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Introduction
Chapter 1

There are many different fields of research in this world. When we learn about a new research
area, what is the best part? Of course, there is no right answer to this question. However, if
I were to venture a guess, I would say that the new perspective changes how to see the world
before. For example, let’s say you learn about geology. You will understand that you will
be able to read the history of millions of years from geological clues in a field that you have
never seen before. You will realize that observing phenomena is not simple, and what you can
decipher depends on your understanding. In fact, the act of observation is not so simple, and
in itself reflects how the observer understands the phenomenon with a model. This lecture
covered a branch of geophysics. How does geophysics expand our horizons?

Physics is the study of symmetry and universality. In geophysics, we observe some geo-
physical data about the earth and read information from it. Symmetry and universality are
very important criteria for interpreting a phenomenon. Let us consider a situation which data
seems to be too complex. Even in such a case, once we recognize the governing process,
previously unseen symmetries may unexpectedly emerge. If you understand how to manage
to understand them, such symmetry may often appear sparkling like a kaleidoscope. But if
you don’t understand the background theory, they just look like a mess.

Let us imagine a scene where the wind blows and makes waves on the surface of a river. If
you have some background in the physics of water waves, you can see the dispersion of the
waves and observe how it changes depending on the depth of the water. If there is a current
in the river, you can also observe the effect of the current. Suppose there is a duck swimming
in the river (Fig. 1.1). First of all, you would notice that the duck is swimming faster than the
speed of the wave, so it is creating a shock wave. You may also notice that the group velocity
behind the duck differs from the phase velocity. Then you also notice the angle made by the
wedge-shaped wave behind the duck. Thus, if you have some background in physics, you will
be able to decipher some of the information about wind and water depth. The purpose of this
lecture is to learn such a physics background to interpret wave information.

In this chapter, I will first explain what seismology is a discipline that deals with and then
discuss the importance of understanding seismic wave propagation in this context. This is
followed by an overview of what is covered in seismic wave theory.
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.
Fig. 1.1 Waves made by ducks. Such waves are generally called wake waves, and the
ripples are described by the Kelvin pattern.

§1.1 How to interpret waveforms
of recorded seismograms

In this section, we review the basics of seismic wave propagation briefly.
Seismologynote 1) does not cover research on earthquakes but also seismic wave propagations

of the Earth generally. Roughly speaking, we can categorize research areas of seismology into
two. The former is how geophysical phenomena excite seismic waves. From the observed
seismic records, seismologists infer the physical processes such as earthquakes, volcanic
activities, and land slidesnote 2). The latter one is a seismic exploration of the Earth’s interior.

When we observe a natural phenomenon, we assume a model implicitly. For example,
most seismologists had been interested in "earthquake" data. Of course, "earthquake" itself
as faulting is an important topic, and the "earthquake" also illuminate Earth’s interior. Seis-
mologists, therefore, recognized seismic wave field excited by an "earthquake" as a signal,
whereas they recognized seismic wave field excited by other phenomena –including ocean
swell, human activities, and so on– as noise. In spite of the explicit or implicit model, we

note 1) The term of "seismology" originated from ancient Greek (𝜎𝜖 𝜄𝜎𝜇𝑜́𝜍 (seism𝑜́s, "earthquake") and 𝜆𝑜𝛾 𝜄𝛼
(-log𝑖a, "study of").

note 2) Of course, other approaches such as geology and geochemistry are also crucial for understanding earthquakes
and volcanic activities.
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call a phenomenon, which is described by the model, a signal, and vice versa. "Noise" for
somebody could be a "signal" for others.

Earthquake
( Firework)

Mr. A
1k

m

3s

time

Fig. 1.2 Schematic figure of seismic wave field at an instance excited by an earthquake.
We can see the concentric shape, which shows the propagation.

Here we consider a simple example. When we enjoyed fireworks on a summer night, we
realized the lag time between the light and the sound. The lag is originated from the difference
in propagation speeds between light and sound (Figure 1.2). This situation is similar to the
seismic wave field of P- and S- waves: P- wave corresponds to light, and S-wave corresponds
to sound. One can infer the distance between the observer and the firework by the lag. This
principle is similar to locating a hypocenter of an earthquake from seismic data. When we
know the distance in advance, we can infer sound velocity from the measured lag time, as in
the seismic exploration of the Earth’s interior.

For seismological investigations, the theoretical background of seismic wave propagation is
indispensable. In this lecture, I introduce a framework for how we interpret seismic wavefields.
note 3).

Last ten years, numerical methods for calculating seismic wavefields in a 3-D heterogeneous
medium have become popular. They a feasible for estimating the 3-D seismic velocity structure
and understanding the source processed of earthquakes. For interpreting the calculated
seismic wave field, the background of seismic wave propagation based on physics and analytic
representation is important.

note 3) Research on seismic wave propagation had been developed as an application of applied mathematics. For
example, Jeffreys, who is famous for reference 1-D structure (Jeffreys and Bullen), is also known as a great
applied mathematician (e.g. WKBJ approximation and Bayesian statistics.). Although a classic textbook of
seismology focuses on techniques using complex analysis, this lecture emphasizes a more intuitive manner.
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§1.2 Outline of this lecture
In this lecture, first, let us review a brief summary of governing equations of elastic media.

Next, I introduce Green’s function for understanding wave propagations in an infinite medium.
Then, I will explain the representation theorem as a generalization of the Huygens principle.
They give us a framework for understanding wave propagation.

As a first step for understanding wave propagations in a realistic medium, let us review the
effects of a free surface. Reflections and refractions are keys to understanding. In general, a
propagation problem in a semi-infinite medium is known as Lamb’s problem. Under some
situations, analytic formulations are obtained. Rayleigh wave is originated effects of the free
surface.

Next, let us consider wave propagations in a two-layer medium. For understanding, re-
flections, and refractions on the inside boundary are given. Based on the framework with
knowledge of the reflections and refractions, let us interpret wave propagation of the direct
wave, head wave, and reflection wave in a two-layer medium. Love waves can exist in a
two-layer medium, although they can’t in a semi-infinite medium.

The last chapter describes ray theory, which is a framework for interpreting wave propaga-
tions in a multi-layer medium. The theory originated from optics, and the mathematical and
physical treatments were already established firmly.

§1.2 Textbook
Dahlen and Tromp (1998)(2) and Aki and Richards (2009)(1) are standard textbooks in the

area of seismic wave propagations. The mathematical approaches in an intuitive manner are
given in Snieder and Wijk (2015).(3) Saito (2009)(4) is also a good textbook in this area but in
Japanese.

§1.3 Bibliography
[1] K. Aki and P.G. Richards. Quantitative Seismology. Univ Science Books, 2nd edition,

2009.
[2] F.A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press,

Princeton, 1998.
[3] Roel Snieder and Kasper van Wijk. A Guided Tour of Mathematical Methods for the

Physical Sciences. Cambridge University Press, 3 edition, 2015.
[4] 斎藤正徳. 地震波動論. 東京大学出版会, 2009.
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Equations for the
elastic Earth

Chapter 2

In this chapter, I summarize governing equations of an elastic medium. For further under-
standing, please read Theoretical global seismology.(1)

§2.1 Lagrangian and Eulerian
variables

Here we consider that a particle at 𝒙 in a continuum at time 0. note 1) move with time as
𝒓 (𝒙, 𝑡). A Lagrangian variable describes a quantity with time by the initial location of 𝒙, and
an Eulerian variable describes a quantity with time by a fixed frame as 𝒓 (𝒓, 𝑡). An Eulerian
quantity 𝑞𝐸 can be related to the Lagrange quantity 𝑞𝐿 as,

𝑞𝐿 (𝒙, 𝑡) = 𝑞𝐸 (𝒓 (𝒙, 𝑡), 𝑡). (2.1)

Time derivatives of the equation lead to

𝜕𝑡𝑞
𝐿 = 𝜕𝑡𝑞

𝐸 + 𝒖𝐸 · ∇𝒓𝑞
𝐸 ≡ 𝐷𝑡𝑞𝐸 , (2.2)

where 𝒖𝐸 is Euler velocity. Material derivative 𝐷𝑡 represents the Lagrangian time derivative
of a particle in the Eulerian form. Later, 𝜕𝑡 is an abbreviation of 𝜕

𝜕𝑡 . A substitution of 𝒓 (𝒙, 𝑡)
to equation 3.2 as an Eulerian variable shows that equation 3.1 is equivalent to equation 3.2.

𝐸𝜕𝑡𝒖
𝐿 = 𝜕𝑡𝒖

𝐸 + 𝒖𝐸 · ∇𝒓𝒖
𝐸 ≡ 𝐷𝑡𝑞𝐸 , (2.3)

When we consider seismic records, the Lagrangian description is more natural because the
seismometer is pinned at a surface point.

Later we consider an infinitesimal deformation in a framework of linear elasticity. Let us
consider small deformation 𝒔 as,

𝒓 (𝒙, 𝑡) = 𝒙 + 𝒔(𝒙, 𝑡). (2.4)

note 1) A bold symbol like 𝒙 show a vector in this textbook.
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𝑞𝐸 (𝒓, 𝑡) = 𝑞0 (𝒓) + 𝑞𝐸1 (𝒓, 𝑡),
𝑞𝐿 (𝒙, 𝑡) = 𝑞0 (𝒙) + 𝑞𝐿1 (𝒙, 𝑡). (2.5)

Because 𝒔 is small, the perturbations e of Eulerian variable 𝑞𝐸1𝑎𝑛𝑑𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛𝑜𝑛𝑒𝑞𝐿1 can
be written by,

𝑞𝐸1 (𝒓, 𝑡) = 𝑞𝐸1 (𝒙, 𝑡), 𝑞𝐿1 (𝒙, 𝑡) = 𝑞𝐿1 (𝒓, 𝑡). (2.6)

We note that the perturbations do not depend on 𝒙, 𝒓.
Next, let us consider a relation between an Eulerian preterition 𝑞𝐸1 and a Lagrangian one

𝑞𝐿1. When we consider first-order perturbation 𝑞𝐿1 can be written bynote 2)

𝑞𝐿1 (𝒙, 𝑡) = 𝑞𝐸1 (𝒓, 𝑡) + 𝒔 · ∇𝒓𝑞
0. (2.7)

This equation is the integration of material derivatives. In a framework of linear elasticity,
because we can neglect the second term of the right-hand side, we do not need to distinguish
Eulerian from Lagrangian. However, because stress and density have initial values (∇𝑞0),
the spatial derivatives cause the discrepancy between the Eulerian and Lagrangian. When
we must consider initial stress (e.g. hydrostatic pressure owing to gravity), we must need
attention to the difference between the descriptions. In §7.1, we will take such an example.

§2.2 Strain
In order to measure the deformation of an elastic body, let us trace two particles (𝒓,𝒓 + 𝑑𝒓).

At 𝑡 = 0, they are located at 𝒙,𝒙 + 𝑑𝒙. 𝑑𝒓 can be related to 𝑑𝒙 as,

𝑑𝒓 = ∇𝒙𝒓 · 𝑑𝒙 = (𝑰 + ∇𝒙𝒔) · 𝑑𝒙. (2.8)

The change of the distance between the particles is estimated to be

|𝑑𝒓 |2 − |𝑑𝒙 |2 = 2(𝑑𝒙 · 𝑬𝐿 · 𝑑𝒙). (2.9)

Here 𝑬𝐿 is Green-Lagrange strain defined by

𝑬𝐿 ≡ 1
2
[∇𝒔 + (∇𝒔)𝑇 − (∇𝒔)𝑇∇𝒔] = 1

2

(
𝜕𝑠 𝑗

𝜕𝑥𝑖
+ 𝜕𝑠𝑖
𝜕𝑥 𝑗

+ 𝜕𝑠𝑙
𝜕𝑥𝑖

𝜕𝑠𝑙
𝜕𝑥 𝑗

)
. (2.10)

When 𝒔 is enough small to neglect the second-order term, the stress can be simplified as,

𝑬𝐿 =
1
2
[∇𝒔 + (∇𝒔)𝑇 ] = 1

2

(
𝜕𝑠 𝑗

𝜕𝑥𝑖
+ 𝜕𝑠𝑖
𝜕𝑥 𝑗

)
(2.11)

Here, following Einstein’s summation convention, we calculate the summation of the term
over all the values of the index. Although strain tensor 𝑬𝐿 is a Lagrangian variable, we do
not need it from Eulerian strain when the infinitesimal deformation. The strain tensor has 6
independent components because of the symmetry.

note 2) See §3.2 of Dahlen and Tromp (1998)(1) in details.
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Problem 2.1� �
When we consider a rigid rotation with an infinitesimal angle in 2-D, calculate the strain
tensor up to the first order. You can find second-order terms, although rigid rotation
should not cause strain from a physical point of view. Next, show Green-Lagrange strain
of an infinitesimal rigid rotation vanishes completely.� �

2.2.1 Strain in an arbitrary coordinate

Here we consider linear strain in an arbitrary coordinate. A displacement vector 𝒔 can be
represented by orthogonal unit vectors as

𝒔 =
∑
𝑗

𝑠 𝑗 𝒙̂ 𝑗 . (2.12)

The gradient of the vector is written by

∇ ≡ 𝒙̂𝑖
𝜕

𝜕𝑥𝑖
. (2.13)

The insertion of the definition of 𝒔 leads to the following equation:

∇𝒔 =
∑
𝑖

𝒙̂𝑖
𝜕𝒔

𝜕𝑥𝑖
=

∑
𝑖

𝒙̂𝑖

[∑
𝑗

𝜕𝑠 𝑗

𝜕𝑥𝑖
𝒙̂ 𝑗 +

∑
𝑗

𝑠 𝑗
𝜕𝒙̂ 𝑗

𝜕𝑥𝑖

]
. (2.14)

The second order tensor 𝑬 can be represented by basis vectors and the corresponding com-
ponents as

𝑬 =
∑
𝑖 𝑗

𝑇𝑖 𝑗 𝒙̂𝑖 𝒙̂ 𝑗 . (2.15)

The complication originates from the partial derivatives of the basis vectors.

Strain in a cylindrical coordinate (𝑟, 𝜑, 𝑧)

Here we consider strain in a cylindrical coordinate (𝑟, 𝜑, 𝑧). Partial derivatives of the unit
vector 𝒓 are given by, 𝒓, 𝝋̂, 𝒛 です。

𝜕𝒓

𝜕𝑟
= 0,

𝜕𝒓

𝜕𝜑
= 𝝋̂,

𝜕𝒓

𝜕𝑧
= 0

𝜕𝝋̂

𝜕𝑟
= 0,

𝜕𝝋̂

𝜕𝜑
= −𝒓, 𝜕𝝋̂

𝜕𝑧
= 0

𝜕𝒛

𝜕𝑟
= 0,

𝜕𝒛

𝜕𝜑
= 0,

𝜕𝒛

𝜕𝑧
= 0. (2.16)

The definition of the strain with the above equations leads to the following representation of
the corresponding components as:

𝐸𝑟𝑟 =
𝜕𝑠𝑟
𝜕𝑟

, 𝐸𝜑𝜑 =
1
𝑟

𝜕𝑠𝜑

𝜕𝜑
+ 𝑠𝑟
𝑟
, 𝐸𝑧𝑧 =

𝜕𝑠𝑧
𝜕𝑧

2𝐸𝜑𝑧 =
𝜕𝑠𝑧
𝜕𝜑

+
𝜕𝑠𝜑

𝜕𝑧
, 𝐸𝑧𝑟 =

𝜕𝑠𝑟
𝜕𝑧

+ 𝜕𝑠𝑧
𝜕𝑟

, (2.17)

2𝐸𝑟 𝜑 = 𝑟
𝜕

𝜕𝑟

( 𝑠𝜑
𝑟

)
+ 1
𝑟

𝜕𝑠𝑟
𝜕𝜑

.
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Problem 2.3� �
Derive the strain in a cylindrical coordinate shown above.� �

Strain in a spherical coordinate (𝑟, 𝜃, 𝜑)

Here only the results are shown as,

𝐸𝑟𝑟 =
𝜕𝑠𝑟
𝜕𝑟

, 𝐸𝜃 𝜃 =
1
𝑟

𝜕𝑠𝜃
𝜕𝜃

+ 𝑠𝑟
𝑟
, 𝐸𝜑𝜑 =

1
𝑟 sin 𝜃

(
𝜕𝑠𝜑

𝜕𝜑
+ 𝑠𝜃 cos 𝜃

)
+ 𝑠𝑟
𝑟

2𝐸𝜃𝜑 =
1
𝑟

𝜕𝑠𝜑

𝜕𝜃
+ 1
𝑟 sin 𝜃

(
𝜕𝑠𝜃
𝜕𝜑

− 𝑠𝜑 cos 𝜃
)
, 2𝐸𝜑𝑟 =

1
𝑟 sin 𝜃

𝜕𝑠𝑟
𝜕𝜑

+ 𝑟 𝜕
𝜕𝑟

( 𝑠𝜑
𝑟

)
(2.18)

2𝐸𝑟 𝜃 = 𝑟
𝜕

𝜕𝑟

( 𝑠𝜃
𝑟

)
+ 1
𝑟

𝜕𝑠𝑟
𝜕𝜃

.

§2.3 Stress and traction

dΣ

𝒏̂
Let us consider a small surface 𝑑Σ in a continuum

with the normal vector 𝒏̂. Traction is defined by
force 𝒇 per unit area acting on 𝑑Σ. The traction is
parallel to the normal vector 𝒏̂, and the positive sign
is defined by force from the positive side according to
the normal vector to the negative side. Stress𝑻𝐸note 3)

is defined by
𝒇 = 𝑑Σ𝒏̂ · 𝑻𝐸 . (2.19)

Traction 𝒇12 of medium 1 from medium 2 is 𝒇21.

§2.4 Conservation of angular mo-
mentum

Conservation of angular momentum requires that the stress tensor is symmetric as𝑇𝑖 𝑗 = 𝑇𝑗𝑖 .
note 4) as : 𝑇𝑖 𝑗 = 𝑇𝑗𝑖
This symmetry is held in the absence of microscopic spin interaction.(2)

note 3) This stress is Cauchy stress in a precise manner. There are two other definitions (see Dahlen and Tromp 1998
in details).

note 4) This symmetry is derived from the equilibrium of the moment of an infinitesimal volume.
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Problem 2.3� �
Let us consider angular momentum along the 𝑧 axis of an infinitesimal cube with a side
of 𝜖 . Show 𝑇𝑥𝑦 = 𝑇𝑦𝑥 from the conservation of angular momentum in cases:

1. 𝑇𝑥𝑦 and 𝑇𝑦𝑥 are constant, and other 𝑇𝑖 𝑗 are zero.
2. (Optional)

𝑇𝑥𝑦 (𝒙) = 𝑇𝑥𝑦 (𝒙0) + 𝑇𝑥𝑦 , 𝑥(𝒙0)𝛿𝑥 + 𝑇𝑥𝑦 , 𝑦(𝒙0)𝛿𝑦, (2.20)
𝑇𝑦𝑥 (𝒙) = 𝑇𝑦𝑥 (𝒙0) + 𝑇𝑦𝑥 , 𝑥(𝒙0)𝛿𝑥 + 𝑇𝑦𝑥 , 𝑦(𝒙0)𝛿𝑦, (2.21)

and other 𝑇𝑖 𝑗 = 0.

𝜔𝑧

𝑥 𝑦

𝒙0

� �
§2.5 Conservation of mass

Let us consider governing equations conservation of mass first. This equation becomes
important for buoyancy force.

In general, conservation of mass can be written as,

𝜕𝑡 𝜌
𝐸 = −∇ · (𝜌𝐸𝒖𝐸), (2.22)

where 𝒖𝐸 is Eulerian particle velocity.
Here we consider the first-order perturbation of the density as

𝜌𝐸 = 𝜌0 + 𝜌𝐸1. (2.23)

Time integration of the first order perturbation leads to

𝜌𝐸1 = −∇ · (𝜌0𝒔). (2.24)

The right-hand term represents the divergence of the mass flux, whereas the left one does the
change of the mass. On the other hand, the Lagrangian form can be written by

𝜌𝐿1 = −𝜌0∇ · (𝒔). (2.25)

Because we focused on a particle, the right-hand side shows corresponding expansion or
deflation.

We note the discrepancy that the Lagrangian density perturbation 𝜌𝐿1 is 𝜌𝐿1 = −𝜌0∇ · 𝒔.
If ∇𝜌0 is 0, they are the same. However, they are different in general. When the wavelength
of a seismic wave is much smaller than the typical scale of density change, we can neglect the
difference.
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§2.6 Equation of motions: conser-
vation of momentum

Let us consider a temporal change a volume 𝑉 𝑡 .

𝑑

𝑑𝑡

∫
𝑉 𝑡
𝜌𝐸𝒖𝐸𝑑𝑉 𝑡 = F , (2.26)

The external force 𝑭 can be written by surface force acting on 𝜕𝑉 𝑡 and body force acting
throughout the volume, such as gravity and electromagnetic force as

F = F𝑠 + F𝑏 =
∫
𝜕𝑉 𝑡

( 𝒏̂𝑡 · 𝑻𝐸)𝑑Σ𝑡 +
∫
𝑉 𝑡
𝜌𝐸 𝒈𝐸𝑑𝑉 𝑡 . (2.27)

Σ

F𝑏
With a help of Gauss’s divergence theorem, they can be written by

𝜌𝐸𝐷𝑡𝒖
𝐸 = ∇𝒓 · 𝑻𝐸 − 𝜌𝐸∇𝜙𝐸1. (2.28)

If we can neglect initial stress up to the first order, it can be simplified as

𝜌0𝜕
2
𝑡 𝒔 = ∇ · 𝑻𝐸1. (2.29)

When we consider hydrostatic pressure, the equation of motions up to the first order can be
written as

𝜌0𝜕
2
𝑡 𝒔 = ∇ · 𝑻𝐸 − 𝜌𝐸∇𝜙𝐸 , (2.30)

where 𝜙𝐸 is gravity potential note 5). When we consider gravity, we must consider hydrostatic
pressure, which sustains the gravity force. Deviatoric stress 𝑇𝐸1 from the hydrostatic pressure
can be written by,

𝑇𝐸𝑖 𝑗 = −𝑝0𝛿𝑖 𝑗 + 𝑇𝐸1
𝑖 𝑗 . (2.31)

Because the hydrostatic pressure sustains the gravity force, the pressure should satisfy the
relation as,

∇𝑝0 = −𝜌0∇𝜙0. (2.32)

They lead to
𝜌0𝜕

2
𝑡 𝒔 = ∇ · 𝑻𝐸1 − ∇[𝜌0𝒔 · ∇𝜙0] − 𝜌0∇𝜙𝐸1 − 𝜌𝐸1∇𝜙0. (2.33)

note 5) Here we consider gravity, but we neglect perturbation of gravity (an effect of self-gravitation). This approxi-
mation is known as the Cowling approximation in the field of astrophysics. In particular, this approximation
is effective for a stratified atmosphere. The effect of self-gravitation becomes important in a period longer
than 3000 s as described later.
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§2.7 Conservation of energy
Total energy (kinetic energy + elastic energy)𝑈, and energy flux 𝑲 can be written by

𝑈 =
1
2

[
𝜌0𝜕𝑡 𝒔 · 𝜕𝑡 𝒔 +

∑
𝑖 𝑗

𝐸𝑖 𝑗𝑇𝑖 𝑗

]
, (2.34)

𝑲 = −𝑻 · 𝜕𝑡 𝒔. (2.35)

Conservation of energy can be written as,

𝜕𝑡𝑈 + ∇ · 𝑲 = 0. (2.36)

Elastic energy𝑊 can be defined by

𝑊 =
1
2

∑
𝑖 𝑗

𝐸𝑖 𝑗𝑇𝑖 𝑗 . (2.37)

Stress can be represented by the spatial gradient of𝑊 as

𝑇𝑖 𝑗 =
𝜕𝑊

𝜕𝐸𝑖 𝑗
. (2.38)

We will discuss the condition for the existence of elastic energy𝑊 as a potential energy below.
Work per unit volume 𝛿𝑅 done by the internal stress 𝑇𝑖 𝑗 can be given(3) by

𝛿𝑅 = −𝑇𝑖 𝑗𝛿𝐸𝑖 𝑗 . (2.39)

For deformation from 𝐸 = 0 to 𝐸 = Δ𝐸 of a given infinitesimal volume, the corresponding
work Δ𝑅 by the internal stress is given by

Δ𝑅 = −
∫ Δ𝐸

0

∑
𝑖 𝑗

𝑇𝑖 𝑗𝑑𝐸𝑖 𝑗 , (2.40)

which depends on the history of the deformation. Then we deform it again from 𝐸 = Δ𝐸 to
𝐸 = 0. Elastic deformation requiresΔ𝑅 = 0 because the internal stress should be conservative.
The conservative property requires the following condition

𝜕𝑇𝑖 𝑗

𝜕𝐸𝑘𝑙
=
𝜕𝑇𝑘𝑙
𝜕𝐸𝑖 𝑗

. (2.41)

In the 2-D case (in this case, the number of the independent stress/strain components is 3), this
condition can be interpreted as vortex-free (Problem 2.6). Consequently, the elastic energy
𝑊 can be interpreted as a scalar potential.

Problem 2.4� �
Derive

𝑑𝑅 = −𝑇𝑖 𝑗𝑑𝐸𝑖 𝑗 . (2.42)

(Hint: Estimate work done by the internal force 𝐹𝑗 = 𝜕𝑖𝑇𝑖 𝑗 .)� �
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Problem 2.5� �

∆Exx

∆Eyy

Exx

Eyy

(ii)

(i)

(i)

(ii)

(a) (b)

Fig. 2.1

(1)
Let us consider works for
two different deformation
paths for a simple 2-D
case. A rectangular area
is deformed according to
the strain of 𝐸𝑥𝑥 = Δ𝐸𝑥𝑥 ,
𝐸𝑦𝑦 = Δ𝐸𝑦𝑦 with two dif-
ferent paths: (i) first de-
form the area with Δ𝐸𝑦𝑦 ,
then deform it with Δ𝐸𝑥𝑥 .
(ii) First deform it with Δ𝐸𝑥𝑥 , then deform it with Δ𝐸𝑦𝑦 as shown in Figure 2.1. Estimate
works of Δ𝑅 (𝑖) and Δ𝑅 (𝑖𝑖) for the cases (i) and (ii), respectively.
When the stress satisfies the condition of a conservative force, Δ𝑅 (𝑖) = Δ𝑅 (𝑖𝑖) is required.
Show the following condition of elastic modulus, which satisfies the above requirement.

𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗 , (2.43)� �
Problem 2.6� �

In order to understand the relation (equation 2.41):

𝜕𝑇𝑖 𝑗

𝜕𝐸𝑘𝑙
=
𝜕𝑇𝑘𝑙
𝜕𝐸𝑖 𝑗

, (2.44)

let us consider the 2-D case (3 independent variables of stress/strain components). Derive
the condition for the case that works 𝛿𝑅, which is work done by the internal stress, does
not depend on deformation paths.
This condition guarantees that the spatial gradient of a scalar potential 𝑊 can represent
stress 𝑇 . Thus elastic energy𝑊 can be interpreted as the scalar potential for stress T.� �
§2.8 Constitution equation: Hooke’s

law
In order to determine elastic deformation, we must know the constitutional relation be-

tween stress 𝑻𝐿1 and strain 𝐸𝐿1. For understanding the deformation of an arbitrary volume,
Lagrangian description is essential. First, we, however, do not take care of the difference
between Lagrangian and Eulerian without consideration of initial stress. For a linear elastic
medium, a relation between stress and strain can be represented by Hook’s law as

𝑇𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝐸𝑘𝑙 , (2.45)

where 𝐶𝑖 𝑗𝑘𝑙 is elastic tensor with 81 components. The symmetry of stress and strain tensor
leads to the symmetry of 𝐶𝑖 𝑗𝑘𝑙 as 𝐶𝑖 𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 , 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑖 𝑗𝑙𝑘 . 1st law of thermodynamics



2.8. CONSTITUTION EQUATION: HOOKE’S LAW

19

requires 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗note 6)。As a result, the elastic tensor has 21 independent components.
When an elastic medium is isotropic, the elastic tensor can be simplified using Lamé

constants 𝜆, 𝜇 as,
𝐶𝑖 𝑗𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘). (2.46)

Here we derive Hooke’s law for the isotropic medium explicitly for further sections.

𝑇𝑥𝑥 = (𝜆 + 2𝜇)𝐸𝑥𝑥 + 𝜆(𝐸𝑦𝑦 + 𝐸𝑧𝑧), 𝑇𝑥𝑦 = 2𝜇𝐸𝑥𝑦 , 𝐸𝑥𝑧 = 2𝜇𝐸𝑥𝑧
𝑇𝑦𝑦 = (𝜆 + 2𝜇)𝐸𝑦𝑦 + 𝜆(𝐸𝑥𝑥 + 𝐸𝑧𝑧), 𝑇𝑦𝑧 = 2𝜇𝐸𝑦𝑧
𝑇𝑧𝑧 = (𝜆 + 2𝜇)𝐸𝑧𝑧 + 𝜆(𝐸𝑥𝑥 + 𝐸𝑦𝑦). (2.47)

The are several different definitions of the elastic constant, although they are identical in
theory. Young modulus 𝐸 and Poisson’s ratio 𝜈 are also major, and they can be related to
Lamé’s constant as

𝐸 =
𝜇(3𝜆 + 2𝜇)
𝜆 + 𝜇 , 𝜈 =

𝜆

2(𝜆 + 𝜇) . (2.48)

Here we consider the effects of hydrostatic pressure on elastic medium. In the deep Earth,
the hydrostatic pressure reaches several hundred GPa, the initial pressure is not negligible in
some cases. In order to trace the temporal change of an infinitesimal volume𝑉 𝑡 , the variables
are described by Lagrangian as,

𝑝𝐿 = 𝑝0 + 𝑝𝐿1. (2.49)

The constitutional relation can be written by

𝑝𝐿1 = −𝜆(𝒙)∇ · 𝒔. (2.50)

Eulerian equation of motions can be written by

𝑝𝐸1 = 𝒔 · ∇𝑝0 − 𝑝𝐿1. (2.51)

The initial hydrostatic pressure 𝑝0 should meet the following condition,

∇𝑝0 + 𝜌0𝒈 = 0. (2.52)

With the conservation of mass, we obtain the following equation,

𝜌0𝜕
2
𝑡 𝒔 = ∇𝑝𝐿1 + 𝜌0 [(∇ · 𝒔)𝒈 − ∇(𝒔 · 𝒈)] . (2.53)

With wrong descriptions by a mixture between Eulerian or Lagrangian, the buoyancy term
disappear. When we consider buoyancy owing to gravity, we must take care of the difference
between Eulerian and Lagrangian descriptions.

note 6) See a textbook of continuum mechanics in details.
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2.8.1 A microscopic model for Hook’s law

For a better understanding of P- and S-wave propagation in an elastic medium, let us
consider a simple mass-spring model. In particular, for S-wave propagation, "cross spring" is
important.

2.8.2 1-D case

km

xs i s i+1

Fig. 2.2 A 1-D mass-spring model.

Restoring force (stress) against
stress in an elastic medium causes seis-
mic wave propagations. First, let us
consider a 1-D case for simplicity. Fig-
ure 2.2 shows such an example that
masses (mass 𝑚) are connected with
each other by springs (spring constant 𝑘).

The equation of motions can be written by

𝑚
𝜕2𝑠

𝜕𝑡2
= 𝑘 (𝑠𝑖+1 − 2𝑠𝑖 + 𝑠𝑖−1). (2.54)

Because the right-hand side represents second order finite difference of 𝑠, in the limit of a
continuum, the equation becomes a wave equation as,

𝜌
𝜕2𝑠

𝜕𝑡2
= 𝜅

𝜕2𝑠

𝜕𝑥2 , (2.55)

where 𝜅 = 𝜌𝑐2. The wave propagates with a phase velocity of 𝑐.

2.8.3 2-D case: P and S waves

The P wave propagates faster than the S wave. The travel time difference is crucial for
locating a hypocenter of an earthquake (e.g. Omori formulanote 7). An early warning system
of a large earthquake forecasts the arrival of the large S wave using the faster P wave arrivals.
Why is the P wave faster than the S wave?

Let us consider a thought experiment described by Figure 2.3.

