic bubbles in Hydrothermal Systems

Pressure Impulses Generated in a Geyser

Here we consider a mixture of water and vapor bubbles, in which we expect effects of bubble oscillations

and evaporation.

Kedar et al. [40, 39] conducted field experiments at Old Faithful Geyser, Yellowstone. They measured

pressure within the geyser’s water column simultaneously with seismic measurements on the surface. The

data show a distinct cause-and-effect relationship between the impulsive pressure source and the impulse

response of the rock surrounding the water column. In addition, the pressure pulse, which is strongest at the

top transducer, strongly attenuates downward. Considering that the pulse is generated by the oscillation of

a single bubble, they compared one selected signal with a solution of the equation of motion for the bubble

radius (3). In order to fit the measured oscillation with a reasonable bubble radius, they had to assume a

very small ambient pressure to lower the frequency, and a very large viscosity to increase the damping. For

Ro = 0.055 m, for example, they used pgo = 0.02 MPa, with which equation (9) gives the resonant frequency

close to the observation: ∼ 20 Hz. The viscosity was assumed as ηl = 40 Pa.s, which is larger than the actual

value by more than four orders. They compared the damping coefficient with those from radiation and heat

transfer, though these effects were not included in the calculation of (3), and concluded that mechanisms

other than acoustic, thermal, or viscous damping are required to explain the strong damping observed.

We have already introduced the damping coefficient bt with the evaporation effect in equations (17)

with (26). Then, assuming the similar bubble radius and frequency ranges as [39], let us see the damping

coefficient by evaporation in comparison with the other coefficients, which are for viscous, acoustic and

thermal damping, represented by (8), (13), and (17)with (19), respectively. Their values are compared in

Figure 12b, assuming pgo = 0.13 MPa (the saturation pressure at 380 K). We can see that the evaporation

effect significantly increases the damping and dominates the other damping mechanisms in the frequency

range of the geyser oscillation. The evaporation effect also decreases Re(Kg) (Figure 12a) in the range. It is
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thus suggested that the evaporation effect is significant for the bubble dynamics in the hydrothermal system.

Inertial and Thermal Collapse of a Bubble

When we heat water in a kettle, we hear strong intermittent pulses before boiling starts. The phenomenon

is explained in terms of the bubble dynamics as follows [1]. In the first regime (which initiates above

approximately 40 ◦C) small bubbles form slowly out of dissolved air in the liquid, rising silently to the

surface as they break off the side of the vessel. At higher temperature (∼ 70 ◦C), vapor bubbles start to

nucleate at various sites at the heated bottom surface of the container. Vapor bubbles are different from the

air bubbles in that their formation and collapse (at the bottom of the vessel) occurs explosively, producing

pressure impulses that traverse the liquid and excite many of the sound we hear. In the third stage (between

90 ◦C and 100 ◦C), vapor bubbles grow, coalesce, and survive their ascent through the liquid. Bursting of

vapor bubbles at the top surface is considered to be the sound source in this regime. Finally, the transition

to full boil is characterized by large bubble formation throughout the bulk of the liquid.

We consider whether and how the impulse generation by the bubble collapse occurs in a geyser, where

water that is already boiling is injected and cooled from the surface [43]. The collapse (or growth) of a

bubble is classified into two modes: the inertia mode, which is controlled by the liquid inertia and driven by

the pressure difference between the liquid and the bubble, and the thermal mode, which is controlled by the

heat transfer and driven by the temperature difference [102, 20]. The former is more violent than the latter

and is responsible for the impulse generation.

Based on theoretical and experimental studies, Florschuetz and Chao [20] proposed that the relative

importance of the inertia and the heat transfer is evaluated by a dimensionless parameter, B, defined by

Ja =
ρlcpl(Tsat(plo)− To)

ρgoL
, (34)

B = Ja2 κTl

Ro

√
ρl

plo − psat(To)
, (35)

where Tsat(plo) is the saturation temperature for the ambient pressure (plo) and psat(To) is the saturation

pressure for the system temperature (To). The dimensionless parameter Ja is called Jacob number, which

represents the degree of subcooling. Figure 13 is their calculation results, which clearly shows that for

B ≥ 0.3, the collapse rate is dominated by liquid inertia effect, while for B ≤ 0.03, it is much slower and is

recognized as the thermal mode. For an intermediate value of B, oscillation is observed.

