
VOL. 82, NO. 20 JOURNAL OF GEOPHYSICAL RESEARCH JULY 10, 1977 

Sound Speed in Liquid-Gas Mixtures' Water-Air and Water-Steam 
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The sound speed of a two-phase fluid, such as a magma-gas, water-air, or water-steam mixture, is 
dramatically different from the sound speed of either pure component. In numerous geologic situations 
the sound speed of such two-phase systems may be of interest: in the search for magma reservoirs, in 
seismic exploration of geothermal areas, in prediction of P wave velocity decreases prior to earthquakes, 
and in inversion of crustal and upper mantle seismic records. Probably most dramatically, fluid flow 
characteristics during eruptions of volcanoes and geysers are strongly dependent on the sound speed of 
erupting two-phase (or multiphase) fluids. In this paper the sound speeds of water, air, steam, water-air 
mixtures, and water-steam mixtures are calculated. It is demonstrated that sound speeds calculated from 
classical acoustic and fluid dynamics analyses agree with results obtained from finite amplitude 'vapor- 
ization wave' theory. To the extent that air and steam are represented as perfect gases with an adiabatic 
exponent •, independent of temperature, their sound speeds vary in a simple manner directly with the 
square root of the absolute temperature. The sound speed of pure liquid water is a complex function of 
pressure and temperature and is given here to 8 kbar, 900øC. In pure water at all pressures the sound 
speed attains a maximum value near 100øC and decreases at higher temperatures; at high pressures the 
decrease is continuous, but at pressures below 1 kbar the sound speed reaches a minimum value in the 
vicinity of 500ø-600øC, above which it again increases. The sound speed of a water-air mixture depends 
on the pressure, the void or mass fraction of air, the frequency of the sound wave, and, if surface tension 
effects are included, on bubble radius. The admixture of small volume fractions of air causes a dramatic 
lowering of the sound speed by nearly 3 orders of magnitude. The sound speeds of the pure liquid and gas 
end-members are nearly independent of pressure, but the sound speed of a mixture is highly dependent on 
pressure. Calculated values for water-air mixtures are in good agreement with measured values. The 
sound speed in a single-component two-phase system, such as a water-steam mixture, depends on whether 
or not equilibrium between the phases on the saturation curve is maintained. Heat and mass transfer 
which occur when equilibrium is maintained cause the sound speed to be much lower than under non- 
equilibrium conditions in which heat and mass transfer are absent. The sound speed in a water-steam 
mixture may be as low as I m s -x 

INTRODUCTION 

The presence of gas or vapor bubbles in a liquid dramati- 
cally reduces the sound speed in the liquid [Mallock, 1910; 
Karplus, 1958, 196 l; Barclay et al., 1969; Mc William and Dug- 
gins, 1969]. in particular, the sound speed is much lower in a 
liquid-gas mixture than in either the gas or the liquid com- 
ponents. For example, it is about 1440-1480 m s -• in water 
and about 340 m s-• in air, but in an air-water mixture falls to 
about 20 m s -• [McWilliam and Duggins, 1969]. Even very 
small concentrations of gas dramatically reduce the sound 
speed: 1% by volume of air in water lowers the velocity by 95% 
to 100 m s -• [McWilliam and Duggins, 1969]. This dramatic 
phenomenon occurs because the two-phase system has the 
density of a liquid but the compressibility of a gas. The sound 
speed is even less in a water-steam mixture than in a water-air 
mixture, as low as a few meters per second [Barclay et al., 
1969]. The liquid-gas and liquid-vapor cases differ because of 
mass transfer and latent heat exchanges which may accom- 
pany passage of a sound wave in a liquid-vapor system but 
which are absent in a liquid-gas system. 

There are numerous geologic situations in which the sound 
speed properties of two-phase liquid-gas systems may be im- 
portant. On the surface of the earth at ambient pressure and 
temperature the propagation of acoustic signals through bod- 
ies of water depends on air content [Carstensen and Foldy, 
1947; Hsieh and Piesset, 1961; Grouse and Brown, 1964; Laird 
and Kendig, 1952; MacPherson, 1957]. White [1976] has sug- 
gested that gas bubbles which come out of solution in connate 
water during dilatation may cause P wave decreases prior to 
earthquakes. In geothermal areas, hot water and admixed 
gases may be present to fairly great depths in the crust. Re- 
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centiy, 'hot spot' seismic techniques have been developed to 
locate geothermal energy sources. A detailed model for the 
sound speed of water and magma, both of which may contain 
vapor phases, is required for proper inversion of seismic data 
for use of these techniques. Volatile elements and compounds 
(CO:, H:O, and S) are thought to be present in the lower crust 
and mantle in numerous possible forms [Irving and Wyllie, 
1973]: as free vapors [Wyllie and Huang, 1975; Eggler, 1976], 
as vapor dissolved in silicate magma [Green, 1972; Eggler, 
1976], in crystalline compounds [Newton and Sharp, 1975; 
Eggler, 1976], as interstitial immiscible liquids [McGetchin et 
al., 1973], and as proxying complexes or structurally bound 
complexes. Knowledge of the sound speed of these possible 
forms is required to test for their presence bY seismic methods. 
However, perhaps the most dramatic manifestation of the 
effect of sound speed in liquid-gas systems is the control which 
the sound speed exerts on fluid flow during volcanic and geyser 
eruptions. The role of two-phase flow in volcanic eruptions has 
been developed qualitatively by Bennett [1971, 1974]. His con- 
siderations of flow processes in two-phase systems lead to 
different conclusions about mechanisms of vesiculation and 