1. Put pressure on the surface of a thin sheet.
2. The thin sheet shrinks.
3. Align compressed thin sheets and decompressed thin sheets alternatively. The decom-

pression of a thin sheet causes the expansion as shown in this figure.
4. The thin sheets must be welded. To fit the boundaries, the thin sheets are accompanied

by shear deformation. To keep the boundary of thin sheets, P waves require shear
deformation. The deformation of the P wave in an elastic medium is composed of
volumetric deformation and shear deformation, which corresponds to the S wave. As
a result, the P wave is faster than the S wave.

note 7) You can find the paper(4) at http://hdl.handle.net/2261/32677.

http://hdl.handle.net/2261/32677
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(1) 弾性体を液体に浸し圧力 pをかける

(2)圧力の結果縮む

p

(3)P波と対応させるため、減圧している部分と交互に並べる。
    層の間にズレが生じる。

P
波
の
伝
搬
方
向

(4)境界を貼り付けると、ズレを解消するために shear の力がかかる。
      その分かたくなる。

Fig. 2.3 Deformation of the medium associated with P-wave propagation.

k sx,i

sy,i

m

平
面
波
の
伝
播
方
向

sx,i

s

s

x,i+1

x,i-1

Fig. 2.4 A 2-D mass-spring model.

Let us extend the 1-D mass-spring
model to a 2-D one. "Cross-springs" are
crucial for representing S-wave propaga-
tion in a 2-D case. Here we consider a
simple model as shown in Figure 2.4.

First, let us consider a pain wave prop-
agation of the S wave in the 𝑦 direction.
The displacement does not depend on 𝑥.
The 𝑖th mass is moved with displacement
𝑠𝑥𝑖 in the 𝑥 direction. The spring shown by
the thick line in the Figure exerts restoring
force 𝑇𝑆 to the mass 𝑚. 𝑇𝑆 can be written as,

𝑇𝑆𝑖 =
1
2
𝑘 (𝑠𝑥,𝑖+1 − 𝑠𝑥,𝑖). (2.56)

Because the lower spring also exerts restoring force to the mass, the total restoring force is
𝑇𝑆𝑖 − 𝑇𝑆𝑖−1. Then we obtain a discretized wave equation.

Next, let us consider P-wave propagation. The displacement does not depend on 𝑥. The 𝑖th
mass is moved with displacement 𝑠𝑦𝑖 in the 𝑦 direction. The spring shown by the thick line in
the Figure exerts restoring force 𝑇𝑃 to the mass 𝑚. 𝑇𝑃 in the 𝑥 direction can be written as,

𝑇𝑃𝑖 =
3
2
𝑘 (𝑠𝑦,𝑖+1 − 𝑠𝑦,𝑖). (2.57)

The total restoring force is 𝑇𝑃𝑖 − 𝑇𝑃𝑖−1. A comparison of equation 2.57 with equation 2.56



22

2. Equations for the elastic Earth

shows that the restoring force of the P wave is stronger than that of the S wave. This leads to
faster P-wave propagation than S-wave one.

Last, the relation of the mass-spring model to the Lamé constant is clarified as follows.
A model depicted in Figure 2.4 leads to 𝜆 = 𝜇 =

√
3/4𝑘 . In the case, S-wave 𝛽 speed is

determined by rigidity 𝜇 and density 𝜌, whereas P-wave velocity 𝑉𝑝) is related to both 𝜆 and
𝜇 as,

𝛼 =

√
𝜆 + 2𝜇
𝜌

𝛽 =
√
𝜇

𝜌
. (2.58)

For P-wave propagation, 𝜆 represents restoring force related to fluid pressure, whereas 𝜇
represents restoring force to suppress tangential motions.

Problem 2.7� �

k
sx

sy

m

Fig. 2.5 A simplified model.

Derive equation 2.56 and equation 2.57.
Hint: Because we consider a plain wave, rela-
tive motions depending on 𝑥 are negligible. For
a simple mode shown in Figure 2.5, calculate
restoring force to displacement 𝑠𝑥 and 𝑠𝑦 .

� �
§2.9 Boundary conditions

When we solve equations of motion, the boundary conditions are indispensable. Lagrangian
description of the boundary conditions is natural. However, we do not take care of the
difference when we do not consider initial stress.

2.9.1 Solid-solid boundaries such as Moho and 660 km
discontinuity

Discontinuity
Σ+ 𝒔+ 𝑻+

Σ− 𝒔− 𝑻−

Fig. 2.6 Schematic figure of a plane Σ+ and Σ−.

Let us consider plane Σ+ and Σ− which surround the boundary. The equilibrium of force
and the continuity of the displacement 𝒔 lead to the following boundary conditions:

Continuity of displacement : [𝒔]+− = 0.
Continuity of traction: [𝑻𝐿1 · 𝒏̂]+− = 0.
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2.9.2 Solid-fluid boundaries such as ocean floor and core-
mantle boundary

For solid-fluid boundaries, free slip condition in the horizontal direction is important.
The discontinuous property of displacement causes trapped modes along the boundary as
explained in later sectionsnote 8).

Continuity of displacement: [𝒔 · 𝒏̂]+− = 0. Horizontal slip to discontinuity is allowed.
Continuity of traction : [𝑻𝐿1 · 𝒏̂]+− = 𝒏̂ · [𝒏̂ · 𝑻𝐿1 · 𝒏̂]+− = 0. Note that shear stress in the fluid

vanishes.

2.9.3 Continuity of gravity potential for all boundaries

[𝜙𝐸1]+− = 0
[𝒏 · ∇𝜙𝐸1 + 4𝜋𝐺𝜌0𝒏 · 𝒔]+− = 0

§2.10 Comparison with terms of
the equation of motions

Let us estimate the order of each term of the equation of motions for 𝑢 = 𝑒𝑖 (𝑘𝑥−𝜔𝑡 , where
𝜔 is angular frequency, and 𝑘 is wavenumber.

Inertia: 𝜌𝜕2𝑠 −𝜌𝜔2𝑠

Elasticity: ∇ · 𝑻 𝑘2𝜅𝑠

Gravity: 𝜌𝑘𝑠𝑔

Table 2.1 Estimation of each term of the equation of motions.

Here 𝑔 is gravity acceleration, 𝜅 is a typical elastic constant (𝜌seismic-wave velocity2). A
comparison between the gravity term and the elasticity term is given by,

Gravity
Elasticity

∼ 𝜌𝑔

𝑘𝜅
. (2.59)

𝑇 ∼ 2𝜋seismic-wave velocity
𝑔

∼ 3000𝑠 (2.60)

The period corresponds to the gravest mode of the Earth. We do not need to consider the
gravity term in a period shorter than 100 s. For infra-gravity waves in the atmosphere, because
the sound velocity is 340 m/s, the gravity term becomes comparable to the compressibility
term for a period longer than 200 s.

note 8) When we need to consider hydrostatic pressure or initial stress, we must take care about the contribution
[Dahlen and Tromp, 1998].(1)
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CTAO (Canberra Australia)
2004 Sumatra-Andaman earthquake 
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Fig. 2.7 Coriolis splitting of the resonant peak of 0𝑆2 when the great Sumatra-Andaman
earthquake in 2004.

At periods longer than 1000 s, Coriolis force originating from Earth’s rotation is not
negligible. In such a case, seismic wave velocity depends on the propagation directionnote 9).
Figure 2.7 shows the splitting of resonant peaks of 0𝑆2 due to Coriolis force during when
2004 Sumatra–Andaman earthquake. The directivity breaks the reciprocity of elastic Green’s
function, which is explained in the following chapter (see Dahlen and Tromp 1998 for details).
Read Snieder et al. (2016)(5) for details of the Coriolis effects.

Problem 2.8� �
Based on a comparison of the Coriolis term and elastic restoration force, estimate the
period at which the Coriolis force becomes significant.� �

note 9) An example of the 1960 great Chilean earthquake can be found in The Feynman lectures on physics http:
//www.feynmanlectures.caltech.edu/I_51.html. We can imagine the atmosphere of Caltech in 1960’

http://www.feynmanlectures.caltech.edu/I_51.html
http://www.feynmanlectures.caltech.edu/I_51.html
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Green’s function and
representation theorem

Chapter 3

Green’s function is a useful tool when we consider seismic wavefield excited by an event. This
chapter explains a framework for interpreting seismic wavefields excited by various events,
such as earthquakes and volcanic eruptions, using the representation theorem, which can
be regarded as a natural extension of Huygens’s principle. First, an acoustic (scalar) wave
treatment is explained, then an elastic (vector) wave treatment is explained briefly.

§3.1 A solution of the wave equa-
tion in 1-D medium

First, let us consider the simplest case of a wave equation: 1-D wave equation. Here we
consider acoustic wave propagations. The elastic constant 𝜅 and density 𝜌 are homogeneous
for simplicity. Pressure fluctuation 𝑝 satisfies the following wave equation:

1
𝛼2
𝜕2𝑝(𝑥, 𝑡)
𝜕𝑡2

− 𝜕2𝑝

𝜕𝑥2 = 0, (3.1)

where 𝛼 is sound speed given by 𝛼 =
√
𝜅/𝜌.

For understanding, the wave equation is mapped into the time-frequency domain by Fourier
transform. The Fourier component 𝑃(𝑘, 𝜔) of the pressure fluctuation becomes a function of
wavenumber 𝑘 and the angular frequency 𝜔 as:(

𝜔2

𝛼2 − 𝑘2
)
𝑃(𝑘, 𝜔) = 0. (3.2)

Thus 𝑃 must satisfy a dispersion relation 𝜔2/𝛼2 − 𝑘2 = 0. Here we consider one Fourier
component 𝑃(𝑘, 𝜔)𝑒𝑖 (𝜔𝑡+𝑘𝑥) . Because the dispersion relation leads to 𝑘 = ±𝜔/𝛼, the The
Fourier component can be rewritten as 𝑃(𝑘, 𝜔)𝑒𝑖 (𝜔 (𝑡±𝑥/𝛼)) , which represents the propagation
toward the positive and negative directions of the 𝑥 axis, respectively.
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d’Alembert solution

Let us evaluate the behaviors of the solution more mathematically. With changes of
variables; 𝜉 = 𝑥 − 𝛼𝑡, 𝜂 = 𝑥 + 𝛼𝑡, the solution of the 1-D wave equation can be represented by
the arbitrary function 𝜙 and 𝜓 as,

𝑝(𝑥, 𝑡) = 𝜙(𝑥 − 𝛼𝑡) + 𝜓(𝑥 + 𝛼𝑡). (3.3)

The first term of the right-hand side represents the propagation toward the positive direction
along the 𝑥 axis, whereas the second term represents that toward the negative one.

Initial value problem

Let us consider how to solve the problem for the initial value at 𝑡 = 0 given by

𝑝(𝑥, 0) = 𝑝0 (𝑥), (3.4)
𝜕𝑝

𝜕𝑡

����
𝑡=0

= 𝑞0 (𝑥). (3.5)

By comparing the initial value with the d’Alembert solution as

𝑝0 = 𝜙(𝑥, 0) + 𝜓(𝑥, 0) (3.6)

𝑞0 = −𝛼
(
𝜕𝜙

𝜕𝑡
− 𝜕𝜓

𝜕𝑡

)
. (3.7)

Integrating equation 3.7 leads to the solution of 𝜙と 𝜓. By the insertion of 𝜙 and 𝜓, we obtain
the solution𝑝(𝑥, 𝑡) as,

𝑝(𝑥, 𝑡) = 1
2
[𝑝0 (𝑥 − 𝛼𝑡) + 𝑝0 (𝑥 + 𝛼𝑡)] +

∫ 𝑥+𝛼𝑡

𝑥−𝛼𝑡
𝑞0 (𝑥 ′)𝑑𝑥 ′. (3.8)

Problem 3.1

1. Derive equation 3.3.
2. When 𝑝 meets the initial condition at 𝑡 = 0 given by

𝑝(𝑥, 0) = 𝑒−
𝑥2
𝜎2 (3.9)

𝜕𝑝(𝑥, 0)
𝜕𝑥

= 0 (3.10)

solve and plot the solution.
3. When 𝑝 meets the initial condition at 𝑡 = 0 given by

𝑝(𝑥, 0) = 0, 𝑝𝑑𝑣𝑝𝑡 |𝑡=0 = 𝑒−
𝑥2
𝜎2 , (3.11)

solve and plot the solution.
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§3.2 Acoustic Green’s function
An external force can represent the excited waves when considering seismic waves caused

by geophysical phenomena such as earthquakes and volcanoes. In this case, we can evaluate
the excited wave motion by considering the impulse response (Green’s function) to the external
force and by convolving the spatiotemporal distribution of the external force. This section
first shows the features of Green’s function.

First, let us consider acoustic wave propagation for essential understanding. Equation of
motions and Hook’s law (𝜅∇·𝒔 = −𝑝) lead to a wave equation concerning pressure perturbation
𝑝(𝒙, 𝑡)as,

− ∇ · ∇𝑝(𝒙, 𝑡)
𝜌0 (𝒙)

+ 1
𝜅(𝒙)

𝜕2𝑝(𝒙, 𝑡)
𝜕𝑡2

= −∇ ·
(
𝒇 (𝒙, 𝑡)
𝜌0 (𝒙)

)
. (3.12)

Here we consider a Green’s function 𝑔(𝒙, 𝑡; 𝜉, 𝜏), which is an impulse response for impulsive
force 𝛿(𝒙 − 𝜉)𝛿(𝑡 − 𝜏)note 1) as

− ∇ · ∇𝑔(𝒙, 𝑡; 𝜉, 𝜏)
𝜌0 (𝒙)

+ 1
𝜅(𝒙)

𝜕2𝑔(𝒙, 𝑡; 𝜉, 𝜏)
𝜕𝑡2

= −𝛿(𝒙 − 𝜉)𝛿(𝑡 − 𝜏). (3.13)

Problem 3.2

Explain physical meaning of the external force term −𝛿(𝒙 − 𝝃) of equation 3.13
(divergence of the particle velocity ∇ · 𝒗).

If the boundary condition is time-independent, the Green’s function exhibits time invariance
as,

𝑔(𝒙, 𝑡; 𝜉, 𝜏) = 𝑔(𝒙, 𝑡 − 𝜏; 𝜉, 0). (3.14)

Therefore, the time difference 𝑡 − 𝜏 is enough variable to represent this problem.
Pressure field 𝑝(𝒙, 𝑡) can be represented by superposition of Green’s function (𝑔(𝒙, 𝑡 −

𝜏; 𝜉, 0)) as

𝑝(𝒙, 𝑡) =
∫
𝑉
𝑔(𝒙, 𝑡; 𝜉, 𝜏) − ∇ ·

(
𝒇

𝜌0

)
.𝑑𝑉 (𝜉)𝑑𝜏. (3.15)

note 1)

𝑓 (0) =
∫

𝑓 (𝑥) 𝛿 (𝑥)𝑑𝑥.

Therefore note that the dimension of the delta function is 1/m.
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Next, the representation of the equation in frequency domain is considered. 𝑃(𝜔, 𝒙) shows
Fourier transform of pressure 𝑝, and 𝜔 is angular frequencynote 2)

We do not consider hydrostatic pressure here.

∇ · ∇𝑃(𝒙, 𝜔)
𝜌0 (𝒙)

+ 𝜔2

𝜅(𝒙) 𝑃(𝒙, 𝜔) = 𝐹 (𝒙, 𝜔), (3.16)

where 𝐹 is Fourier transform of external force term ∇ ·
(
𝒇 (𝒙,𝑡)
𝜌0 (𝒙)

)
.

Green’s function in frequency domain satisfies the following equation,

∇ · ∇𝐺 (𝒙, 𝜉, 𝜔)
𝜌0 (𝒙)

+ 𝜔2

𝜅(𝒙)𝐺 (𝒙, 𝜉, 𝜔) = 𝛿(𝒙 − 𝜉), (3.17)

where 𝐺 (𝒙, 𝜉, 𝜔) is Green’s function in frequency domain. Then, pressure field 𝑃 excited
by an arbitrary force distribution 𝐹 can be represented by a convolution between Green’s
functions and the force distribution as,

𝑃 =
∫
𝑉
𝐺 (𝒙, 𝜉, 𝜔)𝐹 (𝜉, 𝜔)𝑑𝑉 (𝜉). (3.18)

§3.3 Green’s function in an infinite
homogeneous medium

To understand the behaviors of Green’s function, this section explains the explicit repre-
sentation of Green’s function. First, let us summarize the basics of the wave equation.

3.3.1 1-D wave equation

Let us consider a 1-D wave equation. This solution can be recognized as plane wave
propagation in a 3-D medium.

d’Alembert solution

With changes of variables 𝜉 = 𝑡 − 𝛼𝑥, and 𝜂 = 𝑡 + 𝛼𝑥, a solution of a 1-D wave equation
can be written as

𝑝(𝑧, 𝑡) = 𝑝0 (𝑡 − 𝑧/𝛼) + 𝑝1 (𝑡 + 𝑧/𝛼), (3.19)

where 𝑓 and 𝑔 are arbitrary functions. The first term of the right-hand side represents the
wave propagation toward the positive direction of the 𝑧 axis, and the second term represents
the negative direction.

note 2) Take care about definitions of the sign and the normalization of the Fourier transform because the definition
depends on the field. Fourier transform F and inverse Fourier transform F−1 are defined as

𝑈 (𝜔) = F(𝑢) ≡
∫ ∞

−∞
𝑢(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡,

𝑢(𝑡) = F−1 (𝑈) ≡ 1
2𝜋

∫ ∞

−∞
𝑈 ( 𝑓 )𝑒𝑖𝜔𝑡𝑑𝜔.

Details of the definition in this text are shown in the appendix 3.B.
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3.3.2 Derivations of Green’s function in a 1-D medium

For an infinite homogeneous medium, equation 3.17 can be simplified as,

1
𝜌0

𝜕2𝐺1𝐷

𝜕𝑧2
+ 𝜔

2

𝜅
𝐺1𝐷 = 𝛿(𝑧). (3.20)

Problem 3.3

1. Solve the equation except for 𝑧 = 0.
2. At 𝑧 = 0, the equation is singular because of the delta function. Integrate

equation 3.20 in a rage of −𝜖/2 <= 𝑧 <= 𝜖/2). Then derive the following
equation, [

𝜕𝐺1𝐷

𝜕𝑧

]+𝜖 /2
−𝜖 /2

= 𝜌0. (3.21)

Note that integration of Green’s function in the infinitesimal range is negligible
from equation 3.18.

3. By continuation of the two solutions at 𝑧 = 0, derive the following result of
1-D Green’s function as,

𝐺1𝐷 (𝑧, 𝜔) = 𝜌0𝑖

2𝑘
𝑒−𝑖𝑘 |𝑧 | . (3.22)

4. Inverse Fourier transform of 𝐺1𝐷 show

𝑔1𝐷 (𝑧, 𝑡) =
{

0 𝑡 < |𝑧 |/𝛼
− 𝛼

2 𝜌0 𝑡 >= |𝑧 |/𝛼.
(3.23)

5. Problem 3.1 (3) gave the initial velocity at 𝑡 = 0. Compare the solution to this
problem with the solution, and interpret the physical relation.

3.3.3 Derivations of Green’s function in a 2-D medium

Here we consider a cylindrical coordinate (𝑟, 𝜙) with origin at 𝒙𝒊.

1
𝜌0

1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝐺2𝐷

𝜕𝑟

)
+ 𝜔

2

𝜅
𝐺2𝐷 = 𝛿(𝒙 − 𝒙0). (3.24)

1. Except for 𝑟 = 0, a solution of equation 3.24can be represented by superposition of 0th
order Bessel function of the first kind 𝐽0 (𝑟) and 0th order Neumann function 𝑁0 (𝑟).

2. At 𝑟 = 0, the equation is singular. Then integrate equation 3.24 at an infinitesimal
circular area (𝐶) at around the origin. Using Gauss’s divergence theorem, show∫

𝐶

𝜕𝐺2𝐷

𝜕𝑟
𝑑𝑙 = 𝜌0. (3.25)

3. By continuation of the two solutions at the origin 𝑟 = 0 derive the following result of
2-D Green’s function as

𝐺2𝐷 = −𝑖 𝜌0

4
𝐻 (2)

0 (𝑘𝑟). (3.26)
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Location

time

Fig. 3.1 Propagation of 2-D Green’s function.

Here 𝐻 (2)
0 is Hankel’s function of the second kind.

4. In the time domain, the corresponding Green’s function can be written by,

𝑔2𝐷 (𝑟, 𝑡) = − 𝜌0

2𝜋
𝐻 (𝑡 − 𝑟/𝛼)√
𝑡2 − 𝑟2/𝛼2

, (3.27)

where 𝐻 is the Heaviside step function.

Problem 3.4

1. Show that Hankel function of the first kind can be approximated by a cylindrical
wave in far field.

2. Interpret distance dependence of the amplitude based on the conservation of
energy.

3. Show the amplitude of 2D Green’s function in time domain (equation 3.27) is
proportional to 1/

√
𝑟 if the distance 𝑟 is enough long.

3.3.4 Green’s function of a 3-D medium

This subsection explains Green’s function in a 3-D medium, which describes 3-D wave
propagation for the forcing 𝛿(𝒙)𝛿(𝑡).

− 1
𝜌0

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕𝑔

3𝐷

𝜕𝑟

)
+ 1
𝜅
𝑔3𝐷 𝜕2

𝜕𝑡2
= −𝛿(𝒙)𝛿(𝑡) (3.28)

To consider the amplitude, first, let us consider the d’Alembert solutionnote 3). With a change

note 3) In general, behaviors of solution of wave equations in even dimensions are quite different from those in odd
dimensions. The former is localized close to the wavefront, whereas the latter lasts for a long time.
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of the variable as 𝑝 = 𝑝/𝑟 , the solution is given by,

𝑝 =
𝑝0 (𝑡 − 𝑟/𝛼)

𝑟
+ 𝑝1 (𝑡 + 𝑟/𝛼)

𝑟
, (3.29)

which represents spherical waves outward and inward. The amplitude decays with 1/𝑟. The
distance-dependent is also given by the conservation of energy on the expanding (or shrinking)
wavefront.

Green’s function in a 3-D medium is given by

𝑔3𝐷 (𝑟, 𝑡) = − 𝜌0

4𝜋
𝛿(𝑡 − 𝑟/𝛼)

𝑟
. (3.30)

See Problem 3.5 for the derivation.

Problem 3.5

Here we consider a spherical coordinate (𝑟, 𝜃, 𝜙) with origin at 𝝃.

1
𝜌0

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕𝐺

3𝐷

𝜕𝑟

)
+ 𝜔

2

𝜅
𝐺3𝐷 = 𝛿(𝒙 − 𝝃) (3.31)

1. With a change of variable as 𝐺3𝐷 = 𝐺̄/𝑟 , rewrite the above equation.
2. Solve the equation except 𝑟 = 0.
3. At 𝑟 = 0, the solution is singular. Integrate equation 3.17 within an infinitesimal

sphere. Then show the following equation∫
Σ

𝜕𝐺3𝐷

𝜕𝑟
𝑑Σ = 𝜌0, (3.32)

using Gauss’s divergence theorem.
4. By continuation of the two solutions at the origin 𝑟 = 0 derive the following

result of 3-D Green’s function as,

𝐺3𝐷 = − 𝜌0

4𝜋
𝑒−𝑖𝑘𝑟

𝑟
(3.33)

5. Calculate inverse Fourier transform the above equation.
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Problem 3.6

1. The pressure response for forcing 𝑓 (𝒙) = 𝛿(𝑧) in a 3-D medium can be
interpreted by 1-D Green’s function. Based on this fact, show the relation
between 1-D Green’s function and 3-D Green’s function.

2. Equation 3.27 shows 2-D Green’s function does not go zero after the arrival
of the wavefront. Derive 2-D Green’s function from the 3-D Green’s function
based on 3-D Green’s function with a line source given by 𝛿(𝑟).
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§3.4 Green’s function in a homo-
geneous elastic medium

Let us consider the equation of motions

𝜌
𝜕2

𝜕𝑡2
𝑠𝑖 =

𝜕

𝜕𝑥 𝑗
𝑇𝑖 𝑗 + 𝑓𝑖 . (3.34)

Here we neglect self-gravitation and initial stress.
For an isotropic and homogeneous elastic body, the equation can be simplified as,

𝜌𝜕2
𝑡 𝒔 = (𝜆 + 𝜇)∇(∇ · 𝒔) +𝜇∇2𝒔 + 𝒇

= (𝜆 + 2𝜇)∇(∇ · 𝒔)︸               ︷︷               ︸ − 𝜇(∇ × ∇ × 𝒔)︸          ︷︷          ︸ + 𝒇

𝑃𝑤𝑎𝑣𝑒 𝑆𝑤𝑎𝑣𝑒

(3.35)

The first term of the right-hand side represents the P wave with volumetric changes, whereas the
second one represents the S wave with shear deformation. Later we consider a homogeneous
and isotropic medium

3.4.1 Elastic potential: Separation between P save and S
wave

In order to clarify the perspective, displacement 𝒔 is written by scalar potential 𝜙note 4) and
vector potential 𝝍 using Helmholtz’s theorem as

𝒔 = ∇𝜙 + ∇ × 𝝍. (3.36)

I note that vector potential 𝝍 has ambiguity for the choice of the reference. Vector potential
𝝍 ′ ≡ 𝝍+∇𝜒 leads to ∇×𝝍 ′ = ∇×𝝍. For static magnetic field, we choose a vector potential as
∇ ·𝝍 in general. In the case of an electromagnetic field, vector potential is related to the scalar
potential for each other, whereas, in the case of elastic deformation, they are independent, as
shown in later sections. In the case of an elastic wave field, we can separate the P wave and
S wave without the choice of a reference of vector potential as ∇ × 𝜓 = 0. For example, for
a stratified medium described in later chapters, a form of vector potential as ∇ × (𝜓 + ∇ × 𝜒)
becomes convenient because the two terms (𝜙 and 𝜒) represent horizontally polarized S waves
(SH) and vertically polarized S waves (SV), respectively.(5)

Insertion of equation 3.36 into equation 3.35 leads to
∇2

(
𝜌
𝜕2𝜙

𝜕𝑡2
− (𝜆 + 2𝜇)∇2𝜙

)
= ∇ · 𝒇

∇ × ∇ ×
(
𝜌
𝜕2𝝍

𝜕𝑡2
+ 𝜇∇ × ∇ × 𝝍

)
= ∇ × 𝒇

(3.37)

where 𝛼 is P-wave velocity and 𝛽 is S-wave velocity (𝜆 + 2𝜇 = 𝜌𝛼2, 𝜇 = 𝜌𝛽2).

note 4) Based on the definition, the scalar potential 𝜙 can be related to pressure 𝑝 = −𝜌𝛼2∇2𝜙.
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A formula of vector analysis of

∇ × ∇ × 𝝍 = ∇(∇ · 𝝍) − ∇2𝝍 (3.38)

and ∇ × [∇(∇ · 𝝍] = 0 lead to

∇ × ∇ ×
(
𝜌
𝜕2𝝍

𝜕𝑡2
− 𝜇∇2𝝍

)
= ∇ × 𝒇 . (3.39)

Similarly, the Helmholtz decomposition of 𝒇 is given by

𝒇 = ∇Φ + ∇ × 𝚿 (3.40)

Thus, to satisfy the equation of motions,
𝜌
𝜕2𝜙

𝜕𝑡2
− (𝜆 + 2𝜇)∇2𝜙 = Φ

𝜌
𝜕2𝝍

𝜕𝑡2
− 𝜇∇2𝝍 = 𝚿

(3.41)

is sufficient note 5). These equations correspond to wave equations of P-wave and S-wave,
respectively.

note 5) There are also terms for translational motion and rigid body rotation (see Problem 3.7) as solutions, but they
can be dropped because they violate the infinitesimal assumption.
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Problem 3.7

Let us consider the equation:

∇2
(

1
𝛼2
𝜕2𝜙

𝜕𝑡2
− ∇2𝜙

)
= 0 (3.42)

1. Estimate 𝜙0, which satisfies ∇2𝜙0 (𝑥, 𝑡) = 0.
2. Show that 𝜙 + 𝜙0 also satisfies equation 3.42.
3. Show that 𝜙0 represents a translational motion when 𝜙0 satisfies equation 3.35.
4. Let us consider the same discussion for the vector potential 𝜓0 given by

𝝍0 =
©­«

0 𝒓𝒙𝒚 𝒓𝒙𝒛
−𝒓𝒙𝒚 0 𝒓𝒚𝒛
−𝒓𝒙𝒛 −𝒓𝒚𝒛 0

ª®¬ ©­«
𝒙
𝒚
𝒛

ª®¬ , (3.43)

which represents a rigid rotation. Based on the discussion for scalar potential,
the vector potential satisfies the governing equation. In this text, we drop the
effects because they are not first-order variables.



38

3. Green’s function and representation theorem

3.4.2 Green’s function for an explosive source

In general, an excitation problem in an elastic medium by a force is complicated. In order to
understand the important concept of "near field" and "far-field", let us consider an excitation
problem of elastic waves by an explosion source, which can be described by only a scalar
potential. This simple example could be helpful for understanding elastic wave propagation.

First, let us consider Green’s function 𝐺𝜙 for scalar potential 𝜙. For an impulsive pressure
𝛿(𝑡), the Green’s function is given by

𝜕2𝐺𝜙 (𝒙, 𝑡; 𝝃, 𝜏)
𝜕𝑡2

− 1
𝛼2 ∇

2𝐺𝜙 = 𝛿(𝒙 − 𝝃)𝛿(𝑡 − 𝜏) (3.44)

𝐺𝜙 (𝒙, 𝑡; 𝝃, 𝜏) = 1
4𝜋𝜌𝛼2 | 𝒙 − 𝝃 |

𝛿

(
𝑡 − 𝜏 − | 𝒙 − 𝝃 |

𝛼

)
(3.45)

Near field term and far-field term for a point explosive source

First, let us consider a response for a point explosive source for simplicity. Within an
infinitesimal sphere with radius Δ𝑟 at the origin suddenly increase the pressure Δ𝑝 at 𝑡 = 0 as,

𝑝source (𝝃, 𝜏) = Δ𝑝(1 − 𝐻 (𝑟 − Δ𝑟))𝐻 (𝜏), (3.46)

where 𝐻 (𝑡) is Heaviside functionnote 6). The minus sign is originated from the difference
of sign between pressure and stress tensor. Because an explosive source cannot cause shear
deformation in a homogeneous medium, we consider only scalar potential 𝜙 here. 𝜙 can be
given by convolution between the Green’s function and the source term 𝑝source as

𝜙 =
∫ ∞

−∞
𝐺𝜙 (𝒙, 𝑡, 𝝃, 𝜏)𝑝source (𝝃, 𝜏)𝑑𝑉 (𝝃)𝑑𝜏

= −Δ𝑝Δ𝑟3

3𝜌𝛼2

𝐻
(
𝑡 − 𝑟

𝛼

)
𝑟

. (3.47)

� �

Pressure source

Δ𝑟 𝒙
𝑡 = 𝑟/𝛼

−Δ𝑝Δ𝑟3

3𝜌𝛼2𝑟

𝑟

Potential at 𝒙 against time

� �
Fig. 3.2 Schematic figure of the deformation by the explosive source.

The displacement 𝒔 can be represented by gradient of the scalar potential 𝜙 as

𝑠𝑟 =
Δ𝑝Δ𝑟3

3𝜌𝛼2

(
𝐻 (𝑡 − 𝑟/𝛼)

𝑟2︸          ︷︷          ︸+ 𝛿(𝑡 − 𝑟/𝛼)
𝛼𝑟

)
︸         ︷︷         ︸ .