In these works [76, 20], it is often assumed that the pressure in the bubble is initially equal to the

saturation pressure of the subcooled liquid, that is pgo = psat(To), which is smaller than the ambient

pressure (plo) [20, 76]. Experimentally, it is achieved by preparing for a thermally equilibrium water-vapor

system at a low pressure and suddenly increasing the system pressure to plo [20]. Then the initial collapse
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is relatively violent and continues by inertia until the vapor heating at the bubble wall increase the vapor

pressure above the ambient pressure to such an extent that the liquid is momentarily brought to rest and its

motion actually reverses before the vapor pressure again drops below the system pressure [20, 76]. Although

the oscillation is difficult to see on the radius change curves in Figure 13 for small B, the beginning inertia

controlled stage is evidenced by that all the curves start along the inertia curve.

On the other hand, in case that a bubble suddenly enters cold water, pgo = plo > psat(To) while

temperature in the bubble Tgo is larger than To and is close to Tsat(pgo). Then the collapse begins in the

gentle mode controlled by the heat transfer. It can turn into the inertia mode only if the rate of heat

transport and condensation to decrease the vapor pressure is so large that inward motion of the surrounding

liquid cannot follow. Prosperetti and Hao [76] presented that relative translational motion between the

bubble and the liquid significantly increases the rate of heat transport and accelerates the bubble collapse.

Furthermore, they pointed out the coupling effect between the translational and the radial motions. As

equation (30) suggests, the decreasing bubble radius (Ṙ < 0) works to accelerates the translational motion.

Although the drag force (∝ CDR−1|U |U) increases as R decreases and U increases, there are cases in which

the contribution of the first term is so large to make U̇ > 0. Then the bubble collapse and the translational

motion accelerate each other [76].

Rectified Heat Transfer

In the same way as the rectified diffusion discussed in the previous section, rectified heat transfer works for a

vapor bubble in an acoustic field [97, 24]. When the bubble is compressed, some vapor condenses, the surface

temperature rises, and heat is conducted away into the adjacent liquid. When the bubble expands during

the following half cycle, evaporation causes a temperature drop of the bubble surface, with a consequent

heat flux from the liquid. The imbalance of the heat flux and the interface area between the compression

phase and the expansion phase causes the net energy flux into the bubble.

Sturtevant et al. [88] investigated the effect of rectified diffusion on pressure increase in a hydrothermal

system, as a possible mechanism for triggered seismicity by a distant earthquake. They modeled the system

as a two-component H2O-CO2 system, and considered rectified mass diffusion. As is mentioned in the

previous section, the net pressure change due to rectified mass diffusion is very small, if it is evaluated in a

self-consistent way [29].

Although rectified heat transfer has a similar mechanisms as the rectified mass transfer, it is much more

intense since the thermal diffusivity of liquids typically exceeds the mass diffusivity by two orders of mag-

nitude [76]. It can grow a vapor bubble quickly within several cycles of oscillation at the beginning (Figure

14), and thus can be effective even with low-frequency pressure waves. Moreover the effect is reinforced
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by the coupling effect of the bubble growth and translational motion [25], and coupling of evaporation and

diffusion of another gas component [38]. The net energy flux into the bubble increases the temperature in the

bubble, which may change the liquid static pressure [24]. It is noted that numerical results in the literatures

cannot be directly used to estimate the pressure increase, because they were obtained for an open system

in which the bubble continues to grow instead of increasing system pressure. However, it might be worth to

re-evaluate effects of rectified processes in a hydrothermal system taking account of these recent results.

Non-Linear Oscillation of a Spherical Cloud of Bubbles

Oscillation of a group of bubbles generates particular signals as well as oscillation of a single bubble. The

presence of bubbles can lower the acoustic speed of the fluid by an order of magnitude [42, 16], if the liquid

viscosity is small enough [31, 30]. Therefore, there is a sharp impedance contrast between a region of bubbly

liquid and a region of pure liquid. The boundary of a bubble cloud acts like an elastic boundary that traps

acoustic energy in the bubbly region so that the bubble cloud has characteristic frequency of resonance

[56, 101, 67]. Chouet [10] considered it is the mechanism for the harmonic oscillations observed at volcanoes

having relatively low-viscosity magma. He showed the typical values for the oscillation in the few Hz range

may be generated by a columnar bubble cloud with void fraction of 1 %, ∼ 100 m in length, and ∼ 1 m

in radius in a bubble-free magma with ∼ 5 m in radius. The radius of each bubble is assumed as 10−3 m,

which has its own resonance frequency at 8.9 kHz [10].