volcanic ash formation than are arrived at from petrographic 
considerations [Verhoogen, 1951; McBirney, 1963; McBirney 
and Murase, 1970]. Models of eruption mechanics of vol- 
canoes [McGetchin, 1974; Sanford et al., 1975] and geysers 
[Kieffer, 1975] show a strong dependence of the eruption mani- 
festations on the sound speed of the fluid in the column. For 
example, the height to which a geyser rises during an eruption 
depends strongly on the sound speed of the fluid in the geyser 
conduit. Since the sound speed depends on the temperature 
and condition of the water in the conduit, it is possible to infer 
the conditions of the geyser fluid from observations of its• 
surface behavior [Kieffer, 1975, also manuscript in prepara- 
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tion, 1977]. It is apparent that much remains to be learned 
about the relationship between flow during eruptions and the 
properties of material during the flow. The calculations pres- 
ented here of sound speed in a two-phase medium represent 
the initial phase of an attempt to develop a quantitative model 
for volcanic eruption phenomena and to relate the thermody- 
namic parameters of water-steam and magma-gas systems to 
the flow parameters observed during an eruption. 

Although only a few theories for sound speed in liquid-gas 
mixtures exist, they are more abundant than the extremely 
sparse experimental data. Much of the theory was developed 
in studies of containment of water-moderated nuclear reac- 

tors. Itis the purpose of this paper to review and synthesize the 
concepts required for calculations of the sound speed in liquid- 
gas and liquid-vapor mixtures and to examine the effect of 
volatile content on the sound speed for water-air and water- 
steam systems. This work is being extended to magma-gas 
mixtures. 

EQUATIONS OF STATE AND SOUND SPEEDS 
OF WATER, AIR, AND STEAM 

A simplified phase diagram of water and its saturation curve 
are shown in Figure 1. Because of the great volume differences 
between the liquid and vapor pfiases and because of the critical 
phenomenon it is difficult to express the equation of state of 
water in analytical form over a wide range of pressures and 
temperatures (e.g., see discussions by Burnham et al. [1969] 
and Helgeson and Kirkham [1974]). Because of these com- 
plexities the sound speed of water and water-gas mixtures 
cannot be calculated at all pressures and temperatures from a 
single equation of state. Therefore in this paper several differ- 
ent expressions for the equation of state of the water, air, and 
steam components are used, each of which is an appropriate 
and relatively simple expression for the pressure and temper- 
ature conditions for which it is used. 

1. For liquid water at 25øC an adiabatic equation of state 
is used: 

• = P•A exp [(P - PA)/K] (1) 

where p• is the density of the liqud phase, P•A is the density of 
the liquid phase in a reference state (1.0 gcm -• at 1 bar), P is 
the pressure, Pn is a reference pressure (1 bar), and K is the 

bulk modulus of water (2.2 X 106 bars). The sound speed 
appropriate to this expression is 

c = (K/o)'/•' (2) 

2. For Water on the saturation curve and to pressures of 8 
kbar and temperatures between 25 ø and 900øC, internally 
consistent tabulated data of Helgeson and Kirkham [1974] are 
used. The tabulated isothermal cornpressibilities •r were con- 
verted to adiabatic compressibilities •s, and the sound speed 
was calculated from c = (Ksp) -•/•'. 

3. For water on the saturation curve an equation of state 
of the form P(T) is required by the theory developed in this 
paper. Two expressions are used [Keenan et al., 1969; Helgeson 
and Kirkham, 1974, p. 1102]: 

Ps,t = Pc exp 10-Sr(tc - t) •%•x F•(0.65 - 0.01t) •-x (3a) 
In this equaV_on, Pc is the critical pressure (220.38 bars), T is 
the temperature (in degrees,Kelvin), r is 1000/T, t is the 
temperature in degrees Celsius, tc is the critical tempera- 
ture (374.136øC), and the Ft are coeffiCien{s used: F• = 
-741.9242, F•. = -29.7210, Fa = - 11.5529, F• = -0.8686, F5 
= 0.1094, F6 = 0.4400, F7 = 0.2521, and Fa = 0.0522. The 
second, and simpler, assumption is that 

Paat '- A T a exp (- AH/R T) (3b) 

(A common assumption is that a = 0.) This simpler form is 
commonly used for vaporization curves and is directly related 
to the Clausius-Clapeyron equation with the simplifying as- 
sumptions that the gas phase obeys the perfect gas law, the 
volume of the gas phase is much greater than that of the fiquid 
phase, and the heat of vaporization is constant. For water the 
coefficient A is 2.6 X 10 • dyn cm -•', and the ratio AH/R is 
4.6 X 10 a øK. 