Near field term far field term

(3.48)

note 6) 𝐻 (𝑡) = 1, 𝑡 ≥ 0, 𝐻 (𝑡) = 0, 𝑡 < 0
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The displacement of the near field term can be interpreted as static deformation by the
incremental pressure at a point. For 𝑡 = ∞ equation 3.44 can be simplified as,

∇2𝐺𝜙 = −𝛼2𝛿(𝒙 − 𝝃). (3.49)

The form of this equation is equivalent to a static electric field by a point charge.
The far-field term represents a propagation of the delta function. The amplitude decreases

with distance ∼ 1/𝑟 . This result means that net energy flux on a given sphere is constant
(4𝜋𝑟2 (𝑟−1)2 is constant) against the propagation distance. This result originated from energy
conservation owing to the wave propagation.

vspace3cm

Problem 3.8

1. Derive equation 3.47.
2. Derive equation 3.48, and plot the near field term and the far field term.

3.4.3 Green’s function of a homogeneous medium for
impulsive force: a general case

Green’s function is feasible for estimating an elastic response by a general forcing. Let us
consider Green’s function for an impulsive force 𝑋0 (𝑡)𝛿(𝑡) in the 𝑥 direction,

𝜕2

𝜕𝑡2
𝑮 = 𝛼2∇(∇ · 𝑮) − 𝛽2 (∇ × ∇ × 𝑮) + [𝛿(𝒙)𝑋0 (𝑡), 0, 0] (3.50)

The external force can also be represented by scalar potentialΦ and vector potential 𝚿
based on Helmholtz theorem as,

[𝛿(𝒙)𝑋0 (𝑡), 0, 0] = ∇Φ + ∇ × 𝚿. (3.51)

div of the both sides of the equation leads to

∇2Φ = 𝑋0 (𝑡)
𝜕𝛿(𝒙)
𝜕𝑥

. (3.52)

Here we consider the Green’s function (equation 3.3.4) satisfies the following equation:

∇2
(
− 1

4𝜋
1
|𝒙 |

)
= 𝛿(𝒙). (3.53)

The comparison leads to note 7),

Φ = −𝑋0 (𝑡)
4𝜋

𝜕

𝜕𝑥

1
| 𝒙 |

𝚿 =
𝑋0 (𝑡)
4𝜋

(
0,
𝜕

𝜕𝑧

1
| 𝒙 | ,−

𝜕

𝜕𝑦

1
| 𝒙 |

)
. (3.54)

note 7) see Aki and Richards(1) in details.
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𝐺 can be also represented by a superposition of scalar potential 𝜙 and vector potential 𝝍
based on Helmholtz theorem as,

𝐺 = ∇𝜙 + ∇ × 𝝍. (3.55)

Each potential satisfies the wave equation. For example, the scalar potential satisfies the
following equation,

𝜕2𝜙

𝜕𝑡2
= 𝛼2∇2𝜙 +Φ. (3.56)

𝜙 can be given by convolution between the scalar Green’s function in the 3-D medium and
the forcing term Φ (see the first section of this chapter).

The scalar potential can be written by a convolution between the scalar Green’s function
and Φ as

𝜙(𝒙, 𝑡) = − 1
(4𝜋)2𝜌𝛼2

∫
𝑉
𝑋0

(
𝑡 − |𝒙 − 𝒙0 |

𝛼

)
1

|𝒙 − 𝒙0 |
𝜕

𝜕𝑥0

1
|𝒙0 |

𝑑𝑉0. (3.57)

A change of variables of |𝒙 − 𝝃 | = 𝛼𝜏 leads to the following equation:

𝜙(𝒙, 𝑡) = − 1
(4𝜋)2𝜌𝛼2

∫ ∞

0

𝑋0 (𝑡 − 𝜏)
𝜏

(∬
𝑆

𝜕

𝜕𝜉0

1
|𝝃 | 𝑑𝑆

)
𝑑𝜏. (3.58)

𝑶 𝒙

𝝃

Fig. 3.3 Coordinate for evalua-
tion the potential 𝜙.

Here we focus on the integral
∬
𝑑𝑆. The circle in

Figure 3.3 represents a spherical shell with the radius
𝛼𝜏. The surface integral of a potential 1/𝑟 leads to
an analogy to a problem of gravity potential. If the
mass is the uniform distribution on a closed shell, the
term represents the spatial gradient of the potential
along 𝑥 direction at the origin 𝑶 (i.e., it corresponds
to 𝑥 component of gravity ). Based on the analogy
for a problem of gravity, when the point 𝑶 is inside
the shell, the gravity is 0. On the other hand, when
it is outside the shell, the mass is concentrated at the
center 𝒙 virtually. This result leads to the following
form:

𝜙(𝒙, 𝑡) = − 1
4𝜋𝜌

(
𝜕

𝜕𝑥

1
𝑟

) ∫ 𝑟/𝛼

0
𝜏𝑋0 (𝑡−𝜏)𝑑𝜏. (3.59)

The vector potential is also written in a similar manner. With some calculations, we obtain
the potentials as, 

𝜙(𝒙, 𝑡) = − 1
4𝜋𝜌

(
𝜕

𝜕𝑥

1
𝑟

) ∫ 𝑟/𝛼

0
𝜏𝑋0 (𝑡 − 𝜏)𝑑𝜏

𝝍(𝒙, 𝑡) = 1
4𝜋𝜌

(
0,
𝜕

𝜕𝑧

1
𝑟
,− 𝜕

𝜕𝑦

1
𝑟

) ∫ 𝑟/𝛽

0
𝜏𝑋0 (𝑡 − 𝜏)𝑑𝜏.

(3.60)

By substituting the scalar and vector potentials into 𝒔 = ∇𝜙+∇×𝝍, we obtain the following
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expression:

𝑠𝑖 (𝒙, 𝑡) =
1

4𝜋𝜌

(
𝜕

𝜕𝑥𝑖𝜕𝑥

1
𝑟

) ∫ 𝑟/𝛽

𝑟/𝛼
𝜏𝑋0 (𝑡 − 𝜏)𝑑𝜏

+ 1
4𝜋𝜌𝛼2𝑟

(
𝜕𝑟

𝜕𝑥𝑖

𝜕𝑟

𝜕𝑥

)
𝑋0

(
𝑡 − 𝑟

𝛼

)
+ 1

4𝜋𝜌𝛽2𝑟

(
𝛿𝑖1 −

𝜕𝑟

𝜕𝑥𝑖

𝜕𝑟

𝜕𝑥

)
𝑋0

(
𝑡 − 𝑟

𝛽

)
. (3.61)

The first term represents a near field, the second one represents a far field of the P wave, and
the third one represents a far field of the S wave.

Now let us consider the near and far field terms in a little more detail. We can determine
whether we are near or far based on two timescales: the first is the characteristic time of
𝑋 (𝑡), and the second is the P-S travel time difference 𝑟/𝛽 − 𝑟/𝛼. From a simple calculation
(see Problem 3.9), when the characteristic time of 𝑋 (𝑡) is sufficiently smaller than the P-S
travel time difference, the second and third terms are proportional to 1/𝑟 , and the first term
is proportional to 𝑟−2. The first term is negligible at an enough distant point, whereas it
represents the static displacement corresponding to the crustal movement at a near-source
point. On the other hand, if 𝑋 (𝑡) is sufficiently longer than the P-S travel time difference, all
terms are proportional to 1/𝑟 , and all terms become important. The details will be explained in
the next chapter, but the actual earthquake is a bit more complicated, and there are intermediate
terms in addition to the far and near terms, which can be understood using Green’s function
derived in this section.

Problem 3.9� �
1. In a case of 𝑋 (𝑡) = 𝛿(𝑡), evaluate the near field term (the first term of the right-hand

side of equation 3.61.
2. In a case of 𝑋 (𝑡) = 𝐻 (𝑡), evaluate the near field term (the first term of the

right-hand side of equation 3.61. Here 𝐻 is the Heaviside step function.� �
Problem 3.10� �

1. When 𝑟 is enough large, far-field term of the Green’s function proportional to 1/𝑟
(the second term of equation 3.61) becomes dominant at the distant point. By
evaluating the P-wave potential ∇𝜙 (equation 3.60), estimate the far field term of
P-wave displacement.

2. Derive equation 3.61.
3. For 𝑋 (𝑡) = 𝛿(𝑡), evaluate the near field term (the first term of equation 3.61).� �
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§3.5 Reciprocity of acoustic wave
Reciprocity of acoustic wave states that an acoustic wave at

point A excited by a source at B is the same as an acoustic wave
at point B excited by a source at A. "If I can hear you, you can
hear me.".(4) The theorem is valid under a certain condition. For
example, the "wind" effect breaks the theorem. In this section, I
try to explain the physical and mathematical background of the
reciprocity theorem of the acoustic wave.

Here we consider an external force 𝐹 (𝒙, 𝜔) exerts the system, and it causes pressure
perturbation 𝑃(𝒙, 𝜔).

∇ · ∇𝑃(𝒙, 𝜔)
𝜌0 (𝒙)

+ 𝜔2

𝜅(𝒙) 𝑃(𝒙, 𝜔) = 𝐹 (𝒙, 𝜔), (3.62)

Then we consider a quantity 𝑃𝐹 (convolution between 𝑃 and 𝐹 in frequency domain) formally.

𝐹2

𝐹1𝐹1

𝐹2

𝑃2

(𝑃1 + 𝑃2)𝑃1

(𝑃1 + 𝑃2)

Fig. 3.4 Schematic figure of two different
paths of the deformations.

Here we consider a pair of acoustic wave
fields (𝑃1, 𝐹1 and 𝑃2, 𝐹2), which satisfy
𝑃 = 𝑃1 + 𝑃2, 𝐹 = 𝐹1 + 𝐹2

note 8).

∇ · ∇𝑃1 (𝒙, 𝜔)
𝜌0 (𝒙)

+ 𝜔2

𝜅(𝒙) 𝑃1 (𝒙, 𝜔) = 𝐹1 (𝒙, 𝜔),
(3.63)

∇ · ∇𝑃2 (𝒙, 𝜔)
𝜌0 (𝒙)

+ 𝜔2

𝜅(𝒙) 𝑃2 (𝒙, 𝜔) = 𝐹2 (𝒙, 𝜔).
(3.64)

Here we consider two types of virtual
deformations: (i) forcing by 𝐹2 after 𝐹1,
(ii) forcing by 𝐹1 after 𝐹2. Multiple equa-
tion 3.63 with 𝑃2, multiply equation 3.64
with 𝑃1, and subtract the resulting expres-
sions. Integration over volume within Σ

leads to note 9) ∫
𝑉
(𝑃2𝐹1 − 𝑃1𝐹2)𝑑𝑉 =

∫
Σ

1
𝜌
(𝑃2∇𝑃1 − 𝑃1∇𝑃2) · 𝒏̂Σ. (3.65)

Here we consider a problem under a homogeneous boundary condition (on the boundary
Σ, 𝑃 = 0 or ∇𝑃 = 0). The left-hand side of equation 3.65 disappears. Green’s function for
𝐹1 = 𝛿(𝒙), 𝐹2 = 𝛿(𝜉) exhibits the spatial symmetry as,

𝐺 (𝒙, 𝒙1, 𝜔) = 𝐺 (𝒙1, 𝒙, 𝜔). (3.66)

This equation is known as reciprocity, which is not crucial for theoretical consideration but
also for numerical applications.

note 8) In this case, because we neglect the advection term due to the smaller amplitude, the wavefield can be
characterized by pressure perturbation.

note 9) de Hoop [1988](3) wrote ”As far as acoustic wave fields are concerned, Lord Rayleigh is commonly credited
as the first to derive a reciprocity theorem; it applies to harmonic sound vibrations in a homogeneous, ideal
fluid. (He denotes it as Helmholtz’s theorem but gives no reference to Helmholtz. )”
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In the case of the Earth, the ground can be approximated by free surface (𝑝 = 0). I note that
Coriolis force owing to Earth’s rotation breaks the reciprocity at very low frequency (< 10−3

Hz). When we consider an advection term of the mean flow, such as infrasound propagation
within a layer of a westerly jet, the reciprocity is also broken.

Problem 3.11� �
Derive equation 3.65. Hint : Use ∇ · (𝐹𝒖) = 𝐹 (∇ · 𝒖) + 𝒖 · ∇𝐹, and Gauss’s divergence
theorem.� �
§3.6 Representation theorem: as

a natural extension of Huygens’s
principle

The representation theorem is key for interpreting seismic wave propagation. In this section,
I show the theorem is a natural extension of Huygens’s principle, which does not predict the
wavefront but also the amplitudes. For simplicity, we start a case of an acoustic (scalar) wave
equation.

With an assumption that 𝐹1 is 0 within a volume𝑉 (𝑃1 = 𝑃) and 𝐹2 = 𝛿(𝒙 − 𝒙1), we obtain
the equation,

𝑃(𝒙1, 𝜔) =
∫
Σ

1
𝜌
(𝑃(𝒙, 𝜔)∇𝐺 (𝒙, 𝒙1, 𝜔) − 𝐺 (𝒙, 𝒙1, 𝜔)∇𝑃(𝒙, 𝜔)) · 𝒏̂Σ. (3.67)

For a better description of the boundary condition, we rewrite pressure gradient by displace-
ment 𝑺(𝒙, 𝜔) as,

𝑃(𝒙1, 𝜔) =
∫
Σ

1
𝜌
{𝑃(𝒙, 𝜔)∇𝐺 (𝒙, 𝒙1, 𝜔) − 𝜌𝜔2𝐺 (𝒙, 𝒙1, 𝜔)𝑺(𝒙, 𝜔)} · 𝒏̂𝑑Σ. (3.68)

For a given region surrounded by a boundary Σ, the displacement and the pressure distribution
on the surface Σ give us a complete description of the acoustic wavefield within the surface.

To compare Huygens’s principle we replace a source at 𝒙1 by receiver at 𝒙 using the
reciprocity as,

𝑃(𝒙1, 𝜔) =
∫
Σ

1
𝜌
{𝑃(𝒙, 𝜔)∇𝐺 (𝒙1, 𝒙, 𝜔) − 𝜌𝜔2𝐺 (𝒙1, 𝒙, 𝜔)𝑺(𝒙, 𝜔)} · 𝒏̂𝑑Σ. (3.69)

For a better understanding of the equation, let us consider a simple situation the Green
function 𝐺 (𝑟) is a function of only 𝑟 using a spherical coordinate at the origin 𝒙1 . Because
∇𝐺 = 𝜕𝑟𝐺𝒆𝑟 , ∇𝐺 = 𝜕𝑟𝐺𝒆𝑟 , the equation can be rewritten by,

𝑃(𝒙1, 𝜔) =
∫
Σ

{
1
𝜌
𝑃
𝜕𝐺 (𝑟)
𝜕𝑟

(𝒆𝑟 · 𝒏̂) − 𝜔2𝐺 (𝑟)(𝑺 · 𝒏̂)
}
𝑑Σ, (3.70)

The first term of the right-hand side corresponds to a dipole source, whereas the second one
corresponds to a monopole. The combination of the radiation patterns gives us a prediction of
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Fig. 3.5 Geometry of the elastic body.

amplitudes of refracted and reflected wave fields. This formulation is known as the Fresnel-
Kirchhoff diffraction formula in optics.

If you interpret the representation theorem as an extension of Huygens’ principle, you have
understood the physical implications. However, a closer look at the formula raises many
questions. For example, if the boundary conditions do not satisfy the homogeneous boundary
condition in a supposed medium (e.g., if stress and displacement are given at the boundary, as
in a speaker), does the condition break the reciprocity of Green’s function? This is a typical
example. Actually, this problem can be avoided. That is, the wavefield combination we are
considering ((𝐹1, 𝑃1) and (𝐹2, 𝑃2)): they are same within the region 𝑉 , but not necessarily
outside it.

First, as a simple case, let us consider a spherical region as the region 𝑉 . Suppose that at
the sphere surface, we have a free surface (satisfying the homogeneous boundary condition).
In this field, you would think of a Green’s function that naturally satisfies the homogeneous
boundary condition on the surface of 𝑉 . However, it is not necessary to choose so, and there
is no problem choosing a Green’s function in full space (see section 3.3.4), considering the
situation where the medium continues infinitely outside the domain as well.

Next, consider the case where the homogeneous boundary condition is broken on the sphere
(for example, there is a source on the boundary, such as a speaker in part). In this case, we can
still choose an infinite Green’s function (also called the fundamental or principal solution),
and the reciprocity can be applied without any problem. In other words, the representation
theorem can be applied similarly.

We can reconstruct all the seismic wavefields within the Earth’s interior from the surface
observations if we know Green’s function of the medium. Based on the reconstructed seismic
wavefield within the Earth, we can infer elastic constant at a given point from the ratio
between the spatial gradient of pressure and the time derivative at the point. This is the basic
principle of seismic imaging in seismic exploration. However, we must know the seismic
structure in advance to calculate Green’s function. At a glance, the logic seems to be a circular
argument. From a practical point of view, we start "an initial model", then we update it with a
modification based on the surface observation and the initial Green’s function. For exploring
Earth’s interior using seismic exploration techniques, updating the information based on the
observed wavefield is essential.
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§3.7 Reciprocity of elastic medium
The reciprocity of an acoustic medium can be extended to an elastic medium. First, we

extend equation 3.65to that for an elastic medium, known as Betti’s theorem. Here I show
only the results note 10) as,

Betti’s theorem

As in the case of the acoustic wave, we consider two types of wave fields as follows. Let
us consider a pair of elastic wave fields: (i) elastic wavefield 𝒔1 excited by forcing 𝒇1 and
(ii) elastic wavefield 𝒔2 excited by forcing 𝒇2. Then integrate the inner product between the
equation of motions for (i) and 𝒔′ for (ii), and vice versa.

∫
𝑉

{
𝒔1 (𝒙, 𝑡) · ( 𝒇2 (𝒙, 𝜏) − 𝜌𝜕2

𝑡 𝒔2) − 𝒔2 (𝒙, 𝜏) · ( 𝒇1 (𝒙, 𝑡) − 𝜌𝜕2
𝑡 𝒔1)

}
𝑑𝑉 (3.71)

=
∫
Σ
{[𝒔2 (𝒙, 𝜏) · 𝑻1 (𝒔1 (𝒙, 𝑡)) · 𝒏̂] − [𝒔1 (𝒙, 𝑡) · 𝑻2 (𝒔2 (𝒙, 𝜏)) · 𝒏̂]} 𝑑Σ (3.72)

The derivation requires the following relation,∑
𝑖 𝑗

𝐸𝑖 𝑗𝑇
′
𝑖 𝑗 =

∑
𝑖 𝑗

𝐸 ′
𝑖 𝑗𝑇𝑖 𝑗 , (3.73)

according to the symmetry of elastic tensor as 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗note 11).
By time integration of the above equation with the change of variables 𝜏 = 𝜏 − 𝑡, we get the

following relation:∫ ∞

−∞
𝑑𝑡

∫
𝑉
[𝒔1 (𝒙, 𝑡) · 𝒇2 (𝒙, 𝜏 − 𝑡) − 𝒔2 (𝒙, 𝜏 − 𝑡) · 𝒇1 (𝒙, 𝑡)]𝑑𝑉 (3.74)

=
∫ ∞

−∞
𝑑𝑡

∫
Σ
{[𝒔2 (𝒙, 𝜏 − 𝑡) · 𝑻1 (𝒔1 (𝒙, 𝑡)) · 𝒏̂] − [𝒔1 (𝒙, 𝑡) · 𝑻2 (𝒔2 (𝒙, 𝜏 − 𝑡)) · 𝒏̂]} 𝑑Σ.

(3.75)

Here we use the relation shown in problem 3.11.
Problem 3.12� �

Show the following relation:∫ ∞

−∞

{
𝒔1 (𝒙, 𝑡) · 𝜕2

𝑡 𝒔2 (𝜏 − 𝑡) − 𝒔2 (𝒙, 𝜏) · 𝜕2
𝑡 𝒔1 (𝜏 − 𝑡)

}
𝑑𝑡 = 0, (3.76)

for given a finite time 𝜏 by partial integration under the following condition 𝒔1 (∞) =
𝒔1 (−∞) and 𝒔2 (∞) = 𝒔2 (−∞).� �
Reciprocity of Green’s function

When we consider homogeneous boundary conditions (on a boundary Σ 上, 𝒔 = 𝒔′ = 0 or

note 10) read Aki and Rechards(1) for details.
note 11) this relation is based on the independence of elastic energy on deformation paths, as explained in the previous

chapter.
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𝑻𝑛 [𝒔)] = 𝑻𝑛 [𝒔′)] = 0), the right-hand side vanishes. With the transnational symmetry of
Green’s function, we obtain reciprocity of elastic Green’s function as,

𝐺𝑙𝑚 (𝒙2, 𝜏; 𝒙1, 0) = 𝐺𝑚𝑙 (𝒙1, 𝜏; 𝒙2, 0) (3.77)
𝐺𝑙𝑚 (𝒙2, 𝜏2; 𝒙1, 𝜏1) = 𝐺𝑚𝑙 (𝒙1,−𝜏1; 𝒙2,−𝜏2). (3.78)

§3.8 Representation theorem of an
elastic medium

Let us insert 𝐺 𝑝𝑚 (𝒙, 𝑡; 𝜼, 0), which represents the 𝑝 component of displacement for an
external force toward 𝑚th direction at 𝜼 into 𝒔2 of Betti’s theorem (equation3.7). Now,
considering the translational symmetry with respect to time, Fourier transform with respect
to 𝜏 leads to the following equation

𝑠𝑚 (𝜔, 𝒙) =
∫
𝑉
𝑓𝑝 (𝜔, 𝜼) · 𝐺 𝑝𝑚 (𝜔, 𝜼, 𝒙)𝑑𝑉 (𝜼)

+
∫
Σ
{𝐺 𝑝𝑚 (𝜔, 𝜼, 𝒙)𝑇𝑝𝑞 (𝒖(𝜔, 𝜼))𝑛̂𝑞 − 𝑠𝑝 (𝜔, 𝜼)𝑇𝑝𝑞 𝑛̂𝑞 (𝑮 𝑝 (𝜔, 𝒙, 𝜼)}𝑑Σ. (3.79)

In this equations To obtain displacement 𝒔 at 𝒙, the above equation evaluates the convolution
between Green’s function for an impulsive force applied at the observed point 𝒙 and the
distributed sources. The evaluation makes the equation difficult to understand. Assuming that
Green’s function satisfies a homogeneous boundary condition, reciprocity of Green’s function
can simplify the formulation note 12). With the reciprocity, the representation theorem can be
simplified as

𝑠𝑚 (𝜔, 𝒙) =
∫
𝑉
𝑓𝑝 (𝜔, 𝜼)𝐺𝑛𝑝 (𝜔, 𝒙, 𝜼)𝑑𝑉 (𝜼)

+
∫
Σ
{𝐺𝑛𝑝 (𝜔, 𝒙, 𝜼)𝑇𝑝 (𝜼) − 𝑠𝑝 (𝜼)𝐶𝑝𝑞𝑘𝑙𝜕𝑙𝐺𝑛𝑘 (𝜔, 𝒙, 𝜼)𝑛̂𝑞}𝑑Σ, (3.80)

where 𝒏̂ is normal vector ont the boundary.

𝑠𝑚 (𝜔, 𝒙) =
∫
𝑉
𝑓𝑝 (𝜔, 𝜼)𝐺𝑛𝑝 (𝜔, 𝒙, 𝜼)𝑑𝑉 (𝜼)

+
∫
Σ
{𝐺𝑛𝑝 (𝜔, 𝒙, 𝜼)𝑇𝑝 (𝜼) − 𝑠𝑝 (𝜼)𝐶𝑝𝑞𝑘𝑙𝜕𝑙𝐺𝑛𝑘 (𝜔, 𝒙, 𝜼)𝑛̂𝑞}𝑑Σ, (3.81)

where 𝒏̂ is a normal vector to Σ.
The Representation Theorem is very important when considering the excitation of seismic

waves. The Representation Theorem assures us that cutting out a part of an elastic body
has no effect on the motion of the elastic body outside it as long as the displacement and

note 12) The confusion originates that the boundary conditions for the Green function can be independent of the
boundary conditions for the displacement 𝒔. This means that the choice of Green’s function is arbitrary, which
causes confusion. For example, when considering a homogeneous medium but complex boundaries, using
the infinite medium Green’s function (the fundamental solution) improves the outlook.
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stress conditions at the boundary are known. Consider, for example, the phenomenon of
earthquakes, which are caused by brittle fractures in a part of the earth. The area near the
fault cannot be represented by an elastic body. However, if we consider the operation of
hypothetically replacing the brittle region with an elastic body through it with a closed surface
that surrounds it. Then, as long as the stresses and displacements on the boundary are identical
to each other, we can completely describe the motion in the elastic body. We will see this in
detail in the next chapter.
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§3.A Bessel function

1
𝑟

1
𝑑𝑟

(
𝑟
𝑑𝑅

𝑑𝑟

)
+

(
𝑘2 − 𝑚2

𝑟2

)
𝑅 = 0, (3.82)

is a differential equation of Bessel, and the solutions are known as Bessel function of the
first kind 𝐽𝑚 (𝑘𝑟), and Neumann function 𝑌𝑚 (𝑘𝑟). 𝐽0 (0) = 1, 𝐽𝑚 (0) = 0, 𝑚 ≠ 0, whereas
Neumann function diverges at 𝑟 = 0. Both functions converge to 1/

√
𝑟 for 𝑟 → ∞. Read

Mathematical Methods for Physicists(2) for details.
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Fig. 3.7 Plots of Bessel functions and Neumann functions.

3.A.1 Properties

𝐽−𝑚 (𝑥) = (−1)𝑛𝐽𝑚 (𝑥) (3.83)

𝐽𝑚−1 (𝑥) + 𝐽𝑚+1 (𝑥) =
2𝑚
𝑥
𝐽𝑚 (𝑥) (3.84)

𝐽𝑚−1 (𝑥) − 𝐽𝑚+1 (𝑥) = 2𝐽 ′𝑚 (𝑥) (3.85)

3.A.2 Asymptotic for 𝑥 → 0
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𝐽𝑚 (𝑥) ∼
1
𝑚!

( 𝑥
2

)𝑚
(3.86)

𝑌0 (𝑥) ∼
2
𝜋

ln
𝑥

2
, (3.87)

𝑌𝑚 (𝑥) ∼ − (𝑚 − 1)!
𝜋

(
2
𝑥

)𝑚
, 𝑚 ≥ 0 (3.88)

3.A.3 Asymptotic for 𝑘𝑟 � 1

𝐽𝑚 (𝑘𝑟) ∼
√

2
𝜋𝑘𝑟

cos
(
𝑘𝑟 − 2𝑚 + 1

4
𝜋

)
(3.89)

𝑌𝑚 (𝑘𝑟) ∼
√

2
𝜋𝑘𝑟

sin
(
𝑘𝑟 − 2𝑚 + 1

4
𝜋

)
(3.90)

𝐻 (1)
𝑚 (𝑘𝑟) ∼

√
2
𝜋𝑘𝑟

𝑒𝑖(𝑘𝑟− 2𝑚+1
4 𝜋) (3.91)

Here 𝐻 (2)
𝑚 (𝑘𝑟) = 𝐻 (1)∗

𝑚 (𝑘𝑟).

§3.B Fourier transform
For time series 𝑢(𝑡), the Fourier transform F and the inverse Fourier transform F −1 are

defined as
Definitions of Fourier transform� �

𝑈 ( 𝑓 ) ≡ F (𝑢) =
∫ ∞

−∞
𝑢(𝑡)𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑡, (3.92)

𝑢(𝑡) = F −1 (𝑈) ≡
∫ ∞

−∞
𝑈 ( 𝑓 )𝑒𝑖2𝜋 𝑓 𝑡𝑑𝑓 , (3.93)

(3.94)� �
where𝑈 represents Fourier components of 𝑢.

Summary of Fourier transform� �
• If 𝑢(𝑡) is a real function,𝑈 ( 𝑓 ) = 𝑈∗ (− 𝑓 ),
• Parseval’s theorem:

∫ ∞
−∞ 𝑢(𝑡)

2𝑑𝑡 =
∫ ∞
−∞𝑈 ( 𝑓 )2𝑑𝑓 ,

• Cross spectrum 𝐶 (𝑢, 𝑣; 𝑓 ) = F (𝜓) = 𝑈∗𝑣̃
• Wiener- Khinchin theorem: 𝑝( 𝑓 ) = F (𝜙) =| 𝑈 |2.� �
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§3.C Hilbert transform
Hilbert transform of 𝑓 (𝑡) H 𝑓 (𝑡) is difined by

H 𝑓 (𝑡) = 1
2𝜋

∫ ∞

−∞
[−𝑖𝑠𝑖𝑔𝑛(𝜔)]𝐹 (𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔. (3.95)

This can be interpreted as phase advance of 90◦ to the original signal in frequency domain.
In time domain, it can be written as,

H 𝑓 (𝑡) = 1
𝜋
P

∫ ∞

−∞

𝑓 (𝜏)
𝜏 − 𝑡 𝑑𝜏. (3.96)

Here P
∫

is Cauchy’s principle integral
For details. read textbooks of applied mathematics (e.g. Yomogida 2007,(6) Mathematical

Methods for Physicists(2)).
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Excitation of seismic
wave

Chapter 4

Various phenomena excite seismic waves. For example, fault slips and volcanic eruptions
excite them. This chapter explains that these phenomena can be described by "equivalent
body force" in a framework of linear elasticity. In other words, we can only guess the force
system of the excitation sources from seismological methods. source characteristics inferred
by seismology

Although seismological techniques are feasible for characterizing the source, we note
that they can provide only information about the "force system". In order to infer physical
properties (e.g. fault slip and volumetric change of an explosion source), we must interpret the
"equivalent body force" based on a physical model. An inferred physical parameter depends
on an assumed physical model. These two steps are essential for a seismic source study.

The following section introduces a concept of "indigenous source" for understanding equiv-
alent body force and then moment tensor.

§4.1 Indigenous source
Without a seismic excitation source, the Earth does not oscillate. An external force at a time

excites seismic waves. For example, a meteorite is an external force. In this case, according
to the impulse, the momentum of the Earth changes. Mass injection by a volcanic eruption
is another example. When we consider such an external force, the total momentum changes
according to the impulse by the external force.

The solid Earth can be approximated by a closed system in most situations. A physical
process inside the Earth, of course, can also excite seismic waves. An earthquake is a typical
example of such a source. Volcanic processes inside the Earth, such as volcanic tremors, are
another example. Excitation sources inside the system of the solid Earth are called indigenous
sources. The physical processes are thermoelasticity, phase transition, fault slip, movement
of fluid, and so on. The total momentum and angular momentum conserve

For the seismic excitation by an "indigenous source" in the source region, Hooke’s law
should be broken because the Earth keeps the equilibrium otherwise. For example, in a
fault zone, the law is broken down. Let us consider a localized volume 𝑉 . According to
the exchange of momentum between 𝑉 and the other body, "indigenous sources" can be
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categorized into two.
The first case is that the exchange of the momentum and angular momentum between𝑉 and

the other can be negligible. A fault motion is such an example. In this case, the momentum
and angular momentum in the other region conserve in all instances.

The second case is that the momentum and angular momentum exchange with each other.
Let us consider a landslide, which can be approximated by a sliding rigid block on a slope. In
this case, the momentum at the beginning and the end is zero, but nonzero in between. Because
the total momentum in the whole system (e.g. the whole Earth) conserves, the momentum of
the other region (∉ 𝑉) is nonzero. In other words, the block imposes the impulse note 1).

These features are crucial for characterizing "equivalent body force" in the following
sections.

§4.2 Equivalent body force and
Stress glut

Let us consider an earthquake as a typical example of an indigenous source. An earthquake
can be described as a fault dislocation physically. Because the dislocation cannot be described
by a theory of elasticity (breakdown of Hooke’s law), here we consider a closed surface, which
includes the fault plain. Governing equations other than Hooke’s law should be satisfied
exactlynote 2). An elastic medium out of the surface Σ can be described by a framework of
elasticity.

𝑥

𝑦

Gauge zone

Σ+

𝑉

𝒏̂
+

𝒏̂
−
Σ−

Fig. 4.1 Schematic figure of a right-lateral vertical strike-slip fault.

Representation theorem guarantees that stress and displacement on Σ without the informa-
tion inside the volume 𝑉 describe the elastic deformation outside the 𝑉 . Here we consider an
embedded transformation that a virtual elastic body is filled inside Σ. Below we show that
the breakdown of Hooke’s law can be represented by "equivalent body force", which exerts
the virtual elastic body.

Let us consider the deformation associated with the earthquake inside the volume. An
earthquake can be described as fault dislocation physically. Inside the volume 𝑉 (gouge
layer), brittle failure occurs, and then Hooke’s law is broken downnote 3).

note 1) See Takei and Kumazawa [1994, 1995](11), (12) for details.
note 2) See Dahlen and Tromp 1998(2) for details.
note 3) gouge is Fault gouge is minerals formed by brittle failure with a very small grain size in a rock.
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The true stress is written by 𝑻true.