Omta [67] conducted numerical calculation for oscillation of a spherical cloud of bubbles with relatively

large amplitude. Figure 15 shows one of his results, in which the cloud oscillation was excited by an external

pressure increase. Three cycles of the oscillation are presented. We can see high-frequency strong pulsation

at the center of the bubble cloud (Figure 15a). It is explained as follows [67]. The pressure perturbation is

amplified and sharpened toward the center of the cloud because of the spherical geometry. Then the bubbles

are excited at their resonance frequency.

The strong pulsation is observed only near the center in a spherical bubble cloud (Figure 15). If a bubble

cloud is hemispherical with its cross section attached on a solid wall, the pulsation generated at the center

of the hemisphere may strongly hit the wall [85]. Generation of strong high-frequency pulses by a bubble

cloud interacting with a pressure perturbation with lower frequencies is actually observed in experiments

and now the phenomenon is going to be applied to medical treatment under controlled condition [33, 59].

Similar mechanism may work in a hydrothermal system, in which a low-frequency perturbation generates

strong pressure impulses hitting the walls to be observed as seismic waves. In fact pressure oscillations in

the bubble cloud (Figure 15) and in the geyser (Figure 11) have quite similar features, though their time
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scales are different by three orders.

6 Future Directions

We have summarized theoretical bases of the bubble dynamics, mainly based on radial motion equations

of a single bubble. These theories have been established and verified by experiments for simple systems.

For volcanic systems, these theories have mainly been applied to the nucleation and growth of bubbles in

magma. This subject takes an important part of volcanology, though it is not included in this review paper.

By comparing the theory with observation of bubbles left in natural volcanic rock [93, 58] and re-producing

the process by laboratory experiments [23, 89, 52], researchers have determined physical parameters of the

volcanic processes, which are the temperature, pressure, volatile saturation, ascent rate, and so on. The

bubble dynamics theories have also been applied to explain geophysical observations, as we have reviewed

several possible mechanisms of bubbles that generate pressure impulses. However, determining the effects

or even existence of bubbles is more difficult in these phenomena than in the bubble growth problems,

because direct observation of bubbles and re-production of the process in a laboratory are more difficult.

Here we discuss how we can go forward to confirm the models and apply them to determine useful physical

parameters.

It would be effective to focus on relatively simple volcanic phenomena in which the bubble dynamics

theory appears to work. Especially, for some volcanoes which make eruption frequently, data taken by

modern geophysical methods are being accumulated and the phenomenological cause-and-result relations

between an eruption and pressure impulses before and during the eruption are well documented. For example,

at Stromboli volcano all the sequences of the repetitive small eruptions and a few proximal explosions have

been taken by multi-parameter monitoring systems [83, 82]. Geophysical data taken close to active craters

at Sakurajima, Suwanosejima, and Semeru volcanoes have revealed common features in the pressure change

before and during an explosion [32]. At Sakurajima volcano, behaviors of a shallow gas pocket are discussed

in the sequences of seismic and explosion events based on analyses of seismic data [91, 90]. It might be

possible and useful to have a common backbone model for these eruptions, based on which we can explain

the particular detail of each case as a result of different parameters of the system.

The bubble dynamics theory which is used in the models needs to be updated, too. Responses of

a bubbly fluid are sensitive to the system parameters, which determine possibilities, features, and time

scales of the individual mechanisms, as are shown in the text. Although many models assume uniform

system for simplicity, the natural system is considered to be non-uniform. In other words, regions having

different physical parameters may coexist. Interaction of these subsystems may enhance the characteristic

response, but may diminish with one another, or generate completely different effects. The inhomogeneities
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and their interactions may occur in various scales and manners. For example, in section 4, behaviors of

a single uniform magma body in an elastic rock have been discussed. In the real system, the bubble size

and the chemical composition are likely to be non-uniform within a small region and/or over the entire

magma body. If the system is large, the hydrostatic pressure gradient is significant. Moreover, if there

are plural magma containers which have different physical parameters, each magma body will responds to

the pressure perturbation differently, and pressure gradient may be generated between the two adjacent

containers. Developing a model including these subscale interactions may be a subject of modern multi-scale

multi-physics studies.