4. For steam an ideal gas equation of state is used: 

PV* = const = Gst (4) 

where Gst = ToRo/Mpo •-•, To is a reference temperature 
(100øC at I bar), V is the volume, Ro is the gas constant (8.32 
X 107 ergs øC -• mol-X), M is the molecular weight (18.02 for 
steam), •o is the density in the reference state (0.96 g cm-a), 
and 3' is the isehtropic exponent (1.31 for steam). For an ideal 
gas, 

c = (7RT) '/•' (5) 

where R = Ro/M. 
5. For air an ideal gas equation of state is used: 

PV* = const = G•tr (6) 

where G•tr = ToRo/Mpo TM, M = 28.98 for air, and 3' = 1.40 
for an adiabatic process. 

To the extent that air and steam are represented as perfect 
gases with 3' independent of temperature, the sound speed 
varies directly with the square root of the absolute temperature 
(Figure 2). The sound speed of a perfect gas is independent of 
pressure for a fixed temperature. Measured data for'air show a 
glight dependence on pressure [Hilsenrath et al., 1955], but this 
dependence can be ignored here. Because the specific gas con- 
stant R depends on the molecular weight, the sound speed of 
steam is higher than that of air (c •: M-•/2). 

The behavior of the sound speed of water is much more 
complex and depends on both pressure and temperature (Fig- 
ure 2). Values of sound speed calculated from the static com- 
pressibility data increase systematically with pressure but be- 
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cause of the anomalous compressibility are a complicated 
function of temperature. The high-pressure and high-temper- 
ature values for water obtained from the static compressibility 
data are systematically 5-10% lower than those obtained ex- 
perimentally from dynamic ultrasonic experiments [Smith and 
Lawson, 1954] but show the same trend. The sound speed 
initially increases with temperature in the range 25ø-100øC. A 
maximum value is attained near 100øC, and with further tem- 
perature increase the sound speed decreases rapidly. The max- 
imum in sound speed is always attained at temperatures some- 
what larger than the minimum in compressibility. (Compare 
Figure 2 of this work with Figure 7 of Helgeson and Kirkham 
[1974].) Sound speeds obtained from the compressibility data 
show that the temperature at which the maximum is attained 
increases with increasing pressure. The direction in which this 
maximum moves when temperature is increased has been the 
subject of controversy. Experimental results are contradictory. 
The most recent, and apparently most reliable, data of Smith 
and Lawson [ 1954] show the same trend as the static data, but 
earlier data [Holton, 1951] show the opposite trend: the tem- 
perature at which the maximum is attained decreases with 
increasing pressure. 

Besides these low-temperature inflection points there are 
high-temperature inflections in the velocities at 0.5 and 1 kbar. 
The minima in the 0.5- and 1-kbar sound velocity curves 
correspond to minima in 0.5- and 1-kbar compressibility 
curves of Helgeson and Kirkham [ 1974, p. 1112]. There do not 
appear to be any experimental high-pressure high-temperature 
ultrasonic data to compare with the calculated curves. 

SOUND SPEED IN A Two-COMPONENT SYSTEM 

In this section the word 'gas' refers to a gas phase of differ- 
ent composition than the liquid phase. The most obvious 
geologic systems involving water-gas mixtures are at low pres- 
sure and low temperature, e.g., surface water systems with 
admixed air bubbles or shallow crustal water with admixed 

gas. In order to avoid tedious algebraic complexities (asso- 
ciated with the water equation of state) which do not provide 
much additional insight, the general properties of the sound 
speed in such systems are illustrated by considering a water-air 
system at 25øC and pressures from 1 to 500 bars. 

The first quantitative analysis of the effect of gas bubbles on 
the sound speed in a liquid was published by Mallock [1910] in 
an investigation of the damping of sound by frothy liquids. A 
more elegant calculation has been given by McWilliam and 
Duggins [1969], and their treatment is followed here. The 
assumptions inherent in their model are as follows. (1) The li- 
quid and gas phases are in equilibrium, and there is negligible 
mass transfer between the phases owing to gas becoming dis- 
solved or liquefied; (2) There is no slip between the liquid and 
gas phases; (3) The wavelength of the sound wave is much 
larger than the average dimension of nonuniformity of the 
mixture; and (4) The gas is compressible and obeys the perfect 
gas law (equation (6)), and the liquid is elastic with a constant 
bulk modulus. 

Two cases are considered: 

1. The gas bubbles are sufficiently large that surface ten- 
sion effects can be neglected. 

2. The gas bubbles are small, so that surface tension is 
appreciable. It is assumed that the bubbles are spherical and of 
uniform size and that classical surface tension theory applies. 