𝑦

𝑠𝑥

𝑦

𝐸𝑥𝑦

𝑦

𝑇𝑥𝑦

Fig. 4.2 Schematic figure of the displacement, strain and stress.

Then let us consider modeled stress 𝑻model assuming Hooke’s law for the deformation.
As shown in Figure 4.2, the modeled stress is larger than the true stress.

Stress glut 𝚪 is defined by 𝚪 = 𝑻model − 𝑻true. Note that 𝚪 = 0 on Σ.
Seismic waves excited by an earthquake can be described by excitation by stress glut(1)

in the elastic medium. In a framework of elasticity with stress glut, we can calculate the
seismic wave propagations. −𝜕 𝑗Γ𝑖 𝑗 is equivalent body force. This result guarantees that we
can describe the excitation problem completely in a framework of linear elasticity.

Because this system is closed, the net force of the equivalent body force and the net
torque are 0. Based on mathematical consideration, the "equivalent body force" of the fault
dislocation in a small spatial dimension can be described by a point double couple source.

𝑦

Γ𝑥𝑦

Gouge zone

Fig. 4.3 Schematic figure of the stress glut.

When we want to know source characteristics by observations of seismic wave propagations,
we can know only "equivalent force system" of the excitation sources. There are many
possible physical mechanism for the force system. With the help of other independent
knowledge, we can infer the the mechanism of the sources.

§4.3 Multipole expansion
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Source region

ξ0

ξ

∆ξ

Origin

θ’
r’

r

Fig. 4.4 Schematic figure of the source-receiver geometry.

Equivalent body force can be defined by stress glut 𝚪 as,

𝒇 = −∇ · 𝚪(𝒙, 𝑡). (4.1)

Displacement 𝑺 excited by equivalent body force can be given by convolution between the
corresponding Green’s functions and the equivalent body force as

𝑺(𝒙, 𝜔) =
∫
𝑉
𝑮 (𝒙, 𝝃, 𝜔) 𝒇 (𝝃, 𝜔)𝑑𝑉 (𝜉). (4.2)

Let us expand Green’s function at around 𝝃0 with respect to Δ𝝃. An amplitude of the
𝑛th spatial derivative of the Green’s function 𝐺 can be estimated to be 𝑘𝑛𝐺 with a typical
wavenumber 𝑘 of the Green’s function. Therefore the 𝑛th order term of the Tayler expansion
can be estimated by

1
𝑛!
𝑘𝑛𝐺Δ𝜉𝑛 =

1
𝑛!
𝐺 (𝑘Δ𝜉)𝑛. (4.3)

When 𝑘Δ𝜉 is enough small: a typical spatial scale of volume Σ is smaller than the wavelength
of the seismic wave (Figure 4.4), the expansion converges. Here we expand the Green’s
function up to degree 2 with respect to Δ𝝃 as,

𝑮 (𝒙, 𝝃, 𝜔) ≈ 𝑮 (𝒙, 𝝃0, 𝜔) + ∇𝝃𝑮 (𝒙, 𝝃0, 𝜔)Δ𝝃 + 1
2
Δ𝝃𝑇H𝝃𝑮 (𝒙, 𝝃0, 𝜔)Δ𝝃 + O(Δ𝝃3). (4.4)

The insertion into equation 4.2 leads to

𝑆𝑖 (𝒙, 𝜔) ≈ 𝐺𝑖 𝑗 (𝒙, 𝝃, 𝜔)
∫
𝑉
𝑓 𝑗 (𝝃, 𝜔)𝑑𝑉 (𝜉) (4.5)

+ 𝜕𝑘𝐺𝑖 𝑗 (𝒙, 𝝃0, 𝜔)
∫
𝑉
𝑓 𝑗Δ𝜉𝑘𝑑𝑉 (𝝃)

+ 𝜕𝑘𝜕𝑙𝐺𝑖 𝑗 (𝒙, 𝝃0, 𝜔)
∫
𝑉
𝑓 𝑗Δ𝜉𝑘Δ𝜉𝑙𝑑𝑉 (𝝃).

The first term represents the impulse, whereas the second term does the torque. When we
can neglect the exchange of momentum and angular momentum between the volume Σ and
the other region, these two terms vanish exactly. The terms with an order higher than 3 have
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significant value. Because the field term of 3D Green’s function in an infinite homogeneous
medium is proportional to 𝑟−1, 𝑛th order term attenuates with distance as 𝑟−𝑛−1. Therefore
higher-order term tends to attenuate more rapidly. As the result, 3rd order term known as
"moment tensor" becomes dominant.

For simplicity, let us consider an excitation of a 3D acoustic wave in an infinite homogeneous
medium. The excitation source is assumed to be localized at around 𝒙0

1
|𝝃 − 𝝃 ′ | =

1
𝑟

∞∑
𝑙=0

(
𝑟 ′

𝑟

) 𝑙
𝑃𝑙 (cos 𝜃 ′). (4.6)

Here we assume again that the source dimension is smaller than the wavelength of the acoustic
wave.

When we can neglect the exchange of momentum and angular momentum between the
volume Σ and the other region, these impulse and torque terms vanish exactly. The next
section explains the details of the third term: moment tensor.

§4.4 Excitation by moment tensor
When the spatial scale of the source is enough smaller than the wavelength, the stress glut

can be written by
Γ𝑖 𝑗 (𝒙, 𝑡) = 𝑀𝑖 𝑗 (𝑡)𝛿(𝒙 − 𝒙0). (4.7)

Here 𝑴 is moment tensor. The trace of 𝑀𝑖 𝑗 shows the volumetric change. When a normal
earthquake, two eigenvalues are much larger than the other (double coupled force)note 4).

At low frequencies, the moment tensor of an earthquake can be simplified as,

Γ𝑖 𝑗 =
√

2𝑀0𝑴̂𝛿(𝒙 − 𝒙0)𝑚(𝑡), (4.8)

where 𝑀0 is seismic moment, and 𝑚(𝑡) is an increasing function with the normalization of∫
𝑚(𝑡)𝑑𝑡 = 1. Here we assume that the moment function is synchronous.
At a distant station from a seismic source, displacement of body wave (𝑈) in an infinite the

homogeneous elastic medium can be written by

𝑈 ∼ 1
𝑟
𝑀0 ¤𝑚0 (𝑡) (𝑡 − 𝑟/𝑐), (4.9)

where 𝑟 is the distance between the station and the source. This means that displacement of
teleseismic body wave gives us the shape of the moment rate function 𝑀0 ¤𝑚0.

note 4) For example, an explosion source can be represented by a moment tensor. See Julian et al. [1998] for a
generalized case of non-double coupled components(4)
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Fig. 4.5 Components of moment tensor

Problem 4.1

1. In subsection 3.4.2 we consider an explosion source. In this case, the source
mechanisms can be represented by a moment tensor. WhenΔ𝑟 is enough small,
derive the corresponding moment tensor.

2. When moment tensor has only one non-zero value (𝑀𝑥𝑥 = 1), show the P-wave
radiation pattern .

3. For double couple source (𝑀𝑥𝑥 = 1, 𝑀𝑦𝑦 = −1, and other components are
zero), derive the P-wave radiation pattern (Figure 4.6).
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Compression

Dilatation

Dilatation

Compression

T-axis

T-axis

P-axis

P-axis

Seismic focal mechanism and Pression-Tension axis.
Fig. 4.6 P wave radiation pattern for a double couple source. Taken from Cyril Langlois
(2010)/ CC BY 2.5.

§4.5 Work by Moment tensor
In this section, we will consider the work that moment tensors act on elastic bodies. First,

consider the stress glut 𝚪 and the corresponding equivalent volume force 𝒇 .

𝒇 = −∇ · 𝚪(𝒙, 𝑡). (4.10)

is applied to the elastic body. If the displacement of the elastic body is 𝒔, the work𝑊 done by
the equivalent volume force on the elastic body is written by

𝑊 =
∫
𝑉
𝒇 · 𝒔𝑑𝑉. (4.11)

With partial integrals (Problem 4.2), the above equation can be rewritten by

𝑊 =
∫
𝑉
𝒇 · 𝒔𝑑𝑉 =

∑
𝑖 𝑗

∫
𝑉
𝐸𝑖 𝑗Γ𝑖 𝑗𝑑𝑉. (4.12)

Here we assumed that the stress glut is 0 on the surface 𝜎 of the elastic body When stress glut
can be represented by a moment tensor as equation (4.7), the equation can be simplified as

𝑊 =
∑
𝑖 𝑗

𝐸𝑖 𝑗𝑀𝑖 𝑗 (𝑡). (4.13)

Thus, the work is given by the production between strain 𝐸𝑖 𝑗 caused by the earthquake and
moment tensor 𝑀𝑖 𝑗 . Based on the conservation of energy, work done by the stress glut Γ is
transferred to kinematic energy and elastic energy.

https://texample.net/tikz/examples/seismic-focal-mechanism-in-3d-view/
https://texample.net/tikz/examples/seismic-focal-mechanism-in-3d-view/
https://creativecommons.org/licenses/by/2.5/
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Problem 4.２

Derive equation (4.12) assuming the following conditions:

• Consider an elastic body within a volume 𝑉 , stress glut Γ exists only inside Σ.
• On Σ, stress glut Γ𝑖 𝑗 = 0.
• Assuming that the elastic body is an isolated system, imposed torque is 0 as
Γ𝑖 𝑗 = Γ 𝑗𝑖 .

• Use partial integrals and Gaussian divergence theorem.

§4.6 Effects of free surface on the
seismic excitations

In this section, let’s consider how free surfaces affect the excitations of seismic waves.(13)

In conclusion, we obtain the strange result that 𝑀𝑥𝑧 , 𝑀𝑦𝑧 does not excite seismic waves by
shallow earthquakes.

For simplicity, we consider a semi-infinite medium. If 𝑧 = 0 is the ground surface now, the
free boundary surface condition is 𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 𝑇𝑧𝑧 = 0 at 𝑧 = 0. and 𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 𝑇𝑧𝑧 = 0.
Rewriting these first two conditions in terms of distortion, we get

𝐸𝑥𝑧 |𝑧=0 =
𝑇𝑥𝑧
𝜇

����
𝑧=0

= 0 𝐸𝑦𝑧
��
𝑧=0 =

𝑇𝑦𝑧

𝜇

����
𝑧=0

= 0 (4.14)

We have shown that the work 𝑊 done by the moment tensor can be written as
∑
𝑖 𝑗 𝐸𝑖 𝑗𝑇𝑖 𝑗 .

Since 𝐸𝑥𝑧 = 𝐸𝑦𝑧 = 0 at 𝑧 = 0, the components 𝑀𝑥𝑧 and 𝑀𝑦𝑧 of the corresponding moment
tensor 𝑀𝑥𝑧 and 𝑀𝑦𝑧 do not contribute to the excitation. This means that 𝑀𝑥𝑧 and 𝑀𝑦𝑧

cannot excite seismic waves near the free surface (sufficiently shallow in depth compared to
the wavelength). What happens in relation to actual phenomena?

For example, in shallow earthquakes near the trench, if the subduction angle is gentle, a low-
angle reverse fault earthquake occurs. In such cases, 𝑀𝑥𝑧 and 𝑀𝑦𝑧 components do not excite
seismic waves very much, and it is known that it is difficult to determine these components
from seismic wave data. This is a serious problem, especially when estimating moment
tensors for long-period seismic waves. When determining the moment of an earthquake on a
shallow low-angle reverse fault, there is a trade-off with the tilt angle of the fault, which leads
to large uncertainties in the moment estimate.
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§4.7 Single force source
When the source region ( non-elastic part) is enough large, we cannot neglect the exchange

of momentum between them. The single force term represents the impulse owing to the
exchange. This term becomes important when a landslide excites seismic waves (Figure 4.7).
Of course, the total momentum of the system is conservative.

Examples of source processes represented by a single force are (i) glacial earthquake and
(ii) microseisms excited by ocean swell. In both cases, we cannot neglect the source volume.

𝑥

Landslide

∫
𝑀 |𝑣(𝑡) |𝑑𝑡

Momentum 𝑀𝑣(𝑡)
= −

∫
𝑓 𝑒 (𝑡)𝑑𝑡

Fig. 4.7 Schematic figure of the single force.(5)

4.7.1 Origin of ambient noise: ocean swell shakes the
Earth
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Fig. 4.8 Probability density of power spectrum
of horizontal acceleration at a Hi-net station in
Japan.(9) A reddish color means more probable.
The thick red line represents the power spectral
densities of ambient noise.

Even on seismically quiet days, the
Earth oscillates persistently. At fre-
quencies higher than 1 Hz, human ac-
tivities cause a background seismic
wavefield. At a frequency lower than 1
Hz, the contribution becomes smaller.
The human activity is not enough en-
ergetic to excite it because the wave-
length of the seismic wave becomes
an order of km. At this frequency,
ocean swell activities are more en-
ergetic, and they excite seismic sur-
face waves (Rayleigh wave and Love
wave) persistently. This phenomenon
is known as ambient noise or micro-
seisms.

Figure 4.8 shows two peaks at
around 0.1 Hz and 0.2 Hz. Ambient
noise at the lower peak is called primary microseisms, whereas the other one is called sec-
ondary microseisms. The frequency of primary microseisms corresponds to that of ocean
swells, whereas that of secondary microseisms corresponds to double the frequency. Against
our instinct, amplitudes of secondary microseisms are larger than primary microseisms be-
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cause the nonlinear effect of the ocean, known as the Longuet-Higgins mechanism (Longuet-
Higgins), is dominant. The amplitudes of secondary microseisms are several orders of
magnitudes larger than those of primary microseisms. Even at a continental station distant
from a coastal area, these microseisms are observed because of the large amplitudes.

A ripple pattern by raindrops is analogous to those of microseisms. Please run an application
at the website. An impulsive force at a point generates an outgoing concentric wave. On the
other hand, we can trace wavefront generated by many random sources at first. Gradually
inside the circle, the wave field becomes quite random. We cannot identify any specific
direction.

http://www.eri.u-tokyo.ac.jp/people/knishida/eng/Seismology/wave2Drandom2.html


4.7. SINGLE FORCE SOURCE

61

0.5

0.1

0.4

   0

0.3

0.2周
波
数
 [H

z
]

2004 9/8

0:00 12:00

2004 9/7

12:00

南大東島 ( 気象庁 )

Fig. 4.9 Left: Running spectrum from Sept. 7th to Sept. 8th
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one shows time. Right: Track information about the typhoon.
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Here we pick up a
typical example of mi-
croseisms when a ty-
phoon because the high
ocean swell activities
excite the larger ampli-
tudes of microseisms in
the area of the center
of the typhoon. Figure
4.9 shows running spec-
trumnote 5) at a station
(Minami Daito) when
typhoon Songda in 2004
hit the Japan island. The
typhoon became weaker
with time in this time. With time increasing, the peak frequency becomes higher. We can also
identify a vertical line at around 3:00 on 9/7, which corresponds to a teleseismic earthquake.
In this case, the teleseismic earthquake was masked by the microseisms in this frequency.
Thus, microseisms are major noise for earthquake observations, as noted before.

4.7.2 The excitation mechanism of secondary microseisms:
Longuet-Higgins mechanism

In this section, I explain the excitation mechanism of secondary microseisms, also known
as Longuet-Higgins mechnism(7)note 6). Because the math of the theory is complicated, I
introduce a simplified model by Longuet-Higginsnote 7).

Let us consider an analogy by a pendulum proposed by Longuet-Higgins [1953](8) (Figure
4.10 right). The left panels show a standing wave with vertical motions, which does not
propagate toward a specific direction. Therefore, the center of mass of (a) and (c) is higher
than that of (b) and (d). To cause the periodic vertical oscillations of the center, a periodic
external force with frequency 2𝜔 is required. A pendulum depicted by the right panels
could be a good analogy. The location of the weight of the pendulum represents the center
of the mass, force at the pivot point represents pressure on the bottom, and displacement
of the pendulum represents the displacement of the center. Displacement of the pendulum
corresponds to the movement of water (see streamline of Figure 4.10 (e)). The period of
forcing at the pivot point is estimated to be 2𝜔, which leads to pressure on the bottom with
frequency 2𝜔. The amplitude of the forcing can be estimated by 𝑚(𝑑𝜔)2/𝑅, where 𝑚 is the
mass, 𝑑 is the displacement, 𝑅 is length of the leg, and 𝜔 is angler frequency of the pendulum.
Thus, pressure fluctuations, which correspond to the forcing at the pivot point, should be
proportional to the power of the amplitudes of ocean swell (nonlinear).

Next, let us consider a propagating wave without dispersion. Because the wave keeps its
shape with the propagation, no vertical movement of the center of the mass occurs. This
means that the ocean wave cannot excite pressure fluctuations on the bottom. Because the

note 5) A running spectrum shows the time evolution of frequency spectra. We calculate the power spectra of sliding
windows and align the spectra with respect to time

note 6) Longuet-Higgins is an applied mathematician and physical oceanographer. In particular, he is a pioneer in the
statistics of ocean waves. Unfortunately, he passed away in 2016.

note 7) Read Longuet-Higgins (1950),(7) Hasselemann (1963),(3) Kedar et al. (2008)(6) for details.
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Fig. 4.10 Upper: a schematic model and the analogy of a pendulum (a-d). Here we
consider a standing wave. Taken from Nishida (2017).(10)

Longeut-Higgins mechanism is not efficient for a propagating wave, this mechanism requires
two waves with an opposite direction pair at least. The extent of ocean swell activities and
the coastal reflection is crucial for realizing random propagations of the ocean swell. Now
we have a good stochastic wave action model, a theory that can predict observed secondary
microseisms well (e.g. Kedar et al. (2008),(6)
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Elastic wave
propagation in a half

space
Chapter 5

The previous chapter explained Green’s function in an infinite medium. However, the struc-
ture of the real Earth is not so simple. The lateral heterogeneity causes the complexity of
seismic wave propagations. This figure shows SH wave propagations from an earthquake.
At frequencies lower than several Hz, a stratified Earth’s structure (a seismic wave velocity
structure depending only on depth) is a good approximation. Even the simple Earth’s structure
still shows complexities, but we can trace the wavefront. The figure shows the waves can be
approximated by plane waves.

In this figure, we can see reflections and conversions on the discontinuities (at the surface,
410 km, 660 km, and core-mantle boundary (CMB)). Because the free surface is the biggest
boundary, we introduce the free surface first in this chapter.

First, I introduce the concept of a plane wave, then I will show we can separate the
wavefield into P-SV and SH waves according to the wave type and the polarization direction.
This chapter describes the effects of a free surface: the reflection and the P-S conversion at a
free surface.

§5.1 Review of seismic wave prop-
agation: body waves and surface
and boundary waves

Nature is full of waves. For example, if we look at the water’s surface, we can see ripples
spreading as the wind blows. When some restoring force acts on the medium, they propagate
at a certain speed while maintaining their shape ( 𝑓 (𝑥 − 𝑐𝑡) (𝑥 is position, 𝑐 is propagation
speed, 𝑡 is time)). Let us consider sound waves specifically.
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1. Gas moves and density changes
2. Density change produces pressure change
3. pressure gradient moves gas

Sound waves propagate by repeating this cycle. Seismic waves propagate in solids in a similar
cycle (see the next chapter for details). If the wave’s amplitude is sufficiently small, it is linear,
and the principle of superposition holds. In other words, if the wave of interest can be taken
out and understood, the whole can simply be understood as a superposition of the waves.

§5.2 Plane wave
To be revised Elastic wave propagation becomes more complex than a homogeneous infinite

medium when considering free surfaces. For example, when trying to evaluate the Green
function for half-space with a free surface, it can only be expressed analytically in limited
cases, such as when the source is located on the ground surface (e.g., chapter 5.7). Even in
the case of the Green function for a homogeneous infinite elastic medium, the analytical form
of the near-field term becomes complex. When considering Green’s function for the infinite
medium, the near-field term changes shape depending on the distance from the epicenter,
while the far-field term remains the shape. On the other hand, the far-field term propagates
with keeping its shapenote 1). Therefore, this chapter will focus only on the far-field term.

Let us first consider the 3-dimensional scalar case for simplicity. Consider the case of an
external force 𝛿(𝒙) acting at the epicenter. As we learned previously, the Green function, in
this case, is given note 2) by

𝐺𝜙 (𝑟, 𝜔) = − 1
4𝜋𝜅

𝑒−𝑖𝑘𝑟

𝑟
. (5.1)

We can define an isosurface where the phase of 𝑒−𝑖𝑘𝑟 is constant and is generally referred to as
a "wavefront." The trajectory orthogonal to the wavefront is called the ray (see Chapter ?? for
details). In regions where 𝑟 is sufficiently distant, the wavefront curvature can be neglected.
note 3). The wave can be treated as a plane wave in the region 𝑒−𝑖𝑘𝑟 , where 𝑒−𝑖𝑘𝑟 is the radius
of curvature.

Let us go back to the wave equation for once: the Green function 𝐺𝜙 in the frequency
domain satisfies

− 𝑟ℎ𝑜0𝜔
2𝐺𝜙 − 𝜅∇2𝐺𝜙 = −𝛿(𝒙). (5.2)

The Fourier transform in the space, and Fourier inverse transform again gives

𝐺𝜙 = −1
𝜅

∭
𝛼2𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦 𝑦+𝑘𝑧 𝑧)

𝛼2 (𝑘2
𝑥 + 𝑘2

𝑦 + 𝑘2
𝑧) − 𝜔2

𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧 (5.3)

We can write that this equation shows that the Green function can be represented by a
superposition of plane waves.

note 1) As explained in the section of Ray Theory, the far-field term keeps its shape when the typical spatial scale of
the velocity structure is longer than the wavelength of interest.

note 2) In the 2-dimensional case as well as in the 3-dimensional case, the far-field of the Green function can be
approximated as 𝑒−𝑖𝑘𝑟 ??.

note 3) More exact conditions are required for the approximation of plane waves: (i) the curvature of the wavefront
can be neglected when focusing on wave propagation on spatial scales sufficiently short compared to the radius
of curvature of the wavefront. (ii) Near the epicenter, the radius of curvature becomes so small that a plane
wave cannot approximate it. From a simple estimation, it can be seen that the wave can be treated as a plane
wave in the region of approximately 𝑟 > 1/𝑘
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When considering the Green’s function of a semi-infinite medium, if we understand the
behavior of the "element" 𝑒−𝑖𝒌 ·𝒙 at the free boundary surface, we can understand the overall
behavior by superposition (inverse Fourier transform in the frequency domain). In other
words, understanding the behavior of the plane wave, 𝑒−𝑖𝒌 ·𝒙 on the free surface is the key to
understanding elastic wave propagation in a semi-infinite medium.

Fig. 5.1 Wavefront and ray for Green’s function for a 3-D in an infinite medium.

Summary of plane wave� �
When the source is enough far away from the source, the curvature of the wavefront
becomes small. In this case, the waveform can be approximated by a plane wave:

1. Plane wave is preserving its shape,
2. Plane wave has a plane wavefront,
3. Plane wave propagates perpendicular to the wavefronta.

In this case, the scalar variable 𝜙(𝑡 − 𝒑 · 𝒙) can be represented as a function of 𝑡 − 𝒌 · 𝒙.
𝒑 is quantity called as slowness defined as 𝒑 = 𝒌/𝛼 (acoustic wave).

a Exactly speaking, here we neglect the dispersion for simplicity.� �

Here we consider a propagating wave into the 𝑥 axis (𝑝𝑦 = 0). When 𝑝𝑥 > 1/𝛼, 𝑝𝑧 has
real value. Then it propagates into the 𝑧 direction (plane wave). with P-wave speed 𝛼 along
the slowness vector. On the ground (𝑧 = 0), at 𝑡 = 0 the wavefront is at the point of 𝑥 = 𝑧 = 0.
At 𝑡 = 𝜏 it is at the point of (𝜏/𝑝𝑥 , 0, 𝜏/𝑝𝑧). When we observed the waveform on the ground
using seismometers, it propagates in the 𝑥 direction with "apparent velocity" with 1/𝑝𝑥 . Thus
we can estimate the horizontal apparent velocity from the surface seismic observations.
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5.2.1 Plane wave in an elastic medium

𝑥

𝑧 p

Next, Let us consider an elastic wave with a sinu-
soidal shape at angular frequency 𝜔note 4), and slow-
ness vector 𝒑. Elastic potential 𝜙 and 𝝍 can be
written by note 5)

𝜙 = 𝐴𝛼𝑒
𝑖 (𝒌𝛼 ·𝒙−𝜔𝑡) = 𝐴𝛼𝑒

𝑖𝜔 (𝒑𝛼 ·𝒙−𝑡) (5.4)

𝝍 = 𝑨𝛽𝑒
𝑖 (𝒌𝛽 ·𝒙−𝜔𝑡) = 𝑨𝛽𝑒

𝑖𝜔 (𝒑𝛽 ·𝒙−𝑡) . (5.5)

The corresponding displacement is given by,

𝒔𝛼 (𝒙, 𝑡) = 𝐴𝛼𝒌𝛼𝑒𝑖 (𝒌𝛼 ·𝒙−𝜔𝑡) = 𝜔𝐴𝛼 𝒑𝛼𝑒
𝑖𝜔 (𝒑𝛼 ·𝒙−𝑡)

(5.6)

𝒔𝛽 (𝒙, 𝑡) = 𝒌𝛽 × 𝑨𝛽𝑒
𝑖 (𝒌𝛽 ·𝒙−𝜔𝑡) = 𝒑𝛽 × 𝑨𝛽𝜔𝑒

𝑖𝜔 (𝒑𝛽 ·𝒙−𝑡) .
(5.7)

The polarization vector of the P wave is parallel to the propagation direction 𝒑𝛼, whereas that
of the S wave is perpendicular with an ambiguity of the direction.

𝒑 is called as Slowness defined by 𝒑 = k/𝜔. The dimension is inverse of speed and is
parallel to the propagation direction. For example, the squared norm can be written by

𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧 =

1
𝛼2 . (5.8)

Inverse Fourier transform of 𝑒𝑖𝜔 (𝒑 ·𝒙−𝑡) gives us formula of general waveform. A waveform
of P wave propagates with keeping the shape as 𝒔𝛼 (𝒙, 𝑡) = 𝒑𝛼 𝑓 (𝑡 − 𝒑𝛼 · 𝒙), whereas that of
S wave propagate as 𝒔𝛽 (𝒙, 𝑡) = 𝒑𝛽 × 𝑨𝛽 𝑓 (𝑡 − 𝒑𝛽 · 𝒙).

5.2.2 Body wave and inhomogeneous wave

When 𝑝2 > 1/𝛼2, 𝑝𝑧 becomes imaginary. Using an definition of 𝑝𝑧 = 𝜉𝑖, the corresponding
potential is given by

𝜙 = 𝐴𝛼𝑒
𝑖𝜔 (𝑝𝑥 𝑥−𝜔𝑡)𝑒−𝜉 𝑧 . (5.9)

This equation shows that it decreases exponentially in the 𝑧 direction. The wave is called an
inhomogeneous wavenote 6) In an infinite medium, it diverges at infinity, it is a trivial solution
physically. However, when boundaries exist, it is possible to learn the boundary. Section 5.6

note 4) When we consider seismic wave propagation, the sign of the Fourier convention is different from other physical
cases, including the appendix of the previous chapter. To keep consistency a propagation in positive 𝒙 direction
as 𝑒𝑖 (𝒌 ·𝒙−𝜔𝑡 ) . Read the box of Aki and Richards for details. Please take care of the Fourier convention when
you read a paper of a textbook.

note 5) In seismology, when considering wave propagation, the sign on 𝜔 is often taken to be negative. The definition
of the Fourier transform is also often changed. This is to treat traveling waves as positive, and this is the sign
taken by Aki and Richards (2002) and Saito (2009). In seismology, too, Dahlen and Tromp (1998) use the
opposite sign, so it is important to be careful about which definition you are following.

note 6) This wave is also known as an evanescent wave or external wave in physics or meteorology.
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explains Rayleigh wave as a kind of inhomogeneous wave in a semi-infinite medium with a
free boundary.

Let us review the global propagation of seismic waves. We can categorize it into body
wave, which propagates in the Earth’s interior, and boundary/surface wave, which propagates
along a boundary including the Earth’s surface (Figure 5.2left). Figure 5.2 shows such an
example of Green’s functions using seismic interferometry. The Horizontal axis shows the
epicentral distance, whereas the vertical one shows the travel timenote 7). The figures show
global propagations of seismic surface waves and body waves. This section describes a brief
summary of seismic wave types.

In general, we can categorize seismic waves into body waves and boundary waves. Body
waves propagate in an internal body, whereas boundary waves travel along a boundary. A
surface wave is a kind of boundary wave trapped close to the free surface.

note 7) travel time is defined as the time from the origin time to the arrival time
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Fig. 5.2 Global propagation of body and surface waves. The waveforms are virtual
Green’s functions retrieved by cross-correlating ambient seismic wave field, also known as
microseisms(3) (see chapter 10 for details of seismic interferometry.)
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Body wave

波の進行方向

波の進行方向

圧縮
膨張

P波

S波

Fig. 5.3 A schematic figure of P and S wave
propagation.

We can categorize body waves into
P and S waves; the polarization of
the P wave is parallel to the propa-
gation direction, whereas that of the S
wave is perpendicular to the propaga-
tion direction (Figure 5.3). "P" origi-
nated from the Primary wave, and "S"
originated from the Secondary wave.
The deformation of the P wave is vol-
umetric, whereas that of the S wave
is shear. note 8)。In general, with de-
creasing temperature of the material,
the stiffness increases, which causes
the increase of P wave and S wave ve-
locities.

We all know well that P-waves prop-
agate faster than S-waves, and the
Omori formula for determining the

distance to the epicenter from the difference in arrival times of P-waves and S-waves note 9).
You may have also heard of the Earthquake Early Warning, which estimates the hypocenter
from the fast-moving P-waves and predicts the arrival of large tremors (S-waves).

Inhomogeneous waves: surface waves and boundary wave

Surface waves in an elastic medium can be categorized into Rayleigh waves, associated
with volumetric changes, and Lave waves associated with multiple reflections of SH waves in
a surface low-velocity layer.

5.2.3 Energy flux

The total energy of elastic medium per unit volume E can be written by the sum of the
kinetic energy E𝑘 and the strain energy E 𝑝 as

E = E𝑘 + E 𝑝 . (5.10)

Energy flux 𝑲 perpendicular to a unit area is given by(1)

𝑲 = −𝑻 · 𝜕𝑡 𝒔. (5.11)

note 8) A Web site of demonstration of body wave propagation.http://www.eri.u-tokyo.ac.jp/knishida/
Seismology/body_wave.html

note 9) (4) is available at http://hdl.handle.net/2261/32677

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/body_wave.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/body_wave.html
http://hdl.handle.net/2261/32677
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進行方向

Fig. 5.4 Rayleigh wave propagation. The
red color shows particle motions in retro-
grade, and the blue color shows those in pro-
grade.

進行方向振動
方向

Fig. 5.5 Love wave propagation.

By equipartition between the kinetic energy and the strain energy, the total energy can be
written by,

𝐸 = 𝜌𝜔2𝐴2, (5.12)

where 𝐴 is the displacement.
In particular, the energy flux of the P wave and that of the S wave are given by

𝑲 =

{
𝛼𝒏̂𝐸 P wave
𝛽𝒏̂𝐸 S wave,

(5.13)

where 𝒏̂ is a unit vector of the propagation direction. Conservation of energy is represented
by

𝜕𝐸

𝜕𝑡
+ ∇ · 𝑲 = 0. (5.14)

Problem 5.1

1. For a plane P wave, show that the kinetic energy is equal to the strain energy
as,

1
2
𝑇𝑖 𝑗𝐸𝑖 𝑗 =

1
2
𝜌

����𝜕𝒔𝜕𝑡 ����2 . (5.15)

2. Here we consider a wave form of P wave 𝒔 = 𝒑 𝑓 (𝑡 − 𝒑 · 𝒙) . Calculate the
energy flux.

3. For the inhomogeneous P wave with propagation in 𝑧 < 0 given by P wave
potential 𝜙 = sin(𝜔𝑡 − 𝑘𝑥) exp(𝜆𝑧). Then the displacement is written by

𝑠𝑥 = −𝑘 cos(𝜔𝑡 − 𝑘𝑥) exp(𝜆𝑧) (5.16)
𝑠𝑧 = 𝜆 sin(𝜔𝑡 − 𝑘𝑥) exp(𝜆𝑧). (5.17)

Calculate the energy flux.
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§5.3 SH wave and P-SV wave
Free surface condition on the ground is crucial for seismic wave propagations. For simplic-

ity, let us consider semi-infinite homogeneous medium in 𝑧 < 0 with free surface condition
on 𝑧 = 0 (𝑇𝑖𝑧=0) (Figure 5.7). By introducing the free surface, we can categorize S wave
into two. Figure 5.6 shows (1) vertically polarized S wave in 𝑥𝑧 plane (SV wave) and (2)
horizontally polarized S wave (SH wave). This category is also crucial for stratified Earth,
which is a good approximation at frequencies lower than several Hz.