Laboratory experiments using analogous materials are useful in verifying and improving the models. In

the procedure to construct a model system, we frequently find factors which are important in the real system

but have been neglected in the idealized mathematical model. Although there may be some processes which

can be realized in the nature more easily, and there always be a scaling problem, experiments will give us

more concrete idea about the mechanism of the models. Although most of the previous analogue experiments

are designed to be compared with geological and petrological observations, there are some which investigate

generation of pressure impulses by bubbles and are intended to explain seismic and/or acoustic observations

[34, 35, 80]. According to the results and implications obtained by these preceding works, laboratory studies

in this direction are promising.

It is also important to connect geophysical observation and geological data to understand the bubble

dynamics phenomena in volcanology. Compared with other geophysical processes which occur in the earth,

there is larger possibility that the source of activity appears to the surface after relatively short time. The

geological samples (e.g., pylocrasts during eruptions and volcanic gasses) can inform us physical and chemical

properties of the materials generating pressure impulses, and would make useful constraints on the model.

On the other hand, these constraints can be tested and verified by geophysical signals of seismic, geodetic

and acoustic measurements when the models are established.

By combining these theoretical, experimental, geophysical, and geological approaches, we will get better

understanding on the processes which generate volcanic activities.
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Table.1 List of important variables and constants.
Notation Unit Definition

Ceq - Equilibrium volatile concentration (weight fraction) in the liquid
cl m.s−1 Sound speed in the liquid
cpg Jkg−1K−1 Heat capacity of the gas at constant pressure
cpl Jkg−1K−1 Heat capacity of the liquid at constant pressure
Kg Pa Effective bulk modulus of the bubble
Kl Pa Bulk modulus of the liquid
L Jkg−1 Latent heat
pg Pa Pressure in the bubble
pg Pa Pressure in the liquid far from the bubble
R m Bubble radius
S m Outer radius of the cellular bubble
T K Temperature
U m.s−1 Translational velocity of the bubble
γ - Specific heat ratio
ηl Pa.s Liquid viscosity
κgl m2s−1 Diffusivity of the volatile in the liquid
κT m2s−1 Thermal diffusivity in the bubble
κTl m2s−1 Thermal diffusivity in the liquid
µ̄ Pa Effective stiffness of the magma chamber
µl Pa Shear elasticity of the liquid
ρl kg.m−3 Liquid density
Σ m.s−1 Surface tension

σ∞ Pa Ambient stress change given to the magma chamber
τ s Maxwell relaxation time
ω rad.s−1 Angular frequency
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Table.2 List of characteristic times.

Notation Equation Definition
τc (2) Inertia-controlled bubble collapse
τg (25) Mass diffusion in the liquid around the bubble
τT (24) Thermal diffusion in the bubble
τv (11) Viscosity-controlled bubble expansion
ωo (9) Natural frequency of a bubble
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Figure 1: The internal heat and mass transport processes which control pressure change and energy loss
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Figure 2: The relevant range of the dimensionless parameters representing the effect of the volatile transfer
in the magmatic system is shown as the gray area. The parameter Ag and αg are defined in eqs. (22)
and (23), respectively. The temperature (T ) and the volatile diffusivity (κgl) are assumed as shown in the
legend, and the pressure is vaired from 0.1 to 100 MPa. The open crosses are the corresponding parameters
for a vapor-bubble system, Av and αT given in equations (27) and (28), respectively. The temperature is
varied from 380 K to 500 K and the pressure is the saturation pressure at each temperature. (Modified from
[30]Fig.1)
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Figure 3: The effective bulk modulus of a gas bubble with heat and mass diffusion (calculated by equation
(21)) as a function of the dimensionless frequency. The real and the imaginary parts are presented in (a)
and (b), respectively. The thick broken lines indicated as ’No diffusion’ includes only thermal effect (which
is calculated by equation (19)). ([30] Fig.2)
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Figure 4: The effective bulk modulus of a vapor bubble with thermal and evaporation effects (calculated by
equation (26)) as a function of the dimensionless frequency. The real and the imaginary parts are presented
in (a) and (b), respectively. The thick broken lines indicated as ’No evaporation’ includes only thermal effect
(which is calculated by equation (19)).
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Figure 5: Schematic illustrations of (a) cell model [78], (b) an elementary cell, and (c) achamber surrounded
by an elastic medium. The chamber is filled with compressible viscous melt and numerous tiny spherical
gas bubbles.Magma is represented by a combination of many elementary cells. R and S is the radius of the
elementary cell and gas bubble, respectively, and Vo + δV is the volume of the chamber. (modified from
[86]Fig.1)
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Figure 6: Mathematical for interaction of melt pressure pl, stress in the ambient rock σ∞, and volume change
of the chamber, δV . Volume change due to internal overpressure pl − po and that due to external stress is
considered separately.
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Figure 7: Numerical results of the pressure recovery time for magma in an elastic rock (a) and the bubble
growth time in an open system (b) for various system parameters are compared with analytical approxi-
mations: τ1 is the time scale of mass diffusion across the final shell thickness, τ2 is approximation by [53].
Agreement between the numerical results and τ1 is better, but some systematic discrepancy remains, as are
indicated by gray frames. The numerical results for (a) is from [86], and those for (b) is from [78].