Although case 1 is a limiting case of 2, it is instructive to 
consider it first and separately in order to illustrate the depen- 
dence of sound speed on pressure and vapor fraction. 

Case 1: surface tension effects neglected. In the absence of 
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Fig. 2. Sound speed of the pure phases discussed in this paper, 
water, steam, and air. Heavy curves for water were calculated from 
compressibility and volume data tabulated by Helgeson and Kirkham 
[1974]. Isothermal compressibilities were converted to adiabatic com- 
pressibilities by using their tabulated thermal expansion and specific 
heat data. Dotted curves of measured sound speeds of water [Smith 
and Lawson, 1954] are shown for comparison. Data for air are from 
Hilsenrath et al. [1955], and data for steam are from Hodgroan et al. 
[1958, p. 2320]. 

surface tension (i.e., with the assumption that the bubbles have 
radii greater than • 10 -4 cm) the pressure within the gas bub- 
bles Pc in a liquid is the same as the pressure in the liquid PL: 

Pc = PL ---- P (7) 

As given by (1) and (6), the densities of the liquid o•. and gas 
oc, respectively, are given by 

p•. = P•.A exp [(P- PA)/K] (8) 

and 

Po = (P/Ga,r) x/'r (9) 

The density p of a two-phase mixture which has gas mass 
fraction r/ = Mc/M•. is given implicitly by :• 

(1 + rt)/p - (rt/pc) + (1/pL) (10) 

The void fraction x is simply related to the mass fraction r/ 
through 

x = (1 + pc/rlpr) -• (11) 

Substitution for p•. and pc in terms of P gives the adiabatic 
equation of state of the mixture: 

110L A air -•- exp A -- (12) p = (1 + TI)pL A p•/'r K 

from which the sound speed c = (dP/dp)X/2 is 

C = TIPLA + exp K [( 1 + r/)p 

TIPLA air 1 PA- 
ß -'yp('r+xl/, + •exp ' K (13) 
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Fig. 3. Calculated dependence of (a) adiabatic and (b) isothermal sound speed of water-air mixture on volume content of 
gas and on pressure. Surface tension is neglected. 

Values of the sound speed according to this model are 
shown in Figures 3 and 4, where the sound speed is plotted 
against void fraction and mass fraction, respectively. Consider 
first only Figure 3a, which shows the dependence of the adia- 
batic sound speed c = (PP/Pp)s 1/ø' on a void fraction. The 
most dramatic effect of the admixture of small-volume frac- 

tions of air is the lowering of the sound speed; e.g., at 1-bar 
pressure with one part in 104 by volume of air the sound speed 
is lowered from that of pure water, 1470 ms-', to 900 m 
s-X.The decrease is most dramatic at low pressures. At 1-bar 
pressure a minimum value of the sound velocity is attained at 
void fraction x = 0.5. At higher pressures the minimum is 
shifted to larger values of x, and at 500-bar pressure the 
minimum vanishes, and the sound speed decreases monoto- 
nically to that of pure air. At very large values of the void 
fraction (x > 0.9) the sound speed approaches that of the gas. 
The sound speed of the mixture is highly pressure dependent, 
whereas the sound speeds of the pure end-members are inde- 
pendent of pressure. 

The variation of sound speed with mass fraction is shown in 
Figure 4 on a semilogarithmic graph to emphasize the magni- 
tude of the effect for small mass fractions of air. Consider first 

the dotted curves, which show the adiabatic sound speed. At 1- 
bar pressure, 1 ppm air causes the sound speed to drop to one 
quarter of the value for pure water. At higher pressures, larger 
mass fractions of air are required to cause the same decrease. 
The minimum value attained at 1 bar is 24 m s -x. 

Measured data [Karplus, 1958] are compared with calcu- 
lated values in Figure 5. At mass fraction r/ = 10 -5 the sound 
speed is approximately 100 m s -x, and at mass fraction r/ = 
10 -3 it decreases to 24 m s -x. There is a definite dependence of 
sound speed on frequency (considered below), but in general 
the data confirm the theoretical prediction of a large decrease 
with admixture of gas into the liquid. 

The propagation of a sound wave through a two-phase 
liquid-gas mixture may be an isothermal rather than an adia- 
batic process. Heat may be conducted between the gas and 
liquid phases, and because of the large heat capacity of water 

the temperature variation within the water may be small 
enough to be ignored [Karplus, 1958]. The sound speed of the 
mixture may therefore depend on the frequency or, equiva- 
lently, the period of the sound waves. If the period of the 
waves is less than the time in which heat can be conducted 

from the gas bubbles into or away from the surrounding 
liquid, the compressions and rarefactions accompanying the 
passage of the sound wave will be adiabatic, and the behavior 
of the gas will be given by the adiabatic polytropic exponent (? 
= 1.4 for air). If, however, the period of the sound waves is 
greater than the time required for conductive heat flow from 
the bubbles into the liquid, the process will be nearly isother- 
mal, and the behavior of the gas will be given by the isothermal 
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Fig. 4. Calculated dependence of sound speed of water-air mixture 
on mass fraction of gas and on pressure, plotted on semilogarithmic 
paper to show the effect of small volume fractions of air. Surface 
tension is neglected. Solid curves indicate isothermal sound speed, and 
dotted curves indicate adiabatic sound speed. Inset region at bottom is 
shown enlarged in Figure 5. 
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polytropic exponent (7 = 1 for air). Correspondingly, the 
isothermal bulk modulus for the liquid should be used. 