In this chapter, the first section explains reflections and refraction of SH wave, and then we
will explain reflection, refraction, and conversion of SV waves.

5.3.1 Equations of motion and Hooke’s law

x

y

z

SHSV

Fig. 5.6 Propagations of SH wave and
SV waves and the polarization.

As shown in Figure 5.6, we take the 𝑦 axis
along the wave front,

𝜕

𝜕𝑦
= 0. (5.18)

Then, the equations of motion are given by

𝜌
𝜕2𝑠𝑥
𝜕𝑡2

=
𝜕𝑇𝑥𝑥
𝜕𝑥

+ 𝜕𝑇𝑥𝑧
𝜕𝑧

(5.19)

𝜌
𝜕2𝑠𝑦

𝜕𝑡2
=
𝜕𝑇𝑦𝑥

𝜕𝑥
+
𝜕𝑇𝑦𝑧

𝜕𝑧
(5.20)

𝜌
𝜕2𝑠𝑧
𝜕𝑡2

=
𝜕𝑇𝑧𝑥
𝜕𝑥

+ 𝜕𝑇𝑧𝑧
𝜕𝑧

, (5.21)

and Hooke’s law is given by

𝑇𝑥𝑥 = (𝜆 + 2𝜇) 𝜕𝑠𝑥
𝜕𝑥

+
�
��𝜆
𝜕𝑠𝑦

𝜕𝑦
+ 𝜆 𝜕𝑠𝑧

𝜕𝑧
(5.22)

𝑇𝑥𝑧 = 𝜇

(
𝜕𝑠𝑥
𝜕𝑧

+ 𝜕𝑠𝑧
𝜕𝑥

)
(5.23)

𝑇𝑦𝑥 = 𝜇

(
𝜕𝑠𝑦

𝜕𝑥
+
�
��
𝜕𝑠𝑥
𝜕𝑦

)
(5.24)

𝑇𝑦𝑧 = 𝜇

(
𝜕𝑠𝑦

𝜕𝑧
+
�
��
𝜕𝑠𝑧
𝜕𝑦

)
(5.25)

𝑇𝑧𝑧 = 𝜆
𝜕𝑠𝑥
𝜕𝑥

+
�

��𝜆
𝜕𝑠𝑦

𝜕𝑦
+ (𝜆 + 2𝜇) 𝜕𝑠𝑧

𝜕𝑧
. (5.26)

Let us drop the stress term and rearrange the equations as,

𝜌𝜕2
𝑡 𝑠𝑥 = (𝜆 + 𝜇)𝜕𝑥 (𝜕𝑥𝑠𝑥 + 𝜕𝑧𝑠𝑧) +𝜇(𝜕2

𝑥 𝑠𝑥 + 𝜕2
𝑧 𝑠𝑥) (5.27)

𝜌𝜕2
𝑡 𝑠𝑦 = +𝜇(𝜕2

𝑥 𝑠𝑦 + 𝜕𝑧2 𝑠𝑦) (5.28)

𝜌𝜕2
𝑡 𝑠𝑧 = (𝜆 + 𝜇)𝜕𝑧 (𝜕𝑥𝑠𝑥 + 𝜕𝑧𝑠𝑧) +𝜇(𝜕2

𝑥 𝑠𝑧 + 𝜕2
𝑧 𝑠𝑧) (5.29)
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𝑠𝑥 and 𝑠𝑦 are coupled with each other, whereas, 𝑠𝑦 is decoupled with the others. Because 𝑠𝑦
is polarized in a horizontal plane, the wave is called an SH wave. On the other hand, because
𝑠𝑥 and 𝑠𝑧 are composed of the P wave and vertical polarized S wave. the wave is called as
P-SV wave. As described in later sections, the separation of the SH wave field and P-SV wave
field is possible for a stratified Earth mode. Therefore, when we analyze seismic waveforms,
rotations of horizontal components from north-south component and east-west component
to transverse component (perpendicular to the great circle path between the source and the
receiver) and radial component (parallel to the path). The transverse component represents
the SH wave, and the radial component represents P-SV wavenote 10).

5.3.2 Plane waves in the case of P-SV and SH waves: how
to take the vector potential

When considering seismic wavefields, in particular, plane waves in the P-SV case (see next
section for details), it is useful to introduce a potential as explained in the 3.4.1section. As
already mentioned, there is one degree of freedom in the vector potential. When considering
wave propagation in a horizontal multilayer structure in Cartesian coordinates

𝑨 =
©­«
0
0
𝜒

ª®¬ +∇ × ©­«
0
0
𝜓

ª®¬ (5.30)

𝑆𝐻 𝑆𝑉

SV and SH can be separated,(6) and the outlook improves if we use the following formula.
Because of the arbitrary property of the vector potential, we can choose a convenient way
to take the vector potential for our problem. For future calculations, we will write down the
case of propagation along a two-dimensional 𝑥𝑧 plane. Assuming that the potential does not
depend on 𝑦, the partial derivative with respect to 𝑦 disappears, and we have a simple form.
Below unexplained components are set to zero.

P wave

𝑠𝑥 =
𝜕𝜙

𝜕𝑥
, 𝑠𝑦 = 0, 𝑠𝑧 =

𝜕𝜙

𝜕𝑧
(5.31)

𝐸𝑥𝑥 =
𝜕2𝜙

𝜕𝑥2 , 𝐸𝑥𝑧 =
𝜕2𝜙

𝜕𝑥𝜕𝑧
, 𝐸𝑧𝑧 =

𝜕2𝜙

𝜕𝑧2
(5.32)

𝑇𝑥𝑥 = 𝐸
(1 − 𝜈) 𝜕

2𝜙
𝜕𝑥2 + 𝜈 𝜕

2𝜙
𝜕𝑧2

(1 + 𝜈)(1 − 2𝜈) , 𝑇𝑥𝑧 =
𝐸

1 + 𝜈
𝜕2𝜙

𝜕𝑥𝜕𝑧
, 𝑇𝑧𝑧 = 𝐸

(1 − 𝜈) 𝜕
2𝜙
𝜕𝑧2 + 𝜈 𝜕

2𝜙
𝜕𝑥2

(1 + 𝜈) (1 − 2𝜈) (5.33)

note 10) Exactly speaking, this separation valid for the far field.
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SV wave

𝑠𝑥 =
𝜕2𝜓

𝜕𝑥𝜕𝑧
, 𝑠𝑦 = 0, 𝑠𝑧 =

𝜕2𝜓

𝜕𝑥2 (5.34)

𝐸𝑥𝑥 =
𝜕3𝜓

𝜕𝑥2𝜕𝑧
, 𝐸𝑥𝑧 =

1
2

(
𝜕3𝜓

𝜕𝑥𝜕𝑧2
− 𝜕3𝜓

𝜕𝑥3

)
, 𝐸𝑧𝑧 = −𝐸𝑥𝑥 (5.35)

𝑇𝑥𝑥 = −𝐸
(2𝜈 − 1) 𝜕3𝜓

𝜕𝑥2𝜕𝑧

(1 + 𝜈) (1 − 2𝜈) , 𝑇𝑥𝑧 =
𝐸

1 + 𝜈
1
2

(
𝜕3𝜓

𝜕𝑥𝜕𝑧2
− 𝜕3𝜓

𝜕𝑥3

)
, 𝑇𝑧𝑧 = −𝑇𝑥𝑥 (5.36)

SH wave

𝑠𝑥 = 0, 𝑠𝑦 = −𝜕𝜒
𝜕𝑥
, 𝑠𝑧 = 0 (5.37)

𝐸𝑥𝑥 = 0, 𝐸𝑥𝑦 = −1
2
𝜕2𝜒

𝜕𝑥2 , 𝐸𝑦𝑧 = −1
2
𝜕2𝜒

𝜕𝑥𝜕𝑧
, (5.38)

𝑇𝑥𝑥 = 0, 𝑇𝑥𝑧 = − 𝐸

1 + 𝜈
1
2
𝜕2𝜒

𝜕𝑥2 , 𝑇𝑦𝑧 = − 𝐸

1 + 𝜈
1
2
𝜕2𝜒

𝜕𝑥𝜕𝑧
(5.39)

In the following, the plane wave amplitudes are variables (e.g. 𝐴, 𝐵, 𝐶). In the next section,
we will use

𝜙 =
𝐴

𝜔𝑖
𝑒𝑖 (𝒌 ·𝒙−𝜔𝑡) 𝜓 = − 𝐵

𝑝𝑥𝜔2 𝑒
𝑖 (𝒌 ·𝒙−𝜔𝑡 𝐶

·𝒙 − 𝜔𝑡) (5.40)

and we will discuss the corresponding amplitudes by considering the potential that
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§5.4 Reflection of SH-wave at a
free surface

𝑥 axis
𝑧 axis

Fig. 5.7

Let us consider the reflection and refraction
of SH wave in a semi-infinite elastic medium
𝑧 <= 0 with a free surface on 𝑧 = 0. An
incident SH wave enters with incident angle
𝜑 can be represented by a general solution of
equation 5.28 as

𝑠𝑦 = 𝐴𝑒
−𝑖𝜔 (𝑡−𝑝𝑥 𝑥−𝑝𝑧 𝑧) + 𝐵𝑒−𝑖𝜔 (𝑡−𝑝𝑥 𝑥+𝑝𝑧 𝑧) ,

(5.41)
where 𝐴 and 𝐵 are integral constants. The
first term shows incident waves, and the second term shows the reflected wave. The free
surface condition is written by

𝑇𝑧𝑦 = −𝜇
𝜕𝑠𝑦

𝜕𝑧
= 0. (5.42)

Then the result of 𝐴 = 𝐵 exhibits the phase of the reflected wave is the same as that of the
incident wave. Displacement on the free surface is given by,

𝑠𝑦 = 2𝐴𝑒−𝑖𝜔 (𝑡−𝑝𝑥) , (5.43)

which is double as large as the incident wave.
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Fig. 5.8 Left: An example of seismograms of ScS reverberations when a deep earthquake
of Ogasawara on 2015/5/30. They are vertical components of broadband seismometers of
F-net band-pass-filtered from 30 s to 200 s. 。Right: Ray paths of ScS, sScS, ScS2, sScS2.

This reflected wave can be interpreted as the "mirror" of the incident wave to meet the
boundary condition. When we consider an incident wave 𝐴𝑒−𝑖𝜔 (𝑡−𝑝𝑥 𝑥−𝑝𝑧 𝑧) , superposition
between a mirror described by 𝐴𝑒−𝑖𝜔 (𝑡−𝑝𝑥 𝑥+𝑝𝑧 𝑧) and the incident wave satisfy the boundary
condition.
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Governing equation of SH wave is the same as the acoustic wave equation. However, the
boundary conditions are different. For the SH wave, stress 𝑇𝑧𝑥 and 𝑇𝑧𝑦 are vectors, whereas
the pressure for the acoustic wave is scalar. To meet the free surface condition of acoustic
wave at 𝑧 = 0, a mirror of −𝐴𝑒−𝑖𝜔 (𝑡−𝑝𝑥 𝑥+𝑝𝑧 𝑧) is needed. The sign is different from the SH
wave.

Figure 5.8 shows an example of reverberations of SH waves between the surface and the
core-mantle boundary (CMB). Because the outer core is liquid, CMB is also a free surface.
The figure shows many wave packets with fast apparent velocities, which correspond to
multiple reflections of vertically propagating SH waves between the surface and CMBnote 11)

The figure also shows the phase of ScS (reflected at CMB once) is the same as that of ScS2
(reflected at CMB twice).

note 11) The amplitudes attenuate with distance due to intrinsic attenuation of the material.
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§5.5 Reflection and conversion of
P-SV wave at a free surface

For a given angular frequency 𝜔, let us consider an incident P wave ( 𝒑𝑖𝑛𝛼 ), and an incident
SV wave ( 𝒑𝑖𝑛𝛽 ). The reflected P wave ( 𝒑𝑟𝑒 𝑓 𝑙𝛼 ), and the reflected SV wave ( 𝒑𝑟𝑒 𝑓 𝑙𝛽 ) can be
related by,

𝒔 = 𝑨𝑖𝑛𝛼 𝑒
𝑖𝜔 (𝒑𝑖𝑛𝛼 ·𝒙−𝑡) + 𝑨𝑟𝑒 𝑓 𝑙𝛼 𝑒𝑖𝜔 (𝒑𝑟𝑒 𝑓 𝑙

𝛼 ·𝒙−𝑡) + 𝑨𝑖𝑛𝛽 𝑒
𝑖𝜔 (𝒑𝑖𝑛𝛽 ·𝒙−𝑡) + 𝑨𝑟𝑒 𝑓 𝑙𝛽 𝑒𝑖𝜔 (𝒑𝑟𝑒 𝑓 𝑙

𝛽 ·𝒙−𝑡) , (5.44)

where 𝒔 is displacement, and 𝑨 represents polarization vector with the amplitudes. For
simplicity, we solve a problem in the 𝑥𝑧 plane for propagating wave into 𝑦 direction. The
slowness vectors and the polarization vectors are given by,

𝒑𝑖𝑛𝛼 =

(
𝑝
𝜉

)
, 𝒑𝑟𝑒 𝑓 𝑙𝛼 =

(
𝑝
−𝜉

)
, 𝒑𝑖𝑛𝛽 =

(
𝑝
𝜂

)
, 𝒑𝑟𝑒 𝑓 𝑙𝛽 =

(
𝑝
−𝜂

)
, (5.45)

𝑨𝑖𝑛𝛼 = 𝐴

(
𝑝
𝜉

)
, 𝑨𝑟𝑒 𝑓 𝑙𝛼 = 𝐵

(
𝑝
−𝜉

)
, 𝑨𝑖𝑛𝛽 = 𝐶

(
𝜂
−𝑝

)
, 𝑨𝑟𝑒 𝑓 𝑙𝛽 = 𝐷

(
𝜂
𝑝

)
, (5.46)

Then we can simplify the equations as,

𝑠𝑥 (𝑥, 𝑧)𝑒𝑖𝜔 (𝑡−𝑝𝑥) = 𝑝(𝐴𝑒𝑖𝜔𝜉 𝑧 + 𝐵𝑒−𝑖𝜔𝜉 𝑧) + 𝜂(𝐶𝑒𝑖𝜔𝜂𝑧 + 𝐷𝑒−𝑖𝜔𝜂𝑧) (5.47)

𝑠𝑧 (𝑥.𝑧)𝑒𝑖𝜔 (𝑡−𝑝𝑥) = 𝜉 (𝐴𝑒𝑖𝜔𝜉 𝑧 − 𝐵𝑒−𝑖𝜔𝜉 𝑧) + 𝑝(−𝐶𝑒𝑖𝜔𝜂𝑧 + 𝐷𝑒−𝑖𝜔𝜂𝑧). (5.48)

Later, this chapter explains the reflection and transmission coefficients of two cases: (1)
incident SV wave (𝐴 = 0), (2) incident P wave (𝐶 = 0) with boundary conditions of𝑇𝑧𝑥 (0) = 0,
and 𝑇𝑧𝑧 (0) = 0 as

2𝑝𝜉 (𝐴 − 𝐵) + (𝜂2 + 𝑝2)(𝐶 + 𝐷) = 0, (5.49)

(𝜂2 − 𝑝2) (𝐴 + 𝐵) − 2𝑝𝜂(𝐶 + 𝐷) = 0. (5.50)

Here we define polarization vectors as

𝒏̂𝑖𝑛𝛼 =

(
𝑝
𝜉

)
𝛼, 𝒏̂𝑟𝑒 𝑓 𝑙𝛼 =

(
𝑝
−𝜉

)
𝛼, (5.51)

𝒏̂𝑖𝑛𝛽 =

(
𝜂
−𝑝

)
𝛽, 𝒏̂𝑟𝑒 𝑓 𝑙𝛽 =

(
𝜂
𝑝

)
𝛽 (5.52)

In order to estimate the coefficients, we calculate the inner product between the polarization
vectors and displacement 𝒔.

5.5.1 P-wave incidence

The reflection coefficient from P wave to P wave 𝑅𝑃𝑃 = (𝐵/𝛼)/(𝐴/𝛼) is given by,

𝑅𝑃𝑃 = − (𝜂2 − 𝑝2)2 − 4𝑝2𝜉𝜂

(𝜂2 − 𝑝2)2 + 4𝑝2𝜉𝜂
. (5.53)
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𝑥 axis

𝑧 axis

𝜑𝜃

Fig. 5.9 P-wave incidence

The reflection coefficient from P wave to S wave 𝑅𝑃𝑆 = (𝐷/𝛽)/(𝐴/𝛼) is given by

𝑅𝑃𝑆 =
4𝑝𝜉 (𝜂2 − 𝑝2)

(𝜂2 − 𝑝2)2 + 4𝑝2𝜉𝜂

𝛼

𝛽
. (5.54)

Snell’s Law

As already explained, both incident and reflected waves must have a dependence of 𝑒−𝑝𝑥 in
order to satisfy the boundary conditions 𝑝. note 12). In order for 𝑝 to be a conserved quantity,
the incident and reflected angles must satisfy the following relation: i.e., Snell’s law,

sin 𝜑
𝛽

=
sin 𝜃
𝛼

. (5.55)

Conservation of energy

Consider the energy balance in a region on a thin region that includes the ground surface.
The vertical energy flux must be balanced between the incident and reflected waves. The
energy conservation law is given by

𝛼 cos 𝜃 = 𝛽 cos 𝜑 |𝑅𝑃𝑆 |2 + 𝛼 cos 𝜃 |𝑅𝑃𝑃 |2. (5.56)

Problem 5.2

1. Derive equation 5.53.
2. Derive equation 5.54.

note 12) as explained in the ray theory in chapter ??, where 𝑝 is a quantity that can be related to momentum. Therefore
we use 𝑝 associated with momentum
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5.5.2 SV-wave incidence

𝑥 axis

𝑧 axis

𝜑 𝜃

Fig. 5.10 SV-wave incidence

Consider the case of an SV wave with unit amplitude (𝐶 = 1) incident at an angle of 25◦ ( 𝜑
in figure5.10). Figure5.10 shows that each of them takes a non-zero value. In order to satisfy
the boundary condition, the stress must be zero when the superposition. In fact, the resultant
wavefield in the figure shows that the stress 𝑇𝑧𝑧 is zero at the surface. We search the values of
𝐵 and 𝐷 to meet the boundary condition: 𝑇𝑧𝑧 = 𝑇𝑥𝑧 = 0. Since the sum of the unknowns and
the number of boundary conditions are equal, we can find 𝐵 and 𝐷.

Reflection coefficient from S wave to S wave 𝑅𝑠𝑠 = (𝐷/𝛽)/(𝐶/𝛽) is written by

𝑅𝑆𝑆 =
(𝜂2 − 𝑝2)2 − 4𝑝2𝜉𝜂

(𝜂2 − 𝑝2)2 + 4𝑝2𝜉𝜂
. (5.57)

Here slowness and the incidental angles are related as, 𝑝 = sin 𝜃
𝛼 = sin 𝜑

𝛽 , 𝜉 = cos 𝜃
𝛼 , 𝜂 = cos 𝜑

𝛽 .
Reflection coefficient from S wave to P wave 𝑅𝑆𝑃 = (𝐵/𝛼)/(𝐶/𝛽) is given by,

𝑅𝑆𝑃 =
4𝑝𝜂(𝜂2 − 𝑝2)

(𝜂2 − 𝑝2)2 + 4𝑝2𝜉𝜂

𝛽

𝛼
. (5.58)

Corresponding conservation of energy is represented by

𝛽 cos 𝜑 = 𝛽 cos 𝜑 |𝑅𝑆𝑆 |2 + 𝛼 cos 𝜃 |𝑅𝑠𝑝 |2. (5.59)

Figure 5.12 shows the reflection coefficients.

Fig. 5.11 The stresses 𝑇𝑧𝑧 for reflected SV and reflected P waves when the SV wave is
incident at an angle of incidence (𝜑) of 25◦. This figure shows that the stress for the
superposed wave field is zero at the ground surface.
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Fig. 5.12 𝑅𝑠𝑝 has the finite value at its critical angle.

Snell’s law

Similarly, the continuity of displacement and stress at the boundary leads to Snell’s law.
The conservation of 𝑝 and Snell’s law hold as well as P-wave:

sin 𝜑
𝛽

=
sin 𝜃
𝛼

. (5.60)
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Critical angle

After the critical angle 𝜑𝑐
𝜑𝑐 = sin−1 𝛽

𝛼
, (5.61)

total reflection occurs. In this case, the 𝑧 component of the slowness of the converted P
wave becomes imaginary and cannot carry net energy in the vertical direction (known as an
inhomogeneous wave). The S-wave will be out of phase due to the inhomogeneous P-wave
sticking near the ground surface. note 13).

Inhomogeneous P wave

Let us consider the stress 𝑇𝑧𝑧 for the case where the SV wave is incident at an angle of 75◦
(𝜑) beyond the critical angle. Figure 5.13 shows the incident SV wave and the reflected SV
wave. The figure also shows that the phase of the reflected SV wave is out of phase by about
90 degrees (the incident SV wave is shaped like a half period of the sin function, while the
reflected SV wave is shaped like one period of the cos function). The figure also shows that
there are inhomogeneous P waves to meet the boundary conditions because of the phase shift
of the reflected SV. The inhomogeneous P-wave is localized at the reflection point, and we
can see that it is consistent with 𝑇𝑧𝑧 = 0.

Fig. 5.13 Stress 𝑇𝑧𝑧 for SV wave incident with angle 𝜑 of 75◦, the reflected SV wave and
the reflected P wave. wave. The superimposed stress field satisfies the boundary condition
of the free surface.

Conservation of energy

Let us consider the energy balance in a thin region along the Earth’s surface. surface. The
vertical energy flux must be balanced between the incident and reflected energy flux. Before
the critical angle, the energy conservation law is given by

𝛽 cos 𝜑 = 𝛽 cos 𝜑 |𝑅𝑆𝑆 |2 + 𝛼 cos 𝜃 |𝑅𝑆𝑃 |2. (5.62)

Since the reflected wave becomes evanescent after the critical angle, the net energy flux
becomes 0, which leads to the following relation,

1 = |𝑅𝑆𝑆 |2. (5.63)

note 13) As calculated in Problem 5.1, the inhomogeneous waves carry energy up and down at a local scale but zero
on a larger scale. When the wave incidents after the critical angle, the inhomogeneous P-wave accompanies
the S-wave at the surface. The inhomogeneous P wave receives energy vertically from the S-wave and returns
the energy with a slight time delay. The S wave is out of phase because of the temporary energy transfer by
the inhomogeneous P wave
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Problem 5.5

1. Derive equation 5.57.
2. Derive equation 5.58.
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Similarities and differences between SH and P waves

Both SH and P waves can be described by a single variable and behave very similarly
because they satisfy the scalar wave equation. However, the reflection coefficient changes
because the boundary conditions appear differently. Let us focus on this point here.

Here we consider an acoustic and an SH wave propagated in a 𝑥𝑧 plane. The governing
equations are given by

𝜌
𝜕2𝑝

𝜕𝑡2
= 𝜅

(
𝜕2𝑝

𝜕𝑥2 + 𝜕
2𝑝

𝜕𝑦2

)
(5.64)

𝜌
𝜕2𝑠𝑦

𝜕𝑡2
= 𝜇

(
𝜕2𝑠𝑦

𝜕𝑥2 +
𝜕2𝑠𝑦

𝜕𝑦2

)
. (5.65)

The equations show that both can be described by a two-dimensional scalar wave equation.
For example, if the speed of sound and SH wave velocity is the same, 𝑝 and 𝑠𝑦 have the same
solution.

One point should be noted, however. The acoustic wave takes pressure as a variable, while
the SH wave takes displacement as a variable. There is a big difference when considering
free surface. When considering acoustic waves, 𝑝 = 0 is the boundary condition at the free
surface. On the other hand, when we consider a free surface at 𝑧 = 0 (e.g., ??), the boundary
condition at the free surface for SH waves is given by

− 𝜌
𝜕𝑠𝑦

𝜕𝑧
= 0. (5.66)

This corresponds to the boundary condition of a rigid wall for acoustic waves. The reflection
coefficient at the surface with respect to pressure for P waves is -1, while for SH waves, the
reflection coefficient at the surface is 1. The difference is whether stress or displacement is
taken as the variable; in both cases, the stress at the surface is zero. The analogy with acoustic
waves is valid, but be careful how you choose the variables.

Problem 5.4

Let us consider P wave propagation in a 3-D half space of fluid.

1. As in the case of SH wave, estimate reflection coefficients for an incident plane
wave (P-wave) as a function of incident angle.

2. Compare the above result with P-wave reflection coefficients for the P-SV
problem. In particular, discuss it for the incidental angles of about 0◦ and 90◦.

3. As in the case of full space (see subsection 3.4.2), estimate the Green’s function
for an explosion source in a half-space of fluid. Discuss the behavior as the
source depth approach the free surface.
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5.5.3 Apparent incidental angle of P-SVwave

When we analyze seismic waveform, the particle motion is informative. For example,
Figure 5.5.3 shows the particle motion of P wave against radial and vertical components when
the deep earthquake at Ogasawara was recorded by the F-net station at Fukue. The figure
shows an inclined linear polarization. The inclination shows the approximate incidental angle.
This subsection describes this relation.

-60 0

0

-60

UD [µm/s]

Radial [µm/s]

Fig. 5.14 An example of particle motion
of P-wave against radial and vertical com-
ponents of F-net station at Fukue.

First, let us consider that the P wave enters
the free surface. The ratio between the vertical
displacement 𝑠𝑥 and the horizontal one 𝑠𝑦 is
given by

𝑠𝑥
𝑠𝑧

=
𝑝(𝐴 + 𝐵) + 𝜂𝐷
𝜉 (𝐴 − 𝐵) + 𝑝𝐷 =

2𝑝𝜂
𝜂2 − 𝑝2 = tan 2𝜑.

(5.67)
The inclination of P wave polarization (or ap-
parent incidental) 𝜃 ′ is twice as large as the
S-wave reflected angle as (Figure 5.12,

𝜃 ′ = 2𝜑. (5.68)

When the incident angle is enough small for a
Poisson medium (𝛼 =

√
3𝛽) relation between

the apparent incidental angle and the P-wave
incidental angle can be simplified as

𝜃 ′ = 2𝜑 ∼ 2𝛽
𝛼
𝜃 ∼ 1.15𝜃. (5.69)

This result shows that the P-wave incidental angle can be approximated by the apparent
incidental angle.

In the same manner, the incidental angle of the S wave can be related to apparent incidental
angle as.

𝑠𝑥
𝑠𝑧

=
𝑝𝐵 + 𝜂(𝐶 + 𝐷)

−𝜉𝐵 + 𝑝(−𝐶 + 𝐷) = −𝜂
2 − 𝑝2

2𝑝𝜉
(5.70)

When the incidental angle is small (this assumption is valid for teleseismic events), the
apparent incident angle can be related to the incident angle by

𝜑′ = 2
𝛽2

𝛼2 𝜑 = 2
𝛽

𝛼
𝜑. (5.71)

Here we assumed that the incidental angle is smaller than the critical angle.
It may seem somewhat intuitive that the direction of oscillation of the P wave coincides

with the direction of incidence, but it is by no means obvious. For example, consider the limit
𝛽 → 0, assuming a medium similar to a fluid. In this case, the direction of oscillation is 0
degrees. Let us consider the case of a fluid. In Fig 5.15, we consider a pressure source in
the ground. To satisfy the boundary conditions at the water surface, we consider a pressure
source with the opposite sign at the mirror-symmetric location. In this case, considering the
particle trajectory at the ground surface, it will move up and down. Since this relationship
holds at any time, the particle trajectory at the water surface is always vertical, regardless of
the angle of incidence.
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A pressure source

A virtual mirror

Fig. 5.15 Particle motion near the surface in fluid.

Problem 5.5

1. Derive equation 5.67.
2. Derive equation 5.70.
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§5.6 Rayleigh wave
Before this section, this chapter explains body waves that can propagate freely in the

vertical direction. Inhomogeneous waves accompany incoming SV after the critical angle.
Can inhomogeneous waves exist on their own? Rayleigh waves have energy near the surface
and are known to propagate horizontally. Figure 5.16 shows the observation record during
the 2014 Chilean earthquake. The waves labeled R1 and R2 are Rayleigh waves, which
propagate at an approximately constant speed. The Chilean earthquake excited Rayleigh
waves efficiently because the depth of the epicenter is 35 km, which is much shorter than the
wavelength of the waves. First, let us consider qualitatively the nature of Rayleigh waves.

5000 10000 15000 20000
秒

0

角
距
離
(度
)

IRISの広帯域観測点 (BHZ)
2014/4/1 23:46
周期200-1000秒のバンドバスフィルタ

R1 R2

R1
R2

Rayleigh波

Fig. 5.16 Waveforms in vertical components recorded by broadband seismometers when
the 2014 Chilean earthquake.
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When considering acoustic or SH wave propagation in a half-space, inhomogeneous waves
cannot exist alone because they cannot satisfy the boundary conditions at the free surface. On
the other hand, they can exist for P-SV propagations: known as Rayleigh waves.(5) Rayleigh
waves satisfy the free surface condition because P-wave-like and S-wave-like deformations
can exist simultaneously, which lean against each other at the surface. Rayleigh waves have
energy concentrated near the surface so that we can observe global propagation (Fig. 5.17).
We will first consider its properties qualitatively. First, let us consider the Rayleigh wave
note 14).

進行方向

Fig. 5.17 Schematic figure of Rayleigh
propagation. Red circles show particle
motions in retrograde, whereas blue ones
show those of prograde.

Let us consider a situation where an S-
wave enters the right direction while oscil-
lating vertically through an infinite medium.
We then cut out an infinite medium in the mid-
dle. Then, to satisfy the boundary condition of
zero stress at the free surface, the large stress
part will bulge out (the part with large volu-
metric strain). The free surface causes a large
deformation, and the effective elastic constant
decreases. As a result, the Rayleigh wave
propagates slower than the S-wave (about 90%
of the S-wave velocity). The particle motion
becomes elliptical because the phase of the
volume deformation is shifted by 90 degrees compared to that of the S-wave. Because the
horizontal propagation velocity is slower than the S-wave and P-wave velocities, they can only
exist as inhomogeneous wave. The amplitude decreases exponentially in the depth direction.
At the surface, the particle motion is in the opposite direction of the rotation of a bicycle
wheel (retrograde). On the other hand, in deeper regions (blue in the figure), the direction is
the same as the rotation of a bicycle wheel (prograde).

5.6.1 Can elastic waves along a free surface exist?

To consider this a little more quantitatively, let us now clarify the problem. Let us consider
the propagation in the 𝑥𝑧 plane and assume that it does not change in the 𝑦 direction, just as
we would consider the reflection and transformation of a P-SV wave at the free plane. The
boundary condition is given by 𝑇𝑧𝑧 = 𝑇𝑧𝑥 = 0 at the surface. To begin with, let us simply
consider if acoustic waves and SH waves can propagate horizontally in half space.

As you may recall from Figure 5.15, the reflection coefficient of an acoustic wave at a free
surface is −1. Because the incident and reflected waves cancel each other out, the acoustic
wave is not excited when an excitation source is near the free surface. Since the sign of the
mirror image is reversed in Figure 5.15, it can be interpreted that in the case of a very shallow
pressure source, the waves are not excited because they cancel each other out with the pressure
of the mirror image, which has the opposite sign. The fact that acoustic waves cannot be
excited by an explosive source near the water surface may, at first glance, seem inconsistent
with physical intuition. However, it makes physical sense when one considers that the elastic
energy is zero due to the free boundary surface (see also the 4.6 clause).