40



24

24.2

24.4

24.6

24.8

25

25.2

1

1.2

1.4

1.6

1.8

2

2.2

0 0.5 1 1.5 2 2.5 3
t (s)

24

24.2

24.4

24.6

24.8

25

25.2

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10

P (MPa) R (10-5m)

t (s)

P (MPa) R (10-5m)

(a) (b)

pg

pl

σoo

R

σoo

pg

pl

R

Figure 8: Pressure recovery in a bubbly magma in an elastic chamber after sudden unloading σ∞ = −1
MPa. The initial condition is pl = pg − 2Σ/R = 25 MPa and R = 10−5 m. The bubble radius on the right
axis is plotted with a line-and-points. The stress and pressures on the left axis are plotted with a solid line
for pl, a dotted line for pg, and gray line for σ∞. The system parameters are κgl = 10−8 m2.s−1, the bubble
number density is 1011 m−3, and ηl = 50 Pa.s for (a) and 106 Pa.s for (b). The others are the same as those
for the basaltic system by [86].
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Figure 9: Similar to Figure 8, but the initial condition is σ∞ = pl − po = pg − 2Σ/R − po = −1 MPa, with
po = 25 MPa.
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Figure 10: Similar to Figure 8, but the initial condition is σ∞ = 0 and pl− po = pg − 2Σ/R− po = −1 MPa,
with po = 25 MPa.
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Figure 11: Simultaneous pressure records (high-pass filtered at 1 Hz) and seismic traces at Old Faithful
geyser, Yellowstone. The geyser’s eruptions are 2-5 min long with the interval between them ranging from
30-100 min. The figure shows a 30-s data about 27 min after the previous eruption and about 52 min before
the next eruption. The conduit of the geyser is 22-m deep, where the bottom sensor was located. The
bottom, middle and top sensors were connected 3 m apart. The seismic station was located at ∼ 25 m from
the geyser. The data show a direct correspondence between the pressure pulses and the seismic signals that
follow them. ([40]FIG.3)
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Figure 12: The bubble elasticity (a) and damping factors (b) for a single vapor bubble with radius 0.055 m
at 380 K, 0.13 MPa (saturation pressure).
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Figure 13: Variation of wall temperature and radius during collapse of water vapor bubbles. Bsat is the
dimensionless parameter given by equation (35), which determines relative importance of the liquid inertia
and the heat transfer.([20] Fig.3)

Figure 14: Growth of a vapor bubble by rectified heat transfer. Bubble radius normalized by the linear
resonant radius Rr = 2.71 mm versus time for saturate water at 1 atm. The sound frequency is 1 kHz and
the amplitude is attached to each profile. ([24] FIG.4)
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Figure 15: Change of bubble radius (blue lines) and pressure (red lines) in a spherical cloud of bubbles after
a sudden pressure rise. The initial pressure and temperature are 3× 104 Pa, 293 K, radii of the bubble and
the cloud are 2.5 × 10−4 m and 3 × 10−2, the void fraction is 3 %, and the pressure rise is 2.4 × 104 Pa.
Values at the center (a) and at a half the radius from the center (b) are presented in dimensionless form (a
unit of the dimensionless time corresponds to ∼ ms). (modified from [67] Fig.9)
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