The isothermal sound speed of a two-phase mixture de- 
creases with the admixture of small amounts of air, as does the 
adiabatic sound speed (Figure 3b and Figure 4; solid curves). 
However, the sound speed of air compressed isothermally is 
less than that of air compressed adiabatically by the factor 
7•/•', so that isothermal sound speeds of a two-phase mixture 
are lower than adiabatic sound speeds. The assumption of 
isothermal propagation must break down at large void frac- 
tions of air, since propagation in pure air must be adiabatic. 
For this reason the isothermal sound speed curves shown in 
Figure 3b are dashed for large void fractions. 

The frequency at which thermal conductivity effects may 
become significant can be estimated as follows. A character- 
istic time constant for thermal cooling of small spheres is t = 
0.05D•'/K, where D is the diameter of the sphere and K is its 
thermal diffusivity (see Karplus, 1961, p. H-1 or Carslaw and 
Jaeger, 1959, chapter 9). For a 0.1-mm sphere of air with 
diffusivity 0.187 cm •' s -z [Carslaw and Jaeger, 1959, p. 497] the 
characteristic time is 2.5 X l0 -5 s. The reciprocal of this time 
constant gives a value of frequency below which the isothermal 
approximation should be approached and above which the 
adiabatic approximation should be approached. For air bub- 
bles of diameter 0.1 mm the characteristic frequency for con- 
ductive heat transfer is 40,000 Hz. Karplus [1958, p. l l] ob- 
tained experimental values of sound speeds in water-air 
mixtures which had bubbles of this diameter. The data were 

measured at frequencies from 250 to 1750 Hz and the bubble 
mass fractions from 1.2 X 10 -5 to 2.4 X l0 -8. All of the data 

were obtained at frequencies low in comparison to the charac- 
teristic frequency of 40,000 Hz. The lowest frequency data lie 
near the calculated isothermal curve (Figure 5), supporting the 
idea that low-frequency sound propagation in a water-air sys- 
tem is an isothermal process. There is an increase in the sound 
speed with increasing frequency, as would be expected from 
the above discussion, but the adiabatic curve is approached 
(and even exceeded by a few data points) at frequencies much 
less than the calculated value of 40,000 Hz. Karplus himself 
attributed the frequency dependence to the presence of a deter- 
gent in the experimental mixture, but his experiments designed 
to test this hypothesis were inconclusive. Thus although the 

frequency dependence of the sound speed due to this effect has 
not been experimentally proven, it is important to keep in 
mind that at low frequencies the sound speed of a water-air 
mixture appears to be isothermal and that the sound speed of a 
two-phase mixture is sensitive to frequency. Entirely different 
results should be expected in laboratory experiments at, say, 1 
MHz and field experiments at, say, 1-10 Hz. 

The variation of sound speed with void fraction is given in 
Figures 3a and 3b because void fraction is the natural variable 
of mixing theory and previous investigators generally have 
followed this convention. For many engineering purposes it is 
preferable to specify mass fraction as a measure of gas content, 
rather than void fraction, because mass fraction is invariant 
with surface tension and pressure [McWilliam and Duggins, 
1969, p. 105]. There are many geologic situations in which it 
is also preferable to specify mass fraction. One such situation 
is the passage of a gas-liquid mixture up a geyser conduit or a 
volcanic neck. During the expansion of the mixture the void 
fraction may vary greatly as the fluid rises, but the mass 
fraction will not if gas is neither condensing nor dissolving. In 
the remaining calculations, mass fraction will be specified. 

In the following section the effect of small bubbles which 
have appreciable surface tension is examined. M cWilliam and 
Duggins developed this model for the specific case of isother- 
mal compression. Generalization to the case of adiabatic com- 
pression requires considerable algebraic complexity which is 
not warranted at this time because of the paucity of experi- 
mental data. 

Case 2: surface tension effects considered. When the surface 
tension becomes significant, the pressure in a gas bubble ex- 
ceeds the pressure in the surrounding liquid: 

Pa: Pt, + (2c/r) (14) 

where r is the bubble radius. For the case of isothermal com- 

pression of the gas bubbles the same procedure used in the 
previous section gives the following sound velocity [McWil- 
liarn and Duggins, 1969, p. 104]: ' 

O.Ol = 
z 
_ 

0.001 • ' ''"'•' ' ' '•"•'• • • •f• 
lo-e lO-? io-6 Io-5 

Bubble Radius (cm) 

Fig. 6. Density of air in bubbles in water mixture as a function of 
bubble radius and pressure. 
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in which 

• = 2a/r 

(1 +r/) 2_.•.a + p 
7 - p:rlG r 

b = 32mlaa/3m 

• = 71rig 

0 - ! - exp [(PA -- PL)/K][(2a/r) + PL]• 
Kp•ArIG 

(16) 

X =(0- 1)/rig 

A value of 72.2 dyn cm- x was used for the surface tension of an 
air-water interface. 