On the other hand, in the case of SH waves, the amplitude doubles at the surface and
is amplified since the reflection coefficient is 1 in the case of SH waves. In other words,
horizontally propagating waves do exist in the case of SH waves. This difference is due to the

note 14) see demo http://www.eri.u-tokyo.ac.jp/knishida/Seismology/Rayleigh_wave.html

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/Rayleigh_wave.html
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difference in boundary conditions. As mentioned before, the difference between displacement
and stress comes into play because the pressure satisfies the scalar wave equation for acoustic
waves, while 𝑠𝑦 satisfies it in the SH case. If so, is this possible for SV waves? It is impossible
because SV waves do not satisfy the boundary conditions when horizontally propagating.

5.6.2 A case of the reflection coefficient of zero

Let us now reconsider the number of boundary conditions. For the 𝑃 − 𝑆𝑉 problem, we
need two boundary conditions, 𝑇𝑧𝑧 = 0, 𝑇𝑧𝑥 = 0. If we now consider arbitrary incident waves,
we will need to add together two independent solutions to eliminate these two. This situation
corresponds exactly to the reflection/transformation wave for the incident wave at the free
surface in the previous section. The similarity means that a combination of the three waves is
required. So let us look at the SV incidence in Figure 5.12. 𝑅𝑆𝑆 in the figure shows two points
where the amplitude of the S reflection is zero. 𝑅𝑆𝑃 in the figure shows one point where the
P reflection is zero. The zeros show the possibility of combining the two waves to satisfy the
boundary condition if one looks for the appropriate frequency. Let us consider the possibility
of this kind of solution.

In the following, let us consider 𝑇 𝑝𝑧𝑥 , 𝑇
𝑝
𝑧𝑧 caused by an inhomogeneous P wave and 𝑇𝑆𝑧𝑥 , 𝑇𝑆𝑧𝑧

caused by an inhomogeneous SV wave. If we can find a phase velocity 𝑝 as the same stress
ratio 𝑇𝑧𝑥/𝑇𝑧𝑧 for two waves, the difference between the two normalizing solutions satisfies
the boundary condition. Now, let us look at the stress ratio for each wave.

Inhomogeneous P wave

Here, the scalar potential for an inhomogeneous P wave is defined by

𝜙 = 𝑒𝑖𝜔𝑝𝑥𝑒−𝜔𝜉𝑧𝑒−𝑖𝜔𝑡 . (5.72)

P-wave velocity 𝛼 satisfies the relation 𝛼−2 = 𝑝2 − 𝜉2. The result in section ?? leads to the
ration betwenn 𝑇𝑧𝑧 and 𝑇𝑧𝑥 :

𝑇𝑧𝑥
𝑇𝑧𝑧

= −𝑖 (1 − 2𝜈)𝜉𝑝
(1 − 𝜈)𝜉2 − 𝜈𝑝2 . (5.73)

In a case of Poisson material (𝜈 = 1/4), we can simplifies the relations by elimination of 𝜉:

𝑇𝑧𝑥
𝑇𝑧𝑧

= −𝑖 2
√
𝑝2 − 𝛼−2𝑝

2𝑝2 − 3𝛼−2 . (5.74)

Inhomogeneous SV wave

Here, the component of vector potential for an inhomogeneous SV wave is defined by

𝜕𝜓

𝜕𝑥
= 𝑒𝑖𝜔𝑝𝑥𝑒−𝜔𝜂𝑧𝑒−𝑖𝜔𝑡 . (5.75)

The S-wave velocity 𝛽 satisfies the relation 𝛽−2 = 𝑝2 − 𝜂2. The result in section ?? leads to
the stress ration between 𝑇𝑧𝑧 and 𝑇𝑧𝑥 as:

𝑇𝑧𝑥
𝑇𝑧𝑧

= −𝑖 (𝜂
2 − 𝑝2)
2𝑝𝜂

, (5.76)
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Fig. 5.18 Stress ratio 𝑇𝑧𝑥/𝑇𝑧𝑧 at the surface for slowness 𝑝. Here we consider a Poisson
material, and the slowness is normalized by the S-wave velocity. We plot them for 𝑝𝛽 > 1
because the vertical wavenumber becomes pure imaginary (which can propagate in the
vertical direction as body waves) for𝑝𝛽 < 1

In a case of Poisson material 𝛼 =
√

3𝛽 Elimination of 𝜂 leads to

𝑇𝑧𝑥
𝑇𝑧𝑧

= −𝑖 2𝑝2 − 𝛽−2

2𝑝
√
𝑝2 − 𝛽−2

. (5.77)

Let us compare the two stress ratios. Figure 5.18 shows that the two curves intersect when 𝑝
is slightly greater than 𝛽−1, which would represent the condition under which inhomogeneous
waves can exist alone. This corresponds to Rayleigh waves. Let us consider in more detail
the conditions under which the stress ratio at the surface is constant. The condition of equal
stress ratio leads to the following relation;

(𝜂2 − 𝑝2)2 + 4𝑝2𝜉𝜂 = 0. (5.78)

For the better understandings of the equation, we define 𝑋 ≡ 𝑝2𝛽2 and 𝛾2 ≡ 𝛼−2/𝛽−2. With
the squared stress ratios of the inhomogeneous P wave and the inhomogeneous SV wave, we
can rearrange the equation is as follows:

16(1 − 𝛾2)𝑋3 − (24 − 16𝛾2)𝑋2 + 8𝑋 − 1 = 0. (5.79)

In the case of Poisson material, the equation can be simplified as,

32𝑋3 − 56𝑋2 − 24𝑋 − 3 = 0, (5.80)

and the analytic solutions are given by

𝑋 =
1
4
,
3
4
±
√

3
4
. (5.81)

Only the last one satisfies the condition 𝑝 > 𝛽−1, and the solution corresponds to the solution
shown by Figure 5.18. What are the physical meanings of the other two solutions? The
incident angles estimated from 𝑝 are 30◦ and 34.3◦ for Poisson material. These two angles
correspond exactly to the zero crossing of the 𝑅𝑆𝑆 in Figure 5.12: i.e., the case where all



5.6. RAYLEIGH WAVE

91

incident S waves are converted to reflected P waves. Thus, the three solutions make physical
sense. In other words, the problem of finding a condition where the incident S-wave reflected
at the free surface is extended to the problem of finding a condition where the inhomogeneous
P-wave converted only the inhomogeneous SV-wave wave. We summarize the displacement
of the Rayleigh wave

𝑠𝑥 (𝑥, 𝑧, 𝑡) = 𝑖𝑝𝐵
[
𝑒𝜔𝜉𝑧 + 1 − 2𝑝𝛽

2𝑝𝛽
𝑒𝜔𝜂𝑧

]
𝑒𝑖𝜔 (𝑡−𝑝𝑥) (5.82)

𝑠𝑧 (𝑥, 𝑧, 𝑡) = 𝜉𝐵
[
𝑒𝜔𝜉𝑧 + 2𝑝𝛽

1 − 2𝑝𝛽
𝑒𝜔𝜂𝑧

]
𝑒𝑖𝜔 (𝑡−𝑝𝑥) , (5.83)

where𝜉 =
√
𝑝2 − 𝛼−2, 𝜉 =

√
𝑝2 − 𝛽−2 and 𝐵 is an integral constant. Also, in order to choose a

physically meaningful solution (no divergence at 𝑧 = −∞), the sign is chosen so that Im 𝜂 < 0,
Im 𝜉 < 0 The sign is chosen so that Im 𝜂 < 0, Im 𝜉 < 0.

Figure 5.19(a) shows the depth profile of Rayleigh wave amplitudes (𝑠𝑥 and 𝑠𝑧). It can be
seen that the amplitude decreases exponentially with depth. The major difference from the
entity wave is the phase shift between horizontal and vertical motion. The motion of particles
at the surface is plotted in Fig 5.19(b). Taking the real parts of 𝑠𝑋 and 𝑠𝑧 , we see that they
rotate in the direction of the arrows in the figure since 𝑠𝑥 − sin𝜔𝑡, 𝑠𝑧 = cos𝜔𝑡. Since the
Rayleigh wave is now traveling from left to right in the figure, we call it retrograde. note 15)

Also, the sign of 𝑠𝑥 reverses around 𝑧 = −0.25, so the direction of rotation is reversed at
deeper points. This direction is called the forward direction (prograde).

It’s hard to explain, so I created a demo page for Rayleigh waves on the web.note 16). Please
refer to them as needed.

Rayleigh waves are two-dimensional because they have energy only near the surface. The
behavior is, therefore, similar to that of a two-dimensional Green’s function. Especially since
the amplitude is proportional to 𝑟1/2. note 17) When the epicentral distance is far, the surface
waves are larger than the body waves. note 18) Also, surface waves are not efficiently excited
when the hypocenter is deeper than the wavelength (because they decay exponentially in the
depth direction).

5.6.3 As a problem of inhomogeneous S-wave incidence

Let us now interpret the Rayleigh wave as a reflection/transmission problem for P-SV
inhomogeneous waves. Let us take the horizontal slowness on the horizontal axis and calculate
the reflection and conversion coefficients even for values larger than the S-wave slowness
(Figure 5.20). Here we consider the same formulation as in the section ??. In this case, let us
assume that the incident SV waves are inhomogeneous waves and choose a solution that decays
exponentially in a vertically downward direction. Then we would have to choose a solution
where the reflected inhomogeneous SV waves diverge in amplitude with depth. At first glance,

note 15) It is easy to understand if you think of the direction of rotation of a bicycle wheel.
note 16) https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Rayleigh_wave.html
note 17) Roughly speaking, if the epicentral distance 𝑟 , amplitude 𝐴, and propagation velocity 𝑐𝑅 , the energy flux can

be written as 𝑐𝑟𝜌𝜔𝐴2 and

∇ · 𝑲 =
1
𝑟

𝜕

𝜕𝑟
(𝐾𝑟) = 0, (5.84)

which leads to 𝐴 ∼ 𝑟1/2.
note 18) Recalling the far-field term of Green’s function, we can see that the body waves are proportional to 𝑟−1. This

can be derived from considering the conservation of energy as well as surface waves.

https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Rayleigh_wave.html
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Fig. 5.19 (a) Depth profile of Rayleigh wave amplitudes. (b) Particle motion at the surface.

this seems physically impossible, but let us recall the representation theorem. By placing a
boundary surface at a depth where the amplitude of the incident SV wave is sufficiently small
and by imposing stress and displacement boundary conditions at the boundary surface, we
can treat inhomogeneous SV waves with increasing amplitude in the depth direction. In other
words, it can be realized by considering a bottom to the medium instead of a semi-infinite
medium note 19).

Figure5.20 is identical to Figure 5.12 when the incident angle of 90◦, which corresponds
to 𝑝𝛽 = 1. When 𝑝𝛽 is larger than 1, the incident SV wave also becomes an inhomogeneous
wave. There is a point where 𝑅𝑠𝑠 is zero at which 𝑝𝛽 = 1 is slightly larger than 1. This is
precisely the point where there are no reflected S waves. The corresponding inhomogeneous
P wave and inhomogeneous SV wave can take a downward decaying solution. Thus, the
problem can also be viewed as a generalization of the SV wave reflection and transformation
problem.

note 19) representation theorem is powerful because it makes it easy to consider virtual operations like this
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Fig. 5.20 We can see that 𝑅𝑠𝑠 is zero at the point where Slowness is slightly larger than
1/𝛽. Also, the conversion coefficient 𝑅𝑠𝑝 corresponding to Rayleigh waves is defined as
(𝐷/𝛼)/(𝐶/𝛽) (see section ??), which can be related to the particle motions on the ground
surface.

5.6.4 Eigen value problem

We have considered the conditions for the existence of Rayleigh waves, but the governing
equation is somewhat complicated, and it is difficult to understand the mathematical setup.
Therefore, for the plane wave case of the P-SV problem, we rearrange the equation of motion
(equation 5.19) and Hooke’s law (式 5.22). We choose 𝑠𝑥 , 𝑠𝑧 , 𝑇𝑥𝑧 , 𝑇𝑧𝑧 as variables to consider
the boundary conditions. Since the governing equations are partial derivatives of 𝑧 only, the
equation can be represented by the first-order ordinary differential equations for 𝑧,

𝑑

𝑑𝑧

©­­­«
𝑠𝑥
𝑠𝑧
𝑇𝑥𝑧
𝑇𝑧𝑧

ª®®®¬ =

©­­­­«
0 −𝑖𝜔𝑝 1

𝜇 0
−𝑖𝜔𝑝 𝜆

𝜆+2𝜇 0 0 1
𝜆+2𝜇

−𝜌𝜔2 + 𝜔2𝑝2 4𝜇 (𝜆+𝜇)
𝜆+2𝜇 0 0 −𝑖𝜔𝑝 𝜆

𝜆+2𝜇
0 −𝜌𝜔2 −𝑖𝜔𝑝 0

ª®®®®¬
©­­­«
𝑠𝑥
𝑠𝑧
𝑇𝑥𝑧
𝑇𝑧𝑧

ª®®®¬ , (5.85)

where、𝑇𝑥𝑥 , 𝑠𝑥 and 𝑇𝑧𝑥 are given by

𝑇𝑥𝑥 = 𝑖𝜔𝑝(𝜆 + 2𝜇)𝑠𝑥 + 𝜆
𝑑𝑠𝑧
𝑑𝑧
. (5.86)

In other words, it is a problem of integrating an ordinary differential equation from one
boundary to find 𝑝 such that the boundary condition is satisfied on the other. This is nothing
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but an eigenvalue problem. The setup of the problem in section 5.6.2 corresponds to starting
the integration from the bottom to meet the boundary conditions at the other side. The result
in section 5.6.3 corresponds to matching the boundary condition at infinity depth-integrated
from the ground surface. This treatment as an eigenvalue problem will be discussed in detail
in the chapter on normal mode theory.

ToDO: Excitation of Rayleigh wave
Polar phase shift

Problem 5.6

1. Show that the equation 5.79 has a solution with slowness greater than 𝑝 = 1/𝛽
for any elastic constant.

2. Illustrate the Rayleigh wave velocity versus Poisson’s ratio when 𝛽 = 1. Also,
discuss the physical meanings.

3. Calculate the ellipticity of the particle motion at the earth’s surface in the same
way and discuss it physically.



5.7. LAMB’S SOLUTION

95

§5.7 Lamb’s solution
We show a solution for Lamb’s solution for a half-space of 3-D elastic medium given by

Kausel 2014.(2) 𝑟 is distance, 𝜃 is azimuth, 𝜇 is shear modulus, 𝜌 is density, 𝜈 is Poisson’s
ratio,𝐶𝑅 is Rayleigh wave velocity,𝐶𝑠 is S-wave velocity,𝐶𝑃 is P-wave velocity, 𝑡 is time, 𝑎 is
𝐶𝑆/𝐶𝑃 , 𝜅 𝑗 is three dimensionless solution to the Rayleigh characteristic equation (= 𝐶𝑆/𝐶 𝑗 ),
𝛾 ≡ 𝜅1 = 𝐶𝑆/𝐶𝑅 is true Rayleigh root, and 𝜏 is dimensionless time 𝑡𝐶𝑆/𝑟 .

The Rayleigh characteristic equation is given by

16(1 − 𝑎2)𝜅6 − 8(3 − 2𝑎2)𝜅4 + 8𝜅2 − 1 = 0. (5.87)

𝐴 𝑗 =

(
𝜅2
𝑗−

1
2

)2√
𝑎2−𝜅2

𝑗

𝐷 𝑗
, 𝐵 𝑗 =

(
1−2𝜅2

𝑗

) (
1−𝜅2

𝑗

)
𝐷 𝑗

, 𝐶 𝑗 =

(
1−𝜅2

𝑗

)√
𝑎2−𝜅2

𝑗

𝐷 𝑗

𝐷 𝑗 =
(
𝜅2
𝑗 − 𝜅2

𝑖

) (
𝜅2
𝑗 − 𝜅2

𝑘

)
, 𝑖 ≠ 𝑗 ≠ 𝑘

(5.88)

𝑢𝑧𝑧 (𝑟, 𝜏) =
(1 − 𝜈)
2𝜋𝜇𝑟



1
2

©­­«1 −
3∑
𝑗=1

𝐴 𝑗√
𝜏2 − 𝜅2

𝑗

ª®®¬ , 𝑎 < 𝜏 < 1

1 − 𝐴1√
𝜏2 − 𝛾2

, 1 ≤ 𝜏 < 𝛾

1, 𝜏 ≥ 𝛾

(5.89)

𝑢𝑟 𝑥 =
(cos 𝜃)
2𝜋𝜇𝑟



1
2
(1 − 𝜈)𝜏2

3∑
𝑗=1

𝐶 𝑗√
𝜏2 − 𝜅2

𝑗

, 𝑎 < 𝜏 < 1

1 + (1 − 𝜈)𝜏2 𝐶1√
𝜏2 − 𝑟2

, 1 ≤ 𝜏 < 𝛾

1, 𝜏 ≥ 𝛾

(5.90)

𝑢𝜃𝑥 =
(1 − 𝜈)(− sin 𝜃)

2𝜋𝜇𝑟


1
2

1 −
3∑
𝑗=1
𝐶 𝑗

√
𝜏2 − 𝜅2

𝑗

 , 𝑎 < 𝜏 < 1

1 − 𝐶1
√
𝜏2 − 𝛾2, 1 ≤ 𝜏 < 𝛾

1, 𝜏 ≥ 𝛾

(5.91)
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SH-wave propagation
from a point source in

a medium with two
layers

Chapter 6

On October 8th, 1909, at Kulpa Valley, a huge earthquake occurred, then it causes severe
damage. A Croatian meteorologist/seismologist Andrija Mohorovičić collected seismograms
in Europe, and plot the travel time curve as shown in Figure 6.1. He discovered a discontinuity
at depth of 54 km. The P-wave velocity of the crust is 5.68 km/s, whereas that of the mantle
is 7.75 km/s. Now it is known as Mohorovičić discontinuity (Moho discontinuity).(2) In this
chapter, we learn how to infer discontinuity based on behaviors of reflected and refracted
waves from a point source. For simplicity, we focus on SH wave propagations.

In the previous chapter, we learned the reflection and refraction of plane waves. They are
fundamental to interpreting seismic wave propagation because a seismic wave field can be
represented by a superposition of plane waves as,

𝜙(𝒙, 𝑡) =
∫ ∞

−∞
𝑑𝜔

∫ ∞

−∞
𝑑𝑘𝑥𝑑𝑘𝑦𝐴(𝑘𝑥 , 𝑘𝑦 , 𝜔)𝑒

𝑖

[
𝑘𝑥 𝑥+𝑘𝑦 𝑦+

(
𝜔2
𝛼2 −𝑘2

𝑥−𝑘2
𝑦

)1/2
𝑧−𝜔𝑡

]
. (6.1)

Based on the results, we consider seismic wave propagations in a two-layer medium together
with features of Green’s function in an infinite medium. For simplicity, we will consider SH
wave (or acoustic wave equivalently) in this chapter.
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Fig. 6.1 Observed travel-time curves for the 1909 earthquake, taken from a paper trans-
lated into English (4) from Croatian(4) by Mohorovičić (1910).

§6.1 Reflection and refraction on
an internal boundary

6.1.1 SH wave

medium 1: 𝛽1

medium 2: 𝛽2

z

x

𝜃2

𝜃1

Fig. 6.2

Next, we consider reflection and refraction on a
boundary inside an infinite elastic medium (Fig-
ure 6.2). A semi-infinite medium 2 𝑧 < 0 is
welded to the medium 1 𝑧 > 0. The incident SH
wave enters downward in medium 1, then it is
reflected in medium 1 and refracted to medium 2.
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Corresponding plane wave solutions are given by

𝑧 > 0 :𝑠𝑦 = 𝐴1𝑒
−𝑖𝜔 (𝑡−𝑝1𝑥 𝑥−𝑝1𝑧 𝑧) + 𝐵1𝑒

−𝑖𝜔 (𝑡−𝑝1𝑥 𝑥+𝑝1𝑧 𝑧)

(6.2)

𝑧 < 0 :𝑠𝑦 = 𝐴2𝑒
−𝑖𝜔 (𝑡−𝑝2𝑥 𝑥−𝑝2𝑧 𝑧) . (6.3)

The first term of 𝑠1 shows incident wave, the sec-
ond term shows reflected wave, and 𝑠2 shows re-
fracted wave in medium 2. To meet the boundary condition of the continuity of displacement,
the horizontal slowness should be the same as 𝑝1𝑥 = 𝑝2𝑥 . The condition is identical to Snell’s
law as

sin 𝜃1

𝛽1
=

sin 𝜃2

𝛽2
. (6.4)

To meet the condition of continuity of displacement on 𝑧 = 0, 𝐴1 + 𝐵1 = 𝐴2 is required.
Moreover, to meet the boundary condition of continuity of stress, 𝜇1𝑝1𝑧 (𝐴1 − 𝐵1) = 𝜇2𝑝2𝑧𝐴2
is also required. Then corresponding the reflection coefficient 𝑅12 and the transition coefficient
𝑇12 are given by

𝑅12 =
𝐵1

𝐴1
=
𝜇1𝑝1𝑧 − 𝜇2𝑝2𝑧

𝜇1𝑝1𝑧 + 𝜇2𝑝2𝑧
=
𝜌1𝛽1 cos 𝜃1 − 𝜌2𝛽2 cos 𝜃2

𝜌1𝛽1 cos 𝜃1 + 𝜌2𝛽2 cos 𝜃2
(6.5)

𝑇12 =
𝐴2

𝐴1
=

2𝜇1𝑝1𝑧

𝜇1𝑝1𝑧 + 𝜇2𝑝2𝑧
=

2𝜌1𝛽1 cos 𝜃1

𝜌1𝛽1 cos 𝜃1 + 𝜌2𝛽2 cos 𝜃2
. (6.6)

Conservation of energy

Sum Energy flux which enters a unit area on 𝑧 = 0 is 𝐾𝑖𝑛 cos 𝜃1 should be same as the sum
of the reflected wave (𝐾𝑟𝑒 𝑓 𝑙 cos 𝜃1), and refracted wave (𝐾𝑡𝑟𝑎𝑛𝑠 cos 𝜃2). In the case of SH
wave, the conservation of energy is given by

𝜌1𝛽1 cos 𝜃1 = 𝜌1𝛽1 cos 𝜃1 |𝑅12 |2 + 𝜌2𝛽2 cos 𝜃2 |𝑇12 |2. (6.7)

Total reflection

When 𝜃2 > 𝜃1, total reflection occurs for incident angle 𝜃1 is larger than the critical angle
𝜃𝑐 defined by

𝜃𝑐 = sin−1 𝛽1

𝛽2
. (6.8)

In this case, since 𝑝2𝑧 becomes imaginary, the refracted wave in medium 2 decreases expo-
nentially with 𝑧. The refracted wave cannot transfer energy downward in medium 2.

On the other hand, although the reflection coefficient 𝑅12 is imaginary, the absolute value is
1 (the numerator is complex conjugate to the denominator). When we consider conservation
of energy of equation 6.7, |𝑅12 |2 is 1 and |𝑇12 |2 = 0. This also means the phase of the reflected
wave is advanced when the total reflection is. The phase of 𝑅12 is given by

𝑎𝑟𝑔𝑅12 = −2 tan−1 𝜇2𝑖𝑝2𝑧

𝜇1𝑝1𝑧
= −2 tan−1

𝜇2

√
𝑝2 − 𝛽−2

2

𝜇1

√
𝛽−2

1 − 𝑝2
(6.9)

When 𝜇2 goes infinity, the reflection coefficient 𝑅12 = −1 represents reflection at a rigid wall.
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Acoustic impedance

For simplicity, here we consider equation 6.10 for vertically propagating wave (𝜃 = 0). The
reflection and transmission coefficients are give by

𝑅12 =
𝜌1𝛽1 − 𝜌2𝛽2

𝜌1𝛽1 + 𝜌2𝛽2
(6.10)

𝑇12 =
2𝜌1𝛽1

𝜌1𝛽1 + 𝜌2𝛽2
. (6.11)

𝜌𝛽 is called acoustic impedance, which shows resistance of entering wave. The equation
shows the impedance contrast determines the reflection and transmission coefficients. The
acoustic impedance is defined as the ratio between stress and particle velocity as an analogy
of resistance of the electric circuit.

With increasing 𝜌2𝛽2, the transmitted wave is harder to enter. When the two acoustic
impedances match with each other as 𝜌1𝛽1 = 𝜌2𝛽2, no reflection occurs. Even if seismic
velocities of two media are the same, a reflected wave occurs owing to the density contrast. In
summary, the reflection and transmission coefficients do not contain information on seismic
velocity contrast but also on density contrast. The coefficients are crucial for exploring density
contrast at discontinuities of the Earth.

6.1.2 Reflection, refraction, and conversion of P-SV at an
internal boundary

Because the calculation is complex, here I show only the results note 1)

𝑎 = 𝜌2 − 2(𝜇2 − 𝜇1)𝑝2 𝐾 = 𝑎𝜉1 + 𝑏𝜉2 𝑁 = 𝑎𝜂1 + 𝑏𝜂2 (6.12)

𝑏 = 𝜌1 + 2(𝜇2 − 𝜇1)𝑝2 𝐿 = 𝑑 − 2(𝜇2 − 𝜇1)𝜉1𝜂2 𝑀 = 𝑑 − 2(𝜇2 − 𝜇1)𝜉2𝜂1 (6.13)

𝑑 = 𝜌2 − 𝜌1 − 2(𝜇2 − 𝜇1)𝑝2 𝐷 = 𝐾𝑁 + 𝑝2𝐿𝑀 (6.14)

SV wave incidence

Medium 2: 𝛼2, 𝛽1

Medium 1: 𝛼1, 𝛽1
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Fig. 6.3

𝑅𝑆𝑆 =
1
Δ
{−(𝑎𝜂1 − 𝑏𝜂2)𝐾 + 𝑝2 [𝑑 + 2(𝜇2 − 𝜇1)𝜉2𝜂1]𝐿}

(6.15)

𝑅𝑆𝑃 = − 𝛽1

𝛼1

2𝑝𝜂1

Δ
[𝑎𝑑 + 2(𝜇2 − 𝜇1)𝑏𝜉2𝜂2]

(6.16)

𝑇𝑆𝑆 =
𝛽1

𝛽2

2𝜌1𝜂1𝐾

Δ
(6.17)

𝑇𝑆𝑃 =
𝛽1

𝛽2

2𝜌1𝑝𝜂1𝐿

Δ
(6.18)

note 1) Read ki and Richards (2002) or斎藤 (2009) in detail.
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ここで
𝑝 =

sin 𝜃1

𝛼1
=

sin 𝜃2

𝛼2
=

sin 𝜑1

𝛽1
=

sin 𝜑2

𝛽2
(6.19)

𝜉2
𝑖 =

1
𝛼2
𝑖

− 𝑝2, 𝜂2
𝑖 =

1
𝛽2
𝑖

− 𝑝2, 𝛾2
𝑖 = 2𝛽2

𝑖 𝑝
2. (6.20)

P wave incidence

Medium 2: 𝛼2, 𝛽2

Medium 1: 𝛼1, 𝛽1
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Fig. 6.4

𝑅𝑃𝑃 =
1
Δ
{(𝑎𝜉1 − 𝑏𝜉2)𝑁 − 𝑝2 [𝑑 + 2(𝜇2 − 𝜇1)𝜉1𝜂2]𝑀}

(6.21)

𝑅𝑃𝑆 = −𝛼1

𝛽1

2𝑝𝜉1

Δ
[𝑎𝑑 + 2(𝜇2 − 𝜇1)𝑏𝜉2𝜂2]

(6.22)

𝑇𝑃𝑃 =
𝛼1

𝛼2

2𝜌1𝜉1𝑁

Δ
(6.23)

𝑇𝑃𝑆 =
𝛼1

𝛼2

2𝜌1𝑝𝜉1𝑀

Δ
(6.24)

𝑅𝑃𝑃 =
1
Δ
{(𝑎𝜉1 − 𝑏𝜉2)𝑁 − 𝑝2 [𝑑 + 2(𝜇2 − 𝜇1)𝜉1𝜂2]𝑀} (6.25)

𝑅𝑃𝑆 = −𝛼1

𝛽1

2𝑝𝜉1

Δ
[𝑎𝑑 + 2(𝜇2 − 𝜇1)𝑏𝜉2𝜂2] (6.26)

𝑇𝑃𝑃 =
𝛼1

𝛼2

2𝜌1𝜉1𝑁

Δ
(6.27)

𝑇𝑃𝑆 =
𝛼1

𝛼2

2𝜌1𝑝𝜉1𝑀

Δ
(6.28)
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Fig. 6.5 Reflection, transmission and conversion coefficients at a boundary taken from斎
藤 (2009).(9)
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6.1.3 Asymptotics for near vertical incident

This section describes the asymptotics of the coefficients for the near vertical incident (𝑝
is enough small). Here we neglect higher order terms of 𝑝 than 2.

P wave incident

𝑅𝑃𝑃 =
𝜌2𝛼2 − 𝜌1𝛼1

𝜌2𝛼2 + 𝜌1𝛼1
(6.29)

𝑅𝑃𝑆 = −2𝛼1𝑝 [𝜌2 (𝜌2 − 𝜌1)𝛼2𝛽2 + 2𝜌1 (𝜇2 − 𝜇1)]
(𝜌2𝛼2 + 𝜌1𝛼1)(𝜌2𝛽2 + 𝜌1𝛽1)

(6.30)

𝑇𝑃𝑃 =
2𝜌1𝛼1

𝜌2𝛼2 + 𝜌1𝛼1
(6.31)

𝑇𝑃𝑆 =
2𝜌1𝛼1𝑝 [(𝜌2 − 𝜌1)𝛼2𝛽1 − 2(𝜇2 − 𝜇1)]

(𝜌2𝛼2 + 𝜌1𝛼1)(𝜌2𝛽2 + 𝜌1𝛽1)
. (6.32)

S wave incident

𝑅𝑆𝑆 =
𝜌2𝛽2 − 𝜌1𝛽1

𝜌2𝛽2 + 𝜌1𝛽1
(6.33)

𝑅𝑆𝑃 = −2𝛽1𝑝 [𝜌2 (𝜌2 − 𝜌1)𝛼2𝛽2 + 2𝜌1 (𝜇2 − 𝜇1)]
(𝜌2𝛼2 + 𝜌1𝛼1) (𝜌2𝛽2 + 𝜌1𝛽1)

(6.34)

𝑇𝑆𝑆 =
2𝜌1𝛽1

𝜌2𝛽2 + 𝜌1𝛽1
(6.35)

𝑇𝑆𝑃 =
2𝜌1𝛽1𝑝 [(𝜌2 − 𝜌1)𝛼2𝛽1 − 2(𝜇2 − 𝜇1)]

(𝜌2𝛼2 + 𝜌1𝛼1) (𝜌2𝛽2 + 𝜌1𝛽1)
. (6.36)

𝑅𝑃𝑃 and 𝑅𝑆𝑆 can be represented by impedance as in SH wave. Surprisingly, the conversion
coefficients (e.g. 𝑇𝑃𝑆 , 𝑅𝑃𝑆) is sensitive to density contrast and S-wave contrast explicitly.
Figure shows that this first-order approximation is valid for a large extent of slowness 𝑝.

§6.2 Radiation of seismic wave
from a point source: wavefront and
ray path

Here we consider propagations of a wave packet 𝑓 (𝑡). Amplitude in 𝑦 component 𝑠𝑦 is
given by

𝑠𝑦 (𝒙, 𝑡) = 𝐴(𝒙) 𝑓 (𝑡 − 𝑇 (𝒙)), (6.37)

where 𝑇 (𝒙) is the arrival time at a location 𝒙, and 𝐴(𝒙) is the amplitude. The isocontour for
the same arrival time of 𝑇 (𝒙) is known as the "wavefront". The ray is perpendicular to the
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wavefront. The direction of the ray is represented by 𝒏̂ ≡ 𝛽∇𝑇 , where 𝛽 is the S-wave velocity.
The comparison with a plane wave shows that ∇𝑇 corresponds to the slowness vector.

Figure 6.6 shows a typical example of wavefronts for two-layer medium. The wavefronts
are associated with ripples spread out when a single pebble is dropped into water.

For understanding ray paths, the physical interpretation is feasible. Here we consider that
the spatial variation of 𝐴 is enough loner than the wavelength. Because the spatial derivative
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of 𝐴 is negligible, the displacement is written as,

∇𝑠𝑦 = −𝐴∇ 𝑓 = −𝐴𝑑𝑓
𝑑𝑡

∇𝑇 (6.38)

The energy flux 𝑲 is given by
𝑲 = 𝛽𝒏̂𝜌 ¤𝑓 2𝐴2. (6.39)

Conservation of energy along the ray path gives us the information of the amplitude. Figure
6.7 shows a typical example of ray paths.

A comparison of ray paths for reflection before the critical angle with the corresponding
wavefronts in Figure 6.6 is easy to interpret. On the other hand, the behavior after the critical
angle is complex. Total reflection after the critical angle causes the split between the transited
and reflected wave packets. The following section explains the behavior.

§6.3 Behaviors at a discontinuity
of seismic wave

In the previous chapter, we learned about reflection and transmission at a discontinuity for
a plane wave. Based on the results, let us consider behaviors of seismic waves excited by a
point source (Green’s function) on the discontinuity. They are categorized into 4 types: direct
wave, reflection wave, head wave, and transmitted wave.

Travel Time

𝑟
𝑟𝑐

0

−ℎ

The mirror

𝑟𝑐

𝜑𝑐

𝛽1

𝛽2

Fig. 6.7

6.3.1 Direct wave

First, let us consider the direct wave. For simplicity, we neglect free surfaces on the
ground. The green line in Figure 6.7 shows the direct wave. The SH-wave propagation can be
represented by a Green’s function in an infinite homogeneous medium. Of course, the travel
time 𝑇 is proportional to the epicentral distance between the source and the station as

𝑇 (𝑟) = 𝑟/𝛽1, (6.40)
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where 𝑟 is the epicentral distance for the station and source in the 𝑥𝑦 plane. For a point source
in the 3-D medium, the amplitude decreases with 1/𝑟 , which is given by the conservation of
energy along the path as,

𝐴𝑑 ∼ 1
4𝜋𝑟

𝑒𝑖𝑘𝛽1𝑟𝜇1𝛽1 (6.41)

6.3.2 Reflected wave

Next, let us consider the reflection wave. The orange line shows the reflection wave. The
mirror symmetric source for the discontinuity (𝑧 = −ℎ) help us to understand the ray path.
The travel time is given by

𝑇 = 2
√
ℎ2 + (𝑟/2)2/𝛽1, (6.42)

and the amplitude is given by

𝐴𝑟 ∼
1

4𝜋𝑅0𝜇1𝛽1
𝑅12 ( 𝒑)𝑒𝑖𝑘𝛼1𝑅0 , (6.43)

where 𝑅12 is the reflection coefficient again. Because 𝑅12 is real before the critical angle,
the reflection does not cause the phase shift. However, total reflection after the critical angle
causes the phase shift, and the amplitude equals to 1. They are also known as post-critical
reflections or wide-angle reflections.

After a critical angle, the behaviors become complex such as the splits of wavefronts and the
phase shift. Behaviors of a head wave are key to understanding the complexity, as explained
in the next subsection.

6.3.3 Head wave

Fig. 6.9 A schematic figure of head wave based
on Huygens’ principle.

The third type is a head wave (also
known as a refracted wave). The wave
enters the second layer with a critical
angle, and it propagates in the horizon-
tal direction along the uppermost part
of the second layer (Figure 6.7). The
travel time 𝑇𝐻 is given by

𝑇𝐻 (𝑟) =
𝑟 − 𝑟𝑐
𝛽2

+ 𝑟𝑐
cos 𝜑𝑐𝛽1

. (6.44)

The amplitude 𝐴 is written by

𝐴ℎ𝑒𝑎𝑑 ∼ 𝑖

2𝜋𝜔𝜇1𝛽1

𝜌2𝛽2

𝜌1 (1 − 𝛽2
1/𝛽2

2)
1

√
𝑟𝐷3/2 𝑒

𝑖𝜔𝑡ℎ

(6.45)
Although the frequency- and distance- dependencies are difficult to understand, I try to explain
in an intuitive manner.

Figure 6.6 shows wavefronts of the direct and the reflected and refracted wave share a point
on the boundary. After the critical reflection, they are split into two groups: one is a direct
and reflected wave, and the other is a head wave and transmitted wave. Exactly speaking,
inhomogeneous waves along the boundary also exists.
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Fig. 6.8 Example of wide-angle reflection. After the critical angle, we can see the
reflected wave arrives before the ray theoretical value because of the phase shift due to the
inhomogeneous wave.

Let us consider the details of the split. A major difference between the two groups originated
from the fact that the direct wave cannot enter the second layer into the second medium. When
the transition from the transmitted wave to the inhomogeneous wave in the second layer, let
us consider a secondary point source with a spatial scale of about the wavelength at 𝑟𝑐 (finite
frequency effect) based on the representation theorem, which is a natural extension of Huygens
principle. As in the case of diffraction at a narrow slit, an SH wave is radiated in the right
direction. Although the ray path of the head wave seems to be parallel to the boundary in
layer 2, the path is slightly inclined to owe the source depth of an about wavelength. Thus SH
wave is transmitted toward layer 1, as predicted by the Huygens principle. The incident angle
can be estimated to be 90◦𝜑1 ∼ 𝐷/𝜆 The corresponding transmission coefficient 𝑇12 can be
approximated by

𝑇21 =
2𝜌2𝛽2 cos 𝜑2

𝜌1𝛽1 cos 𝜑1 + 𝜌2𝛽2 cos 𝜑2
∼ 2𝜌2𝛽2𝜆/𝐷
𝜌1𝛽1 cos 𝜑𝑐

∼ 1
𝐷𝜔

(6.46)

The amplitude decreases as 𝑟−1/2𝐷−1𝐷−1/2, where (1) 𝑟−1/2 represents geometrical spreading
of the wavefront in 𝑥𝑦 plane, (2) 𝐷−1/2 represents geometrical spreading of the wavefront in
𝑥𝑧 plane, and (3) 𝐷−1 represents contribution by the transmission coefficient. The frequency
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dependence of𝜔 can be explained by the frequency dependence of the incident angle 𝜑1, which
is proportional to the inverse of the wavelength. This is why the low-frequency component of
the head wave is emphasized. This equation exhibits that the head wave can be represented by
the integration of the direct wave in time domainnote 2). An example of observation in Figure
6.16 shows the dominance of low-frequency components in the head wave.

Because a realistic Earth structure is more complex, the ray path is not so simple. For
example, the Pn wave (head wave for Moho discontinuity) is refracted in the uppermost
mantle: the behavior may be easy to understand. The next section explains such a case.
note 3)。

note 2) The phase delay of 𝑖 is explained by caustic introduced in the next section. A more exact discussion
mathematically is given by Aki and Richards(1) for example. In the textbook, the complex integral is used for
the evaluation. On the other hand, I try to explain these features in a physically intuitive manner in this lecture.

note 3) See Stein and Wysession(8) §3.2.3 for details.
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6.3.4 Transmitted wave
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Fig. 6.10

Last, let us consider the transmitted wave. Because this
wave does not return to the surface, of course, we cannot
measure the travel time at a surface station.

𝐴𝑡 ∼
1

4𝜋
√
𝑟
𝑇12 ( 𝒑)

(
𝑟1 + 𝑟2

𝛽2 cos2 𝜑1

𝛽1 cos2 𝜑2

)−1/2
, 𝑒𝑖 (𝑘𝛼1𝑟1+𝑘𝛼2𝑟2)

(6.47)
where 𝑟1 is the length of line OA, 𝑟2 is length of line AB,
and 𝑟 is length of line OB. A wavefront enters the discon-
tinuity with incident angle 𝜑1, and it is transmitted with
the emergency angle 𝜑2. Let us estimate the amplitude at
point B based on energy conservation. Figure 6.10 shows
a cross-section of the 3-D medium along line OB. 𝛿𝑙 shows
interception length at point B perpendicular to the ray path.
A simple geometrical estimation leads to

𝛿𝑙 =
cos 𝜑2

cos 𝜑1

(
𝑟1 + 𝑟2

𝛽2 cos2 𝜑1

𝛽1 cos2 𝜑2

)
𝛿𝜑. (6.48)

0

𝜃

𝑟𝛿𝜃

Fig. 6.11 Enter of a ray path toward the discontinuity. The ray path is refracted to the
radial direction, whereas it is not toward the tangential direction.

Figure 6.11 shows a bird’s view of the ray path. The ray path is refracted to the radial
direction (on 𝑟𝑧 plane), whereas it is not toward the tangential direction (𝜃). Therefore a
cross-section area at point 𝛿𝑟 away from the origin is given by 𝛿𝑟2𝛿𝜃𝛿𝜑, and a cross-section
area at point B is given by 𝑟𝛿𝜃𝛿𝑙. Here we define amplitude 𝐴𝑖 on a unit sphere in medium 1.
The conservation of energy along the ray leads to(

𝜌2𝛽2 cos 𝜑2

𝜌1𝛽1 cos 𝜑1
|𝑇12 |2

)
𝜌1𝐴

2
1𝜔

2𝛽1𝛿𝜑𝛿𝜃 = 𝜌2𝐴
2
𝑡𝜔

2𝛽2𝛿𝑙𝑟𝛿𝜃. (6.49)

Note that the transmission coefficient is multiplied by 𝜌2𝛽2 cos 𝜑2
𝜌1𝛽1 cos 𝜑1

.

Energy normalization of reflection and transmission coefficients

In the previous chapter, I explained the reflection and transmission coefficients. They are
defined by the amplitude ratio between the incident wave and the transmitted or reflected
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wave. When we consider energy conservation, energy normalization of the coefficients gives
us the physical meaning explicitly.

Conservation of energy (eq. 6.51) for the reflection and transmission is given by

𝜌1𝛽1 cos 𝜑1 = 𝜌1𝛽1 cos 𝜑1 |𝑅12 |2 + 𝜌2𝛽2 cos 𝜑2 |𝑇12 |2. (6.50)

Both sides divided by 𝜌1𝛽1 cos 𝜑1 leads to

1 = |𝑅12 |2 +
���� 𝜌2𝛽2 cos 𝜑2

𝜌1𝛽1 cos 𝜑1
𝑇12

����2 . (6.51)

Here we define a energy normalized transmission coefficient 𝑇𝑛𝑜𝑟𝑚12 as,

𝑇𝑛𝑜𝑟𝑚12 =

√
𝜌2𝛽2 cos 𝜑2

𝜌1𝛽1 cos 𝜑1
𝑇12

note 4). (6.52)

Thus, this section explains the behaviors of Green’s function for a two-layer medium. In
the next section, I will introduce ray theory for discussions of seismic wave propagations in a
multi-layer structure.

Problem 6.1� �
Derive eq. 6.48. This is a simple geometrical problem.� �

note 4) See a textbook by Shearer(7) for details. Sections of ray theory are easy-to-grasp.
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Fig. 6.12

6.3.5 Evaluation of integral: stationary phase approxi-
mation

The previous sub-section physically interpreted direct, reflected, transmitted, and head
waves. Now let us consider them more quantitatively.

As mentioned at the beginning of this chapter, wave propagation in a two-layer medium
can be exactly evaluated by decomposing it into plane waves and multiplying each plane wave
by the reflection-transmission coefficient and integrating it in the wavenumber domain. This
expression can be naturally extended to cylindrical waves (Hankel function) and is expressed
as The potential 𝜒𝑑 representing a direct wave is given by the integration of slowness as

𝜒𝑑 =
𝜔

4𝜋𝜇1

∫ ∞

−∞
𝐻 (1)

0 (𝜔𝑝𝑟) 𝑒
𝑖𝜔𝜉1 |𝑧 |

−2𝑖𝜉1
𝑝𝑑𝑝. (6.53)

Here, let us consider a case of 𝜉1 becomes imaginary. As 𝜒𝑑 is physically meaningful (not
diverging) for 𝑝 −→ ∞, we define the sign as

𝜉1 =


√
𝛽−2

1 − 𝑝2 |𝑝 | ≤ 1/𝛽1,√
𝑝2 − 𝛽−2

1 𝑖 |𝑝 | > 1/𝛽1.
(6.54)

Potentials 𝜒𝑟 and 𝜒𝑡 for reflected and transmitted waves are also given by

𝜒𝑟 =
𝜔

4𝜋𝜇1

∫ ∞

−∞
𝑅12 (𝑝)𝐻 (1)

0 (𝜔𝑝𝑟) 𝑒
𝑖𝜔𝜉1 |𝑧+2ℎ |

−2𝑖𝜉1
𝑝𝑑𝑝, (6.55)

𝜒𝑡 =
𝜔

4𝜋𝜇1

∫ ∞

−∞
𝑇12 (𝑝)𝐻 (1)

0 (𝜔𝑝𝑟) 𝑒
𝑖𝜔 ( 𝜉1ℎ−𝜉2 (𝑧+ℎ))

−2𝑖𝜉1
𝑝𝑑𝑝. (6.56)

It is important to note that the reflection potential 𝜒𝑟 represents both reflected and head waves.
This integral is numerically evaluated in Figure 6.13. note 5). The direct wave is impulsive,

showing that it propagates without changing its shape. The head wave is clearly visible from

note 5) 𝜉1 has a singularity. In order to avoid the singularity in the numerical integration, we gave a very small
imaginary part to the elastic constants. This physically corresponds to giving a weak damping
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around 60 km, and it is also evident that it is predominantly long-period. The reflected waves
are pulse-like at stations close to the epicenter (up to about 20 km), but when it exceeds the
critical angle (wide-angle reflection), the reflected waves gradually shift in phase.

The numerical integration results show that, indeed, this integral (Weyl’s table expression)
seems to be correct. To grasp this integral roughly, let us consider its approximate behavior.
Here we will consider direct-directed wave as the simplest case.

First, assuming that the propagation distance is sufficiently large compared to the wave-
length, the Hankel function is approximated by

𝐻 (1)
0 (𝑧) ∼

√
2
𝜋𝑧
𝑒𝑖 (𝑧−𝜋/4) . (6.57)

Then, 𝜒𝑑 can be approximated by

𝜒𝑑 ∼ 1
4𝜋𝜇1

√
2𝜔
𝜋𝑟
𝑒−𝑖 𝜋/4

∫ ∞

−∞

𝑒𝑖𝜔 (𝑝𝑟+𝜉1 |𝑧 |)

−2𝑖𝜉1

√
𝑝𝑑𝑝. (6.58)

Here we consider a case for 𝑧=20 km, 𝑟 = 30 km, 𝑓 = 2𝜋5 [Hz], and 𝛽 = 3 km/s, Figure 6.15
plot the integrand

𝑒𝑖𝜔 (𝑝𝑟+𝜉1 |𝑧 |)

−2𝑖𝜉1

√
𝑝. (6.59)

The figure shows the oscillatory shape in most locations, but the oscillation stops near 𝑝𝛽1 =
0.8. When integrated, the contribution near this point becomes large.

Let us now evaluate the integral using stationary phase method. Because the part of the
gentle oscillation shows a location where the phase change is small,

𝑑𝜔(𝑝𝑟 − 𝜉1 |𝑧 |)
𝑑𝑝

= 0. (6.60)

Then,
𝑑 (𝑝𝑟 − 𝜉1 |𝑧 |)

𝑑𝑝
= 𝑟 − |𝑧 | 𝜉1

𝑑𝑝
= 𝑟 − |𝑧 |𝑝

𝜉1
= 0. (6.61)

Therefore, the contribution of the integral near 𝑝 (called the stationary point) which satisfy

𝑝0 =

√
𝑟2

𝛽2
1𝑑

2
(6.62)

becomes large, where 𝑑 is the distance
√
𝑟2 + 𝑧2.

Although the calculations are a little complicated note 6), the integrand can be evaluated by
Tayler expansion up to the second order. Because the first-order term disappears from the
condition to be the stationary point, we can evaluate the correpsonding phase up to the second
order as

𝜔(𝑝𝑟 − 𝜉1 |𝑧 |) = 𝜔
(
𝑑

𝛽1
− 𝑑3𝛽1

|𝑧 |2
(𝑝 − 𝑝0)2

2

)
. (6.63)

note 6) This subsection plant to explain stationary phase method. The following is a simple calculation policy, but
since the calculations are complicated. You can skip over the evaluations below.
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With an assumption that 𝜉1 and 𝑝 are enough small near the stationary point, the inegrand 𝜒𝑑
can be evaluated up to the second order terms of the Tayler expansion as

𝜒𝑑 ∼ 1
4𝜋𝜇1

√
2𝜔
𝜋𝑟
𝑒−𝑖 𝜋/4

∫ ∞

−∞

𝑒
𝑖𝜔

(
𝑑
𝛽1

− 𝑑3𝛽1
|𝑧 |2

(𝑝−𝑝0 )2
2

)
−2𝑖 |𝑧 |

𝑑𝛽1

√
𝑝0𝑑𝑝, (6.64)

where
𝜉1 |𝑝=𝑝0 =

|𝑧 |
𝑑𝛽1

. (6.65)

This integral can be calculated by using the Fresnel integral∫ ∞

−∞
𝑒−𝑖𝑎

2𝑥2
𝑑𝑥 =

1
|𝑎 |

√
𝜋𝑒−𝑖 𝜋/4. (6.66)

Although the calculation is complicated, the potential 𝜒𝑑 can be calculated as

𝜒𝑑 ∼ 1
4𝜋𝜇1

√
2𝜔
𝜋𝑟
𝑒
𝑖
(
𝜔 𝑑

𝛽1
+ 𝜋

4

)
𝑑𝛽1

√
𝑝0

2|𝑧 |

∫ ∞

−∞
𝑒
−𝑖𝜔

(
𝑑3𝛽1
2|𝑧 |2

𝑝2
)
𝑑𝑝 (6.67)

=
1

4𝜋𝜇1

√
2𝜔
𝜋𝑟
𝑒
𝑖
(
𝜔 𝑑

𝛽1
+ 𝜋

4

)
𝑑𝛽1

√
𝑝0

2|𝑧 |

∫ ∞

−∞
𝑒
−𝑖𝜔

(
𝑑3𝛽1
2|𝑧 |2

𝑝2
)
𝑑𝑝 (6.68)

=
1

4𝜋𝜇1

√
2𝜔
𝜋𝑟
𝑒
𝑖
(
𝜔 𝑑

𝛽1

) √
𝑟𝜋

2𝑑
√
𝜔

(6.69)

=
1

4𝜋𝜇1𝑑
𝑒
𝑖𝜔 𝑑

𝛽1 . (6.70)

For an external force
𝐻 (𝑡)∇ × (0, 0, 𝛿(𝒙)), (6.71)

we can evaluate displacement 𝐴𝑑 from the potential 𝜒𝑑 as

𝐴𝑑 =
1

4𝜋𝜇1𝛽1𝑑
𝑒
𝑖𝜔 𝑑

𝛽1 , (6.72)

which is identical to the exact solution by chance.
Next, let’s consider reflected and head waves (𝜒𝑟 and 𝜒𝑡 ). The reflected wave is similar to

the direct wave, with a larger contribution from the stationary phase. Next, let’s consider the
envelope. You can see that the shape of the envelope changes dramatically at around 𝑝𝛽2 = 1.
This is because the reflection coefficient changes significantly at around the critical angle.
At the point, the condition of stationary phase approximation, which is required to apply the
stationary phase method, does not hold. Therefore, even when oscillating rapidly outside
the stationary point, the integral contribution near 𝑝𝛽1 does not cancel each other out. This
contribution corresponds to the head wave.
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Fig. 6.13 An example of numerical evaluation of the integrated for 𝛽1 = 3 [km/s], 𝛽2 = 5
km/s and 𝑟ℎ𝑜1 = 𝑟ℎ𝑜2. The hypocenter is located at 𝑧 = 10 km and the observed station is
located at 𝑧 = 15 km.
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Fig. 6.14 The integrated of the direct wave for 𝑧=20 km, 𝑟 = 30 km, 𝑓 = 2𝜋5 [Hz], 𝛽 = 3
km/s. This figure shows rapid　 oscillations.
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Fig. 6.15 The integrated of the reflection wave and the head wave for　 𝑧=20 km, 𝑟 = 30
km, 𝑓 = 2𝜋5 [Hz] and 𝛽 = 3 km/s. This figure shows rapid　 oscillations.
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6.3.6 An example of actual records

Figure 6.16 shows a record section when an earthquake with Mj 5.2 at Shimane prefecture
on June 4th 2011. The figure shows the first arrivals of Pg (direct wave, which propagates in
the crust) up to an epicentral distance of about 170 km. Farther than the distance, the first
arrivals are Pn wave arrivals (head wave for Moho discontinuity). The dominant frequency
of the Pn wave is longer than the direct wave (Pg wave). In contrast, reflection phases (PmP)
exhibit complex wave propagations. The complexity originated from scattering owing to
lateral heterogeneities in the crust. At higher frequencies, the travel times of the first arrivals
give us robust information because they are not disturbed by the scattering.

The slopes of Pg and Pn show that 𝛽1 ∼ 6 km/s, and 𝛽2 ∼ 8 km/s. A cross-over point
between Pg- and Pn-arrivals at distance 𝑥𝑑 is given by 𝑥𝑑 = 2ℎ

√
(𝛽1 + 𝛽2)/(𝛽2 − 𝛽2). Based

on the observed 𝑥𝑑 of about 170 km, the crust thickness is estimated to be 30 km. Although,
of course, this estimation is oversimplified, a similar simple estimation is feasible for grasping
the propagation properties. For a more realistic situation, the ray theory introduced in the
next chapter is feasible.
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Fig. 6.16 Seismograms recorded by Hi-net station against the epicentral distances when
an earthquake with Mj 5.2 at Shimane prefecture on June 4th in 2011. Although the
first arrivals are easy to pick, the later phases show complex propagation properties. The
complex features originated from lateral heterogeneities in the crust, although the lateral
heterogeneities in the Chugoku region are weakest in Japan islands
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Problem 6.2� �
The website demonstrates SH-wave propagation in a two-layer medium (2-D). Based on
the seismograms, we can estimate (1) the S-wave ratio between the 1st layer and the 2nd
layers and (2) the density ratio between the 1st layer and the 2nd layers.

1. Using the whole wave field (depth section in the upper panel), estimate the S-wave
ratio between the layer and the density ratio.

2. Using only surface records (seismograms shown in the lower panel) estimate the
S-wave ratio between the layer and the density ratio.

Here we assume that the source depth is known. You do not need to consider
measurement errors.
http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.
html

Fig. 6.17 Example of the demonstration� �

http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.html
http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.html
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§6.4 Inhomogeneous wave: Love
wave and Scholte wave

In the case of a semi-infinite medium, only a Rayleigh wave can exist as an inhomogeneous
wave; what about the two-layer case? Let us consider the case where there is a layer of
thickness ℎ below the surface welded with a semi-infinite medium below it (Figure6.18). An
inhomogeneous wave can exist because the wave is trapped in the above low-velocity layer.
First, for the SH wave case, we will consider a wave known as Love wave.(3) Next, for the
case where the first layer is fluid and the second layer is solid, it is known as Scholte wave.(6)

We will consider each wave in this section.

0 𝑋 (𝑝)

−ℎ

𝑧

𝛽1

𝛽2

Fig. 6.18

6.4.1 Love wave

進行方向振動
方向

Fig. 6.19 A snapshot of a demon-
stration of Love wave propagation.
Sea the following web application:
https://www.eri.u-tokyo.ac.
jp/people/knishida/Seismology/
Love_wave.html. Play the application
for the understandings.

First, let us consider how the Love wave
propagates (Figure6.19). ◦ in the figure shows
a marker for the ground displacement. You
can see in the figure how the ground is de-
formed horizontally. Move the cursor over
the figure and press the s key on the keyboard;
the Love wave starts to propagate to the right.
The circle moving 　 in the font of the page
is shown in red and the circle moving in the
back of the page is shown in light blue.

Love waves occur when a soft layer over-
lies a hard layer. For example, a soft crust
overlying a stiff mantle. In this figure, cir-
cles are placed every 10 km along the vertical
axis (depth) and every 6.25 km along the hor-
izontal axis (horizontal). The fourth ◦ in the
depth direction is at the boundary between the
crust and the mantle (the Moho discontinuity). You can see how the waves are efficiently

https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Love_wave.html
https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Love_wave.html
https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Love_wave.html
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propagating horizontally through the crust.
You can see how the shape of the wave has changed compared to the beginning of the wave

and its propagation. The red areas extend both horizontally and vertically. On the other hand,
the green part is concentrated near the surface. You can see the delayed propagation of the
green part. The speed of wave propagation changes depending on the wavelength and the
shape of the wave changes. This phenomenon is called dispersion. In this case, waves with
longer wavelengths travel faster, and waves with shorter wavelengths travel slower. This is
because long waves are strongly affected by the stiff layer (deep layer: mantle).

Standing wave

This sub-section has described the properties of the Love wave qualitatively, but physically
it can be thought of as a standing wave with the energy trapped in the first layer. Let us
consider the case where 𝛽2 is infinite (bottom is a rigid wall) as an extreme limit. This is the
problem of the so-called oscillation of an air column. Assuming that the wave propagates in
the vertical direction, the stress is zero at the surface, so 𝑠𝑦 ∝ cos(𝑘𝑧 − 𝜔𝑡). At depth ℎ, the
phase is 𝜋 shifted due to the fixed edge. At the ground surface, the phase is not shifted by
reflections because of the open edge. Therefore, considering that the phase difference with
the wave reflected there is 2𝜋,

𝑘 · 0 − 𝜔𝑡 = 𝑘 (2ℎ) − 𝜔𝑡 + 𝜋 + 2𝑛𝜋. (6.73)

Because 𝜆 = 2𝜋/𝑘 , we obtain the following relation:

𝜆 = − 2ℎ
𝑛 + 1

2
. (6.74)

Let us make a similar estimate for the Love wave below.
Since we are now considering a situation where energy is trapped in the first layer, we

assume that the incident wave is totally reflected beyond the critical angle (see section ??).
The phase of the reflection at the boundary between the first and second layers is shifted by

𝑎𝑟𝑔𝑅12 = −2 tan−1 𝜇2𝑖𝑝2𝑧

𝜇1𝑝1𝑧
= −2 tan−1

𝜇2

√
𝑝2 − 𝛽−2

2

𝜇1

√
𝛽−2

1 − 𝑝2
. (6.75)

The difference from the air column case is that once the wave is reflected, it returns to the
surface point 𝑋 (Figure6.18). This means that the phase of the incident SH wave at (𝑋, 0)
must be the same as that of the reflected wave. The two-way travel time 𝑇 can be written by

𝑇 = 2
√
𝑋2 + ℎ2. (6.76)

During the propagation, the incident wave advances in phase by 𝑋𝑝. The condition requires
the following relation:

𝑇 + 𝑎𝑟𝑔𝑅12 = 𝑝𝑋 + 2𝑛𝜋. (6.77)

Because
𝑋 =

𝑝ℎ√
𝛽−2

1 − 𝑝2
(6.78)
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in summary, we obtain the following relation:

tan
[
ℎ𝜔

√
𝛽−2

1 − 𝑝2
]
=
𝜇2

√
𝑝2 − 𝛽−2

2

𝜇1

√
𝛽−2

1 − 𝑝2
. (6.79)

This equation is known as the characteristic equation for Love waves. To improve the
perspective of the equation, we can rewrite the relation as

tan
(
ℎ𝜔

𝛽1
𝛽1𝜂1

)
=
𝜇2

𝜇1

√
1 − (𝛽1/𝛽2)2 − (𝛽1𝜂1)2

𝛽1𝜂1
, (6.80)

where we define 𝜂1 ≡
√
𝛽−2

1 − 𝑝2, and we choose 𝛽1𝜂1 　 as a variable. Figure 6.20 showsｔ
he left and right sides of the equation are plotted as functions of 𝛽1𝜂1, respectively.　When
the two lines cross each other, the condition is satisfied and a Love wave can exist.
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Fig. 6.20 Root of the characteristic equation of a Love wave for ℎ = 30 km, 0.2 Hz,
𝛽1 = 3 km/s, 𝛽2 = 4 km/s, 𝜌1 = 2.5 g/cm3 and 𝜌2 = 2.8 g/cm3.
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Fig. 6.21 Depth distribution of
Love wave amplitudes. Ampli-
tudes of each mode are normalized
at the surface.

The right side can exist if 𝛽1𝜂1 is smaller than√
1 − (𝛽1/𝛽2)2. Since the left side is tan, we know

that at least one solution can exist. This solution is
called the fundamental mode. In the current situa-
tion (0.2∼ Hz), we can see that three solutions exist.
They are called the fundamental mode (zeroth-order
mode), first higher mode, and second higher mode,
respectively, starting from the one with smaller 𝛽1𝜂1
(i.e., longer wavelength).

Consider the conditions for the existence of a first
higher mode. As the frequency decreases, the dashed
line moves to the left. It cannot exist when the phase
of tan is left of 3𝜋/2. This requires

𝜋
𝛽1

ℎ𝜔
≤

√
1 − (𝛽1/𝛽2)2. (6.81)

The cut-off frequency of an 𝑛th higher mode 𝑓 𝑐𝑢𝑡𝑛 is
given by

𝑓 𝑐𝑢𝑡𝑛 =
𝑛𝛽1

2ℎ
1√

1 − (𝛽1/𝛽2)2
. (6.82)

Let us consider the displacement distribution as a
function of depth for each mode. Figure 6.21 shows
the depth distribution of displacement for each mode.
You can see that the energy is confined in the low-
velocity layer (layer 1), and in layer 2, it decays ex-
ponentially with increasing depth. The oscillation of the air column corresponds to the
fundamental mode, first-order mode, and second-order mode, starting from the one with the
smaller number of nodes.

Jeans relation

Phase velocity and group velocity

The phase velocity (𝑝−1) of the Love wave for each frequency is plotted in Figure6.22.
For each mode, the phase speed (solid line) is 𝛽2 on the long-period side and monotonically
decreases as the frequency increases, approaching 𝛽1. The fundamental mode exists from
frequency 0, while a higher-order mode has a cutoff frequency on the low-frequency side.
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Fig. 6.22 Dispersion curves for the Love wave. Phase velocity is shown as a solid line and
group velocity as a dashed line. Here we assumed that ℎ = 30 km, 0.2 Hz, 𝛽1 = 3 km/s,
𝛽2 = 4 km/s, 𝜌1 = 2.5 g/cm3 and 𝜌2 = 2.8 g/cm3.
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Fig. 6.23 Dispersion curves of Love waves propagating through the Japanese Islands
observed by Hi-net tiltmeters. See(5) for details of the analysis.

Here is an example of an observed dispersion of Love waves. Figure 6.23 is the dispersion
curve of the Love wave recorded by the Hi-net tiltmeters, which shows the fundamental
mode, the first, second, and third higher modes. It represents the average features of the
Japanese Islands. There is a cutoff at 4.5 km/s, indicating that the mantle S-wave velocity is
approximately 4.5 km/s. In addition, the phase velocity of the fundamental mode is slower
for shorter periods. This is because the crust cannot be represented as a single layer, and the
shallow and slower layer reduces the phase velocity.

Surface waves have different propagation speeds at different frequencies. This phenomenon
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is called dispersion. Here, for simplicity, we consider the following wave propagation:∫ 𝜔0+Δ𝜔

𝜔0−Δ𝜔
𝑒𝑖 (𝑘 (𝜔)𝑥−𝜔𝑡)𝑑𝜔, (6.83)

where 𝜔 is angular frequency, 𝑘 (𝜔) is wavenumber and 𝑥 represents the location.
The Taylor expansion　 of 𝑘 (𝜔) around the center frequency 𝜔0 leads to

𝑘 (𝜔) ≈ 𝑘0 +
𝑑𝑘

𝑑𝜔
(𝜔 − 𝜔0) + O(2). (6.84)

If Δ𝜔 is enough small, we can simplify the equation as

∫ 𝜔0+Δ𝜔

𝜔0−Δ𝜔
𝑒𝑖 (𝑘 (𝜔)𝑥−𝜔𝑡)𝑑𝜔 ≈ 𝑒𝑖 (𝑘0𝑥−𝜔0𝑡)

∫ Δ𝜔

−Δ𝜔
𝑒𝑖𝜔

′( 𝑑𝑘
𝑑𝜔 𝑥−𝑡)𝑑𝜔′ = 𝑒𝑖 (𝑘0𝑥−𝜔0𝑡)

2 sin
(
𝑥
𝑐𝑔

− 𝑡
)

𝑥
𝑐𝑔

− 𝑡 ,

(6.85)
where group velocity 𝑐𝑔 is defined by 𝑑𝜔/𝑑𝑘 . The phase propagates with 𝜔0/𝑘0, and the
envelope (sinc function sin 𝑥/𝑥) propagates with the group velocity 𝑐𝑔.
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Fig. 6.24 波の分散。

The results of the actual numerical integra-
tion are shown in Figure 6.24. Unlike the sim-
ple case with no dispersion, you can see that
the waveform is propagating while changing
its shape. Lines with the same amplitude (in-
phase) propagate with a phase speed of 𝜔/𝑘 .
On the other hand, the entire wave group prop-
agates with a group velocity of 𝑑𝜔/𝑑𝑘 . Ap-
proximating the above integral by the sum of
the two frequencies, we can derive the group
velocity equation from the sum-product for-
mula for trigonometric functions.

Let up take another look at the figure6.22.
The group velocity is represented by the dot-
ted line. The phase velocities decrease with
frequency, but group velocities have minima.
What happens when there is a minimum?
Near the minima, the group velocity does not
change much. Suppose we divide such an in-
terval into a narrow frequency range (e.g., frequency width 2Δ𝜔). Since each arrives at the
same group velocity, each wave packet arrives at the same time and has a larger amplitude.
Thus, the amplitude of the wave packet near the group velocity minimum becomes large,
which is known as the airy phase. In figure 6.25, we have shown an example of a first-order
higher-order mode of the Love wave. Indeed, it can be seen that wave packets with group
velocities of 2.7 km/s, which is the minimum value of group velocity, are dominant.

Superposition of Love modes

Finally, let us superimpose all the Love modes. As we first discussed in this section, we
can see the wave with wide-angle multiple reflections (at a time shortly before the blue dotted
line). The blue dotted line corresponds to the travel time 𝑇 (𝑥) = 𝑥𝛽2/(𝛽2

1) and represents
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Fig. 6.25 First-order higher mode of the Love wave plotted against distance and time.
The white dashed lines correspond to phase speeds of 3 km/s and 4 km/s, and the orange
dashed line corresponds to 2.7 km/s (the minimum value of group velocity). You can see
the dominant wave packet where the group velocity takes a minimum value.

the travel time of the wide-angle multiple reflections. The fact that the wave is not visible at
times later than this line indicates that it cannot represent a wave incident at a steep angle that
would transmit to the layer below. It should be noted that the superposition of modes also
reproduces head wave (red dashed line in the figure). While the reflected wave is impulsive,
the head wave is bordered. This is because the head wave can be estimated by an integral of
the direct waveform (see chapter ??). This is due to the contribution of higher-order modes
near the cutoff frequency. The wave that is parallel to the head wave and visible 20 seconds
later is the wave propagating as a head wave after once being reflected wide angle.

One point to note is that we can see wave groups that are clearly physically incorrect
(not satisfying the causality) before the head wave. These waves have a phase velocity of
approximately 4 km/s (S-wave velocity in the second layer). This is because Love waves cannot
represent waves propagating in the second layer. note 7). What waves cannot be represented
as a sum of modes can be interpreted physically. More strict treatment will be given in the
chapter on normal mode theory.

note 7) Strictly speaking, it is the term expressed by the branch integral contribution. See Saito (2009) chapter 9.4
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Fig. 6.26 The figure shows the superposition of Love modes up to the 14th higher-order
modes. The highest frequency is 1 Hz and the structure is the same as in the previous
example. The blue dotted line corresponds to the travel time 𝑇 (𝑥) = 𝑥𝛽2/(𝛽2

1) and
represents the wide-angle multiple reflection travel time. The red line represents the travel
time of the head wave.

Problem 6.4

Let us evaluate the dispersive wave using the stationary phase approximation.

1
𝜋
𝑅𝑒

∫ ∞

0
𝑒𝑖 (𝑘 (𝜔)𝑥−𝜔𝑡)𝑑𝜔 (6.86)

Here we define the phase Ψ = 𝑘 (𝜔)𝑥/𝑡 − 𝜔, we can rewrite the equation

1
𝜋
𝑅𝑒

∫ ∞

0
𝑒𝑖𝑡Ψ(𝜔)𝑑𝜔. (6.87)

Because 𝑒𝑖𝑡Ψ oscillates rapidly, the contribution near

𝑑Ψ(𝜔)
𝑑𝜔

����
𝜔=𝜔0

= 0 (6.88)

became dominant. In this case,

1. Evaluate the integral by expanding 𝜔 to the second order term of 𝜔0.
2. Consider the group velocity.
3. Also, consider the case where the group velocity takes the minimum.
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Waves in a density
stratified fluid

Chapter 7

§7.1 Atmospheric wave
When propagations of an atmospheric wave, buoyancy force plays a more important role

than seismic wave propagations. There are two major effects of gravity note 1).
First, gravity force causes stratification of the atmospheric structure. Under hydrostatic

equilibrium, pressure gradient equals gravity force. As a result, the density and the pressure
decay exponentially with the height. With an increasing height of atmospheric scale height
𝐻𝑠 km, the density decrease to 1/𝑒. The scale height is a characteristic parameter of the
atmospheric structure.

Next, gravity is important as a restoring force. As already explained, gravity case strat-
ification of the atmosphere. The change in height causes significant buoyancy force. The
buoyancy force is not only the dominant restoring force for internal gravity waves but also
significant for low frequency infrasound. When characterizing the buoyancy force, buoyancy
frequency (or Brunt-Väisälä frequency) 𝑁 and acoustic cut-off frequency 𝑁𝑎 are defined as,

𝑁2 = − 𝑔

𝜌0

𝑑𝜌0

𝑑𝑧
− 𝑔2

𝑐2
𝑠

,

𝑁𝑎 =
𝑐𝑠

2𝐻𝑠
, (7.1)

where 𝑔 is gravity acceleration, 𝜌0 is density, 𝑧 is height, and 𝑐𝑠 is sound speed.
First, to understand buoyancy frequency 𝑁 , let us consider a volume element. The strat-

ification causes buoyancy force. The stratification is enough strong when the temperature
profile is steeper than the adiabatic temperature gradient. In this case, the buoyancy force
causes oscillation of the element with frequency 𝑁 .

Acoustic cut-off frequency 𝑁𝑎 represents the lowest frequency of an acoustic wave. Lower
than this frequency, acoustic waves cannot exist. The definition shows that the wavelength
of acoustic wave at the frequency 𝑁𝑎 is 4𝜋𝐻𝑠 . This means that the acoustic restoring force

note 1) See details in §6.14 (Adjustment to Equilibrium in a Stratified Compressible Fluid) of Gill’s textbook.(1) You
can find more details about infrasounds in the textbook by Gossared.(2)
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Fig. 7.1 Dispersion relation of atmospheric waves. The blue area shows a regime of an
acoustic wave, and the red one shows a regime of an internal gravity wave. The white area
shows an evanescent wave, which cannot propagate toward the vertical direction.

cannot sustain the acoustic wave below the frequency. 𝑁𝑎 is higher than 𝑁 . Although these
frequencies depend on the height and the locations, typically 𝑁 is about 2 mHz, and 𝑁𝑎 is
about 3 mHz.

Figure 7.1 shows a diagram of the acoustic wave and internal gravity wave in frequency–
wavenumber domain. The blue area shows a regime of an acoustic wave, and the red one
shows a regime of an internal gravity wave. The white area shows an evanescent wave, which
cannot propagate toward the vertical direction. A Lamb wave is a typical evanescent wave,
which propagates horizontally with sound speed and equilibrates hydrostatically toward the
vertical direction. The energy of Lamb wave is concentrated around the surface, and the
energy decay exponentially with height as exp(−𝑧/𝐻𝑠)note 2)

Wavenumber-frequency spectrum� �
As depicted by Figure 7.1, the wavenumber-frequency spectrum plays a crucial role
in understanding seismic wave propagations. Because, in particular, strong dispersion
causes complexity in time domain, the wavenumber-frequency spectrum is effective
for dispersive waves. Although from a mathematical point of view, treatments in the
wavenumber-frequency domain are equivalent to those in spatial-time domain, they are
complemental to each other.� �

note 2) Lamb waves were observed when solar eclipses, nuclear bomb tests in the atmosphere, and volcanic eruptions.
Because of the less attenuation, multi-orbit Lamb waves were reported.
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Ray theory
Chapter 8

The previous chapter explains SH wave propagations in a two-layer medium. Although it
gives us insight into seismic wave propagations of realistic earth, the real Earth’s structure is

Fig. 8.1 Observed records of the 2015 earthquake off the western coast of the Ogasawara
Islands. The P-wave and S-wave are clear, but the waveforms are not so simple. The figure
shows the shadow zone of the P-wave by the outer core, where the P-wave does not reach
the surface (around the arc distance of 110 degrees).
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more complex. To address seismic wave propagations for a more realistic Earth mode, the
next is the multi-layer approximation of the Earth’s structure.

A typical dominant frequency of teleseismic events recorded by seismometers is an order of
1 Hz. In this case, a spatial scale of the Earth’s structure is approximated to be enough shorter
than the wavelength of the seismic wave note 1). Figure 8.1 shows observed seismograms when
the 2015 earthquake off the western coast of the Ogasawara Islands (the focal depth is deeper
than 660 km) on the global scale. This figure exhibits many phases, which are classified
in terms of the ray path and wave type. To interpret the seismic wave propagations, an ap-
proximation of geometrical optics is feasible. Exactly speaking, although this approximation
is valid only for high-frequency limits, this approach is feasible for seismic exploration of
Earth’s structure in many cases practically.

Figure 8.2 shows the arrival times of the waves, which are visually picked by the onset time
of observed seismograms, and plots them against the epicenter distance. Black represents the
P-wave type, and red represents the S-wave type. The figure shows numerous phases (classified
according to the ray path and the combination of wave types). Even if observed waveforms
are so complicated (see figure 5.2, for example), it is easier to grasp the characteristics by
the travel time plot. The pick of the arrival times is the operation of abstraction of observed
data. This figure also shows that the Earth’s internal structure can be approximated as a
one-dimensional structure since the travel time is a function of only the epicentral distance. In
addition, for P waves (angular distance of 100 degrees and a travel time of about 13 minutes),
the travel times are highly scattered, which can be interpreted as large velocity heterogeneities
at the core-mantle boundary.

This figure shows the arrival times of the seismic phase waves visually and plots them
against the epicenter distance. Black represents the P-wave, and red represents the S-wave.
Numerous phases (classified according to the path taken and the combination of wave types)
can be seen. Since the whole waveforms are too complicated to model, it is easier to grasp the
dominant features by simplified information: arrival times. This figure also shows that the
Earth’s internal structure can be approximated as one-dimensional because the measured travel
time is a simple function of the epicentral distance. In addition, for P waves (angular distance
of 100 degrees and travel time of about 13 minutes), the travel times are highly scattered,
which can be interpreted as a large velocity inhomogeneity at the core-mantle boundary.

A theory of wave propagation based on geometrical optics is known as Ray theory. This
theory has played an important role in seismology for a long time. In particular, the ray theory
for a stratified medium (multi-layer medium) is a basic theory for seismic wave propagations.
This chapter gives the outline of ray theory in a stratified medium for interpreting seismic
wave propagations in a realistic Earth.

§8.1 High frequency approxima-
tion

note 1) A wavenumber spectrum of Earth’s heterogeneities shows that the long wavelength components are dominant
(called as "red structure").
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Fig. 8.2 Travel-time plots of various seismic phases. Black represents P-waves, and red
represents S-waves. Events shallower than 20 km that occurred in 2018 were selected. Data
are from International Seismological Centre (2021), On-line Bulletin, https://doi.org/
10.31905/D808B830.

https://doi.org/10.31905/D808B830
https://doi.org/10.31905/D808B830
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First, let us consider P-wave potential. With an assumption that typical spatial scales of
physical properties (density and elastic constants) are enough longer than the wavelength of
the P wave, the wave equation of P-wave can be simplified as

¥𝜙 = 𝛼2∇2𝜙. (8.1)

Here we assume that a wave packet 𝜙 propagates with the shape as 𝜙(𝒙, 𝑡) = 𝐴(𝒙) 𝑓 (𝑡 −
𝑇 (𝑥)). Because the potential is a function of a single variable, the spatial derivative is given
by ∇ 𝑓 = ∇𝑇 ¤𝑓 . Insertion of the equation into the wave equation gives the following equation:

1
𝛼2

¥𝜙 = ∇2𝐴 𝑓 (𝑡 − 𝑇) − 2∇𝐴 · ∇𝑇 ¤𝑓 (𝑡 − 𝑇) + 𝐴 ¥𝑓 (𝑡 − 𝑇)(∇𝑇)2 + 𝐴 ¤𝑓 (𝑡 − 𝑇)∇2𝑇. (8.2)

Fourier transform of both sides is written by,

− 𝜔2

𝛼2 = ∇2𝐴𝐹 (𝜔) − 2𝑖𝜔∇𝐴 · ∇𝑇𝐹 (𝜔) − 𝐴2𝜔2𝐹 (∇𝑇)2 − 𝐴𝜔𝑖𝐹∇2𝑇. (8.3)

With an assumption that angular frequency 𝜔 is enough large, the real part of the equation
leads to the Eikonal equation as

|∇𝑇 |2 =
1
𝛼2 . (8.4)

Here we define slowness vector 𝒑 by ∇𝑇 .
On the other hand, the imaginary part in the high-frequency limit leads to the transport

equation.
2∇𝐴 · ∇𝑇 + 𝐴∇2𝑇 = 0. (8.5)

This equation can be rewritten as ∇ · (𝐴2 𝒑) = 0, which represents the conservation of energy.
By solving the Eikonal equation, we get travel time 𝑇 . Then we can estimate 𝐴 from the
transport equation with the estimated 𝑇 .

§8.2 Ray tracing: Hamiltonian
formalism

Based on ray theory, integration of the Eikonal equation gives travel time 𝑇 . Ray tracing
is one of the solving methods. Ray can be defined by successions of slowness vectors as
already introduced. The wavefront expands with a speed of the seismic velocity in a direction
of slowness vector. Below, I will explain the physical meanings of ray tracing: ray tracing
can be interpreted as tracing of a particle motion under a potential. This physical system
can be described in a simple manner by generating parameter 𝜎 instead of time, as explained
later. Although the discussion is based on analytical mechanics, the formulation is helpful for
interpretation.

Here we consider the problem of tracing a particle motion under a potential −1/𝛼. Instead
of time, we define generating parameter 𝜎 note 2) for describing the location as

𝑑𝜎 = 𝛼𝑑𝑠. (8.6)

note 2) Although, for determining the locations in a mechanical system, we can use 𝒔 or travel time 𝑇 , we use
generating parameter 𝜎. This is simply because we can simplify the governing equation.
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Here 𝑑𝑠 represents an infinitesimal path. The Hamiltonian 𝐻 of this system is given bynote 3)

𝐻 (𝒙, 𝒑) = 1
2

[
𝒑 · 𝒑 − 𝛼−2 (𝒙)

]
. (8.7)

The eikonal equation can be interpreted as a condition of the constraint of this system. The
eikonal equation can be rewritten as 𝐻 (𝒙, 𝒑) = 0 using Hamiltonian. Hamilton equations are
written by

𝑑𝒙

𝑑𝜎
=
𝜕𝐻

𝜕 𝒑
= 𝒑 (8.8)

𝑑 𝒑

𝑑𝜎
= −𝜕𝐻

𝜕𝒙
=

1
2
∇𝛼−2. (8.9)

These equations can be interpreted as

1. Let us consider a problem of tracing a particle motion under a potential −𝛼−2.
2. The initial condition is given by 𝒑. Note that 𝒑 is constrained by the equation
𝐻 ( 𝒑, 𝒙) = 0. (This condition is equivalent that the absolute value of 𝒑 at the initial
injection point is 1/𝛼).

3. According to Hamilton equations, 𝑑𝐻 = 𝜕𝒙𝐻𝑑𝒙 + 𝜕𝒑𝐻𝑑 𝒑 = 0. This means that at any
point along the ray path, 𝐻 = 0 if the initial value 𝐻 = 0 at the injection point.

4. The particle motion can be traced by integrating the Hamilton equations. Physically,
𝜎 represents time.

The two first-order differential equations can be simplified as a single equation:

𝑑2𝒙

𝑑𝜎2 − 1
2
∇𝛼−2 = 0. (8.10)

This equation represents the equation of motion. The corresponding Lagrangian can be
defined as,

𝐿 =
1
2

[
¤𝑥 · ¤𝑥 + 𝛼−2 (𝒙)

]
, (8.11)

which satisfy the relation of 𝒑 = 𝜕 ¤𝒙𝐿 (definition of generalized momentum)note 4).
Here we consider a stratified medium. In this case, because 𝛼 depends only on depth 𝑧note 5),

𝑝𝑥 becomes a conserved quantity. 𝑝𝑥 is also known as the ray parameter.

8.2.1 For spherical Earth

When we consider global seismic wave propagations, a spherical coordinate is more con-
venient. With an assumption that P-wave velocity 𝛼(𝑟) depend only on radius 𝑟 (spherical
symmetry), the Lagrangian 𝐿 is written by,

𝐿 =
1
2
( ¤𝑟2 + (𝑟 ¤𝜃)2 + (𝑟 sin 𝜃 ¤𝜙)2 − 𝛼(𝑟)−2). (8.12)

note 3) For details, read chapter 15 of Dahlen and Tromp [1998](2)
note 4) We often use symbol 𝒑 for slowness vector, because the slowness vector can be interpreted as generalized

momentum based on ray theory. When we use time as a variable for determining the location, the generalized
momentum is not proportional to the particle velocity. On the other hand, generalized momentum using
generating parameter is proportional to the particle velocity. Generating parameter gives us a more simple
physical analogy.

note 5) In the context of analytical mechanics, such 𝑥 is called a cyclic coordinate.
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By the appropriate choice of the spherical coordinate, we can drop 𝜙. Angular distance 𝐷𝑒𝑙𝑡𝑎
along 𝜃 direction can describe the propagations. For a spherical structure, the ray parameter
𝑝 ray parameter 𝒑 = (𝑝𝑟 , 𝑝 𝜃 , 𝑝𝜙) in the spherical coordinate is given by

𝑝𝑟 =
𝜕𝐿

𝜕 ¤𝑟 =
𝑑𝑟

𝑑𝜎

𝑝𝜃 =
𝜕𝐿

𝜕 ¤𝜃
= 𝑟2 𝑑𝜃

𝑑𝜎

𝑝𝜙 =
𝜕𝐿

𝜕 ¤𝜙
= (𝑟 sin 𝜃)2 𝑑𝜙

𝑑𝜎
. (8.13)

Similarly, the Hamiltonian 𝐻 is

𝐻 =
1
2
(𝑝2
𝑟 + 𝑟−2𝑝2

𝜃 + (𝑟 sin 𝜃)−2𝑝2
𝜙 − 𝛼(𝑟)−2) (8.14)

and the Hamilton equation can be written as

𝑑𝑟

𝑑𝜎
=
𝜕𝐻

𝜕𝑝𝑟
= 𝑝𝑟 ,

𝑑𝜃

𝑑𝜎
=
𝜕𝐻

𝜕𝑝 𝜃
=
𝑝𝜃
𝑟2 ,

𝑑𝜙

𝑑𝜎
=
𝜕𝐻

𝜕𝑝𝜙
=

𝑝𝜙

(𝑟 sin 𝜃)2 , (8.15)

𝑑𝑝𝑟
𝑑𝜎

= −𝜕𝐻
𝜕𝑟

=
1
2
𝜕𝛼−2

𝜕𝑟
+ 1
𝑟3

[
𝑝2
𝜃 +

𝑝2
𝜃

(sin 𝜃)2

]
,

𝑑𝑝 𝜃
𝑑𝜎

= −𝜕𝐻
𝜕𝜃

=
1
2
𝜕𝛼−2

𝜕𝜃
+ 1
𝑟2

cot 𝜃
(sin 𝜃)2 𝑝

2
𝜃 ,

𝑑𝑝𝜙

𝑑𝜎
= −𝜕𝐻

𝜕𝜙
=

1
2
𝜕𝛼−2

𝜕𝜙
, (8.16)

The result is as follows. In the case of a horizontally stratified structure, placing the emergence
point at the pole does not lose generality. Also, since 𝛼 does not depend on 𝜃 and 𝜙, its partial
derivative is 0. Therefore 𝑃𝜙 = 0 and ¤𝑃𝜃 = 0. Therefore, as in the Cartesian coordinate case,
𝑝𝜃 is conserved along the wavy line, and In this case, it is also called the ray parameter.

8.2.2 Earth flattening transform

When considering ray theory, there is a simple correspondence between horizontally strat-
ified structures (𝛼(𝑧) is a 𝑧-only function) and spherically symmetric structures. Once one
problem is solved, the other can be solved by variable transformation (Earth flattening trans-
form). Let us consider this variable transformation below.

Let us consider the problem in the 𝜃 direction for isotropic seismic wave radiation from a
point. The Eikonal equation in spherical coordinates leads to the following equation.(

𝜕𝑇

𝜕𝑟

)2
+ 1
𝑟2

(
𝜕𝑇

𝜕𝜃

)2
=

1
𝛼(𝑟)2 (8.17)
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Using the Earth radius 𝑅𝑒, we can rewrite the equation as

1
𝑅2
𝑒

(
𝜕𝑇

𝜕𝜃

)2
+ 𝑟2

𝑅2
𝑒

(
𝜕𝑇

𝜕𝑟

)2
=
𝑟2

𝑅2
𝑒

1
𝛼(𝑟)2 . (8.18)

We can transform the equitation in spherical coordinates to an equation in Cartesian coordi-
nates with the change of variable by 𝑥 = 𝑅𝑒𝜃, 𝑟 = 𝑅𝑒𝑒

−𝑧/𝑅𝑒 , 𝛼(𝑧) = 𝑅𝑒𝛼(𝑟)/𝑟 . The earth
flattening transform is strictly valid within ray theory. It also holds for SH wave propagation,
but only approximately for SV wave. Footnotesee Aki and Richards Box 9.9 for details(1).

Problem 8.0

Consider a sphere with uniform velocity and find the corresponding horizontal strati-
fication structure using the Earth flattening transform. Also, consider a wavy line in
the Cartesian coordinate system and consider its correspondence with the case of a
uniform sphere.
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8.2.3 Fermat’s principle (principle of least action)

Ray path is the path which minimizes the integration of Lagrangian among the possible
paths. This leads to the following relation:

𝛿

∫ 𝜎2

𝜎1

𝐿 (𝒙, ¤𝒙)𝑑𝜎 = 𝛿
∫ 𝜎2

𝜎1

[ 𝒑 · ¤𝒙 − 𝐻 (𝒙, 𝒑)] 𝑑𝜎. (8.19)

This relation is equivalent to minimizing the corresponding travel time.

𝛿

∫ 𝒙2

𝒙1

𝒑 · 𝑑𝒙 = 𝛿
∫ 𝑇2

𝑇1

𝑑𝑇 = 0 (8.20)

leads to equivalence.

8.2.4 Direct solver of Eikonal equation

§8.3 𝜏 − 𝑝 (Radon) transform
Travel time curves against epicentral distance become complex due to the multi-valued

function. There exists a transform known as 𝜏 − 𝑝 (Radon) transform into the single-valued
function. Here we define intersection time 𝜏 by 𝜏(𝑝) = 𝑇 − 𝑝𝑥𝑋 (this type of transform is
known as Legendre transforms in physics). After the transformation from a pair of 𝑇 and 𝑝𝑥
to pair of 𝜏 and 𝑝𝑥 , 𝜏 becomes the single-valued function even in a case with the positive
jump as shown in 8.7.

Once we obtain 𝜏 against the ray parameter 𝑝𝑥 , we can calculate the travel time 𝑇 against
the epicentral distance 𝑋 by a relation of 𝑑𝜏/𝑑𝑝 = −𝑋note 6).
𝜏 is also a useful observable for array analysis of seismic data (A slant stack method of

array analysis is a technique of data processing that utilizes the information from densely
distributed seismometers at around 𝑋). 𝜏 − 𝑝 transform is a theoretical background of the
array analysisnote 7)

We can extend 𝜏 − 𝑝 into two dimensions. To define a new variable pair that has the same
information to travel time 𝑇 against the dependent variable 𝑿, we must consider Legendre
transformnote 8).

𝜏 = 𝑇 − 𝒑 · 𝑿 (8.22)

note 6) From the definition, the derivative of 𝜏 with respect to the ray parameter 𝑝𝑥 is given by

𝑑𝜏

𝑑𝑝𝑥
=
𝑑𝑇

𝑑𝑝𝑥
− 𝑋 − 𝑝𝑥

𝑑𝑋

𝑑𝑝𝑥
=
𝑑𝑇

𝑑𝑝𝑥
− 𝑋 − 𝑑𝑇

𝑑𝑋

𝑑𝑋

𝑑𝑝𝑥
= −𝑋. (8.21)

note 7) For details on practical data analysis, read a textbook by Zhou (Practical Seismic Data Analysis(4)).
note 8) Exactly speaking, Legendre requires the convexity to the dependent variable. Therefore we need to divide 𝑇

into retrograde and prograde areas before the transform



8.4. AMPLITUDE: GEOMETRICAL SPREADING

141

For the transform from 𝒑 to 𝑿,

𝑑𝜏

𝑑𝑝𝑥
= −𝑋, (8.23)

𝑑𝜏

𝑑𝑝𝑦
= −𝑌, (8.24)

(8.25)

is usefulnote 9).

§8.4 Amplitude: geometrical
spreading

𝑑Δ𝑑𝑖0 Δ𝑖0

Fig. 8.3

As in a two-layer medium, the conser-
vation of energy along a ray path leads to
a theory for amplitudes of a ray theoretical
Green’s function for phases (e.g. P wave
and S wave).

Here we consider seismic wave propa-
gations in a stratified Earth model. When
a seismic wave is radiated with the emer-
gency angle of 𝑖0 from the source, the in-
finitesimal solid angle 𝑑Ω0 = sin 𝑖0𝑑𝑖0𝑑𝜙0
gives the conservation of energy. Here 𝑟1 is the radius of the Earth, and 𝜙 is azimuth. When a
radiated seismic wave with a solid angle reaches a surface point with angular distance Δ from
the source,

The cross-section area on the surface 𝑆1 is given by

𝑑𝑆1 = 𝑟2
1 sinΔ|𝑑Δ|𝑑𝜙0 cos 𝑖1. (8.26)

From the conservation of energy along the ray path, we obtain

𝐸0𝑑Ω0 = 𝐸1𝑑𝑆1. (8.27)

The energy at the surface point (the observed station) 𝐸1 is represented by

𝐸1 = 𝐸0
𝑑Ω0

𝑑𝑆1
= 𝐸0

sin 𝑖0𝑑𝑖0
𝑟2

1 cos 𝑖1 sinΔ|𝑑Δ|
. (8.28)

Here

𝑝 =
𝑟0

𝛼0
sin 𝑖0 =

𝑑𝑇

𝑑Δ
(8.29)

𝑑𝑝

𝑑Δ
=
𝑟0

𝛼0

𝑑 sin 𝑖0
𝑑Δ

=
𝑑2𝑇

𝑑Δ2 (8.30)

𝑑 sin 𝑖0
𝑑Δ

=
𝛼0

𝑟0

1
cos 𝑖0

𝑑𝑝

𝑑Δ
, (8.31)

note 9) This relation can be proven as in a one-dimensional case.
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where 𝑟0 is the distance between the source and the center of the Earth. Then we obtain
geometrical spreading R, which gives information on the amplitudes as,

1
R2 =

𝐸1

𝐸0
=

1
𝑟2

1

𝛼0

𝑟0

tan 𝑖0
cos 𝑖1 sinΔ

���� 𝑑2𝑇

𝑑Δ2

���� (8.32)

=
1
𝑟2

1

𝛼2
0

𝑟2
0

𝑝

cos 𝑖0 cos 𝑖1 sinΔ

���� 𝑑𝑝𝑑Δ ���� . (8.33)

𝑑𝑝/𝑑Δ becomes larger with increasing ray density (see Figures in the previous section. This
can be interpreted as (1) energy particles are radiated at the source toward every direction, (2)
ray represents the trace of the particle (3) how many particles reach the observed station (4)
by counting the energy particle, we can infer the amplitude of the phase.

If the heterogeneities of the medium near the source are weak, we can approximate Green’s
function by a Green’s function in an infinite homogeneous medium. By connecting Green’s
function in an infinite homogeneous medium to ray theoretical Green’s function, we can obtain
a complete ray theoretical Green’s function, including the absolute amplitude. When a station
exists on the free surface, which doubles the amplitudes, the ray theoretical Green’s function
of a direct P wave is given by

𝐺 (x𝑟 , x𝑠 , 𝑓 ) =
1

4𝜋R


𝜼̂1𝜼̂2𝑒

−2𝜋 𝑓 𝑖𝑇𝑝√
𝜌1𝜌2𝛼

3
1𝛼2

 , (8.34)

where 𝜼̂1 and 𝜼̂2 are polarization vectors at the source and the station, respectively, and 𝑇𝑝 is
P-wave travel time.

§8.5 Caustic
When ���� 𝑑2𝑇

𝑑Δ2

���� = ∞, (8.35)

ray density diverges. This causes divergence of the amplitude in a framework of ray the-
ory. For example, Figure 8.4 shows the concentration of ray paths at the center. This
situation can be described by fire made by sunlight using glass. In this case, rays focus
at the point known as "focus". In the case of caustic, the rays focus on a line (e.g. in
the case of Figure 8.4, perpendicular to the page, patterns of the ray are homogeneous).

Fig. 8.4

In a region where the spatial scale of am-
plitude variations is comparable to the wave-
length, geometrical ray theory is not appro-
priate. At such singular points, we need to
connect the analytic solution of the original
wave equation. When a ray path passes a
caustic, it causes a phase jump of 90◦. For
example, the phase of the PP wave (reflected
P wave at the surface) actually is shifted 90◦,
because it passes caustic one. The wave packet of the PP wave can be represented by the
Hilbert transform of the direct P wave mathematically.
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Since the ray approximation is broken near caustic, let us consider the 2-D wave equation
about a scalar quantity 𝑓 in polar coordinate with the origin at the caustic:

1
𝑟

𝜕 𝑓

𝑑𝑟

(
𝑟
𝑑

𝜕𝑟

)
+ 1
𝑟2
𝜕2 𝑓

𝜕𝜙2 = −𝑘2
0 𝑓 . (8.36)

With the ray approximation, we can assume that typical spatial scales are sufficiently larger
than the wavelength, but there exist regions where 𝑟 is shorter than the wavelength in realistic
situations. For simplicity, let us consider the Fourier component 𝑓 ∝ 𝑒𝑖𝑛𝜙 with respect to 𝜙.
Then we have

𝜕2 𝑓

𝜕𝑟2 + 1
𝑟

𝜕 𝑓

𝜕𝑟
=

(
−𝑘2

0 +
𝑛2

𝑟2

)
𝑓 . (8.37)

This is exactly the equation satisfied by the Bessel function. The Bessel function in far-field
can be approximated as

𝐽𝑛 (𝑘𝑟) ∝
1√
(𝑘𝑟)

cos
(
𝑘𝑟 − 𝑛 𝜋

2
− 𝜋

4

)
. (8.38)

We can see that 𝜋/4 is shifted by 2 times once it passes through the origin (caustic). This
is because the change in curvature works better than the derivative with respect to 𝑟 when
viewed in polar coordinates. Here is a rough estimate. For example, in Cartesian coordinates
cos

(√
2/2𝑘0𝑥

)
cos

(√
2/2𝑘0𝑦

)
satisfies the wave equation. If the wavelength corresponding

to 𝑘0 is 𝜆0, the area of this positively inflated region can be written as (
√

2𝜆0/2)2 = 𝜆2/2.
Considering that