The density of the air depends on the bubble size as well as 
on the pressure, as is shown in Figure 6. The gas density is 
insensitive to radius if the bubbles are large and becomes equal 
to the value obtained in the absence of surface tension. The gas 
density increases because of surface tension as the bubble size 
decreases. At radii of !-5 X l0 -7 cm (10-50 *) the gas density 
would become as large as the liquid density; presumably at 
smaller radii, bubbles are unstable. 

When surface tension is taken into account, both pressure 
and bubble size affect the sound speed of a two-phase mixture, 
as is shown in Figure 7: Consider first the case r• = 10- •, shown 
in the upper left of this figure. At 1-bar pressure the sound 
speed is close to that of the pure liquid if the bubble radius is 
smaller than about 3 X l0 -8 cm (3 /[). The sound speed 
decreases rapidly in the range 3 X 10 -8 to about l0 -6 cm. It is 
nearly constant, equal to the value obtained in the model in 
which surface tension is ignored, for bubble radii greater than 
about l0 -6 cm. With increasing pressure the decrease in sound 
speed occurs over approximately the same range of bubble 
sizes, but the magnitude of the drop is smaller. 

Three distinct regions of behavior are recognizable: (1) a 
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Fig. 8. Temperature-entropy diagram for H•.O (data from Keenan 
et al. [1969]). The thermodynamic paths which illustrate the effect of 
adiabatic compression and decompression on the mixture [after 
Davies, 1965] are discussed in the text. Vertical scale of paths is 
exaggerated. Thin lines extending into the single phase regions from A, 
F, and I and from E, H, and M are constant pressure lines. 

region at small bubble radii where the sound speed is approxi- 
mately independent of both bubble size and pressure, (2) a 
region at intermediate bubble radii where the sound speed 
depends sensitively on both pressure and bubble radius, and 
(3) a region at larger bubble radii where the sound speed is 
independent of bubble radius but sensitive to pressure. 

For smaller mass fractions (r• = 10 -2, 10 -3, and l0 -4 in 
Figure 7) these regions shift in a systematic manner. The 
region at small bubble radius where the sound speed is inde- 
pendent of both pressure and bubble size is enlarged. The 
region where both effects are important moves progressively to 
larger bubble radii With decreasing mass fraction. Finally, the 
magnitude of the sound speed drop decreases with decreasing 
mass fraction. 

SOUND SPEED OF SINGLE-COMPONENT TwO-PHASE SYSTEM 

General considerations. Calculation of the sound speed of a 
two-component two-phase system is an easy procedure if adia- 
batic equation of state data are available, because pressure and 
temperature may be considered to be independent variables in 
such a syste m. Calculation of the sound speed in a one-com- 
ponent two-phase system is a more difficult matter because 
pressure and temperature are not independent variables but 
are related bY the Gibbs equation for equilibrium between the 
phases.. 

The physical processes which occur during propagation of a 
sound wave through a two-phase mixture are much more 
complex than for a single-phase mixture [e.g., Davies, 1965]. 
Consider the temperature-entropy (TS) diagram of water 
shown in Figure 8. A mixture of saturated water and steam is 
represented as point G, where the chord ratio FG/FH is the 
mass fraction r• of steam in the mixture. Isentropic pressure 
changes, such as the compressions and rarefactions which 
occur during propagation of a sound wave, are represented by 
movement up and down the constant entropy line CGK. If 
steam and water remain in thermal equilibrium on the satura- 
tion line, there must be mass transfer between the phases, since 
the fraction of steam in the mixture changes (BC/BD • 
FG/FH • IK/IM). This requires that condensation or evapo- 
ration take place. 

An isentropic pressure increase from P to P + /xp corre- 
sponds to movement of the mixture from G to C in the temper- 
ature-entropy diagram of Figure 8. The pressure increase in 
the water phase corresponds to movement from F to A' as a 
result, the water phase becomes subcooled. The pressure in- 
crease in the steam phase corresponds to movement from H tO 
E as the steam becomes superheated. The induced temperature 
difference between the steam and the water leads to heat 

transfer from the superheated steam to the subcooled water. If 
the original composition of the mixture G lies to the right of 
the peak of the two-phase loop, as is shown in Figure 8, some 
water will be vaporized, and the mass fraction of steam in the 
mixture will increase during adiabatic compression (BC/BD > 
FG/FH). (This phenomenon occurs during meteorological 
conditions when saturated air is adiabatically compressed dur- 
ing descent and a decrease in relative humidity is induced.) If 
the original composition lies to the left of the top of the two- 
phase loop (assumed to be symmetric), some steam will con- 
dense, and the mass fraction of steam in the mixture will 
decrease during adiabatic compression. Thus by heat and mass 
transfer both the water and the steam are restored to the 

saturation line, the water by the path A to B, and the steam by 
the path E to D. 

An isentropic pressure reduction from P to P - /xp corre- 
sponds to movement from G to K in the TS diagram. The 
pressure decrease in the water phase corresponds to movement 
from F tøR; as a result, the water becomes supe{heated above 
its saturation temperature, point I (IR is a continuation of a 
constant pressure line from the water region). The pressure 
decrease in the steam phase alone corresponds to movement 
from H to N in the TS diagram, and the steam becomes 
subcooled or supersaturated with respect to its saturation tem- 
perature, point M (MN is a continuation of a constant pres- 
sure line from the superheated region). If the original compo- 
sition of the mixture G lies to the right of the peak of the 
two-phase loop, some vapor will condense to form a mixture 
of saturated water and steam (point L), and thus the subcooled 
steam may move toward the stable state M. The mass fractlon 
of steam in such a mixture will decrease (IK/iM < FG/FH) (a 
direct application of this phenomenon is found in the Wilson 
9loud chamber). If the original composition lies to the left of 
the two-phase loop (assumed to be symmetric), cavitation, and 
some vaporization, of the subcooled liquid will be the domi- 
nant process, and the mass fraction of steam in the mixture 
will increase. Cavitation of the water creates a local mixture 

with the composition of point J, and the superheated water at 
point R thus moves toward the stable state I, a mixture of 
water and steam. 

In general, condensation and evaporation cannot take place 
instantaneously, since the transportation of heat and mass can 
only occur at a finite speed. The time lag in flashing water to 
steam or condensing steam to water is important in determin- 
ing the degree of equilibrium obtained in the sound wave. 
Since condensation and evaporation generally•prOceed at dif- 
ferent rates, it should be expected that compression and rare- 
faction waves behav e differently. Experiments have confirmed 
that finite amplitude rarefaction waves in water-steam mix- 
tures have lower velocities than compression waves because 
rarefaction waves tend to maintain continUOus thermal equi- 
librium [Barclay et al., 1969]. 

In summary, a mixture of liquid and its vapor may respond 
to pressure disturbances by (1) nonequilibrium response (in 
which there is no mass transfer between the phases; i.e., the 
liquid and the vapor are independently isentropic, and both 
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giving 

OV 

e,s d-• (19) 
In the limiting case of P • O, dx/dP becomes V s - Vt. The 
system derivative (0V/0P)s,,, can be written as the sum of 
component derivatives (1 - •)(OVt/•P) + •(PVs/PP). Hence 
(18) becomes 

(o.) (20) K) 
The derivative (0rt/0P)s can be determined from the first law 
of thermodynamics: 

bQ = bE + PiJV (21) 

For an adiabatic change, bQ = 0. The differential internal 
energy in this equation is more meaningfully expressed in 
terms of the enthalpy of reaction 

bH = bE+ PbV + VbP 

so the first law becomes 

depart from the saturation line) and (2) equilibrium response 
(in which there is mass transfer between the phases and the 
liquid and vapor remain on the saturation line). Real systems 
will probably show behavior between these two extremes. 

Case 1: nonequilibrium response. If there is no mass trans- 
fer between the liquid and vapor phases, the sound speed will 
be given by the theory of the previous section. Surface tension 
effects should not be important for a liquid-vapor system on 
the saturation curve, and the sound speed is therefore inde- 
pendent of bubble size. The adiabatic sound speed in this case 
is given by (13). This would most nearly be the case for high- 
frequency waves; the case of low-frequency nonequilibrium 
propagation, which would be more nearly isothermal, is not 
considered here because mass transfer effects may become 
important (case 2, discussed below). 

The sound speed of a water-steam system in which the 
phases are not in thermodynamic equilibrium is shown in 
Figure 9a. At 1-bar pressure (100øC) the sound speed de- 
creases steadily with the addition of small amounts of steam to 
24 m s -• at rt = 10 -8 and then increases to 446 m s -s, the sound 
speed of pure steam at 100øC. At higher pressures the decrease 
is less pronounced, and the minimum value is attained at 
higher mass fractions of steam. 

Case 2: equilibrium response. Equilibrium between the liq- 
uid and vapor phases can be maintained if mass transfer 
between the liquid and vapor phases occurs in a time short in 
comparison to the acoustic wave period. The sound speed can 
be calculated from the equation of state of the system in the 
form V(P, S, x) [Davies, 1965]. A differential change in vol- 
ume of the two-phase system is given by 

For adiabatic propagation of sound, dS = 0: 

S,• P,S 
(18) 

bH- VbP = 0 

For the liquid-vapor mixture, 

H =(1 -rt)Ht +rtHs = Ht +rtL 

where L is the latent heat of transformation. For this, 

bH = bHt + nbL + Lbrt 

and substituting into (22) gives 

bHt + nbL + Lbn - VbP = 0 

Rearranging terms gives 

L&/ = VbP - bHt - 

o• 

•s • s=L L 

Finally, then, the sound speed obtained from 

c: = - •(dV/dP )s 

-- C 2 

(22) 

(23) 

(24) 

:, 

(25) 

(26a) 

(26b) 

(27) 

The four derivatives required in this equation can be obtained 
from tables of thermodynamic data if the data exist for the 
liquid-gas systems in question. For this study, data were ob- 
tained from Keenan et al. [1969]. 

The sound speed of a water-steam mixture in which ther- 
modynamic equilibrium between the phases is maintained is 
shown in Figure 9b. The behavior is quite different from the 
nonequiiibrium case shown in Figure 9a. At 1-bar pressure the 
velocity drops discontinuously to 1 m s -• with the addition of 
a finite amount of steam an'd remains at this low value for mass 

fractions rt less than 10 -4. With the formation of larger 

(28) 
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amounts of steam in the mixture the velocity rises slowly 
toward, but does not attain, the value for the pure steam 
phase. At higher pressures the velocity decrease is less dra- 
matic but is maintained to higher mass fractions. The most 
pronounced effect of equilibrium behavior in contrast to non- 
equilibrium behavior is the magnitude of the decrease: at 1-bar 
pressure it drops to approximately 1 m s -1, much lower than 
the minimum velocity of 24 m s -• obtained for the nonequilib- 
rium case. 

The sound speed of a two-phase liquid-vapor mixture does 
not smoothly approach the component velocities at r/= 0 and 
r/ -- 1, as may be seen by writing (28) in the form [Davies, 
1965, p. 5]: 

(29) 

The term in brackets represents the difference between the 
nonequilibrium case and the equilibrium case. The nonequi- 
librium case correctly converges to the liquid and gas sound 
velocities at r/ = 0 and r/ = 1. Since the term in brackets does 
not reduce to zero at n = 0 and rt = 1, there are mathematical 
discontinuities with the formation of an infinitesimally small 
amount of vapor in liquid or droplets in vapor. 

Approximations to (29) can be made for very small (7 << 1) 
and very large (1 - r/<< 1) mass fractions of gas [Landau and 
Lifshitz, 1959, p. 249]. For r/ << 1 (a liquid containing some 
bubbles of vapor) the velocity of sound is 

c - LMPVt/RT(C•,,T) '/: (30) 

This velocity is very small (approximately 1 m s -• for water). 
For (1 - r/) << I (a vapor containing some droplets of liquid) 
the velocity of sound is given by 

1 M 2 C•,sT 
•'"RT L t L: (31) 

This velocity is lower than the velocity of sound in the pure gas 
(390 m s -• for steam with droplets of water in comparison to 
446 m s -• for pure water vapor). The discontinuity in sound 
speed of a vapor to which a few droplets of liquid have been 
added is not nearly as pronounced as that of a liquid in which 
a few bubbles have formed. 

Bennett et al. [1964] obtained similar results with a quite 
different model and assumptions. In an analysis of the speed 
with which 'vaporization waves' (expansion waves across 
which a liquid is converted to a vapor) propagate into ex- 
ploding wires they analyzed the problem of the sound speed of 
a liquid-vapor system. The sound speed of a wave moving into 
the liquid at the saturation curve (corresponding to r/ << 1 
above) is 

112 c = (1/p)(dP/dT)(T/(Cv•T) ) (32) 

At the saturation curve the pressure P is just the vapor pres- 
sure P(T), independent of density. Bennett et al. [1964, p. 84] 
used (3b) for the vapor pressure: 

Psat = A T • exp (- •H/R T) (33) 

When the derivative of this equation of state is combined with 
(32), the sound speed is found to be 

1 (T•x/: I. AAHexp(-AH/RT) 1 (34) c=-- •-•v•/ RT: 
This equation gives values in good agreement with those of the 
Landau and Lifshitz [1959] approximation (equation (30)) and 
the rigorous equation (28). 

CONCLUSIONS 

The theory for sound speed in two-phase fluids demon- 
strates that several variables in addition to the equation of 
state may affect the sound speed of such systems. The sound 
speed of the simplest system considered, water-air, depends on 
the amount of gas present, on the pressure and temperature, 
on the frequency of the sound wave, and, for small bubbles, on 
bubble radius. Calculated sound speeds are in good agreement 
with the sparse data which exist. The sound speed of a liquid 
initially in equilibrium with its vapor depends on whether or 
not the equilibrium is maintained during passage of the sound 
wave. In order to maintain equilibrium, steam must condense, 
and bubbles must nucleate or increase in mass to transfer mass 

and energy from one phase to the other. The sound speed 
depends on the amount of gas present and on the pressure on 
the saturation curve but not on bubble size because surface 

tension effects should be unimportant in saturated liquids. The 
sound speed of a liquid-vapor system is appreciably less than 
the sound speed of a liquid-gas system if heat and mass trans- 
fer occur between the phases to maintain thermal equilibrium. 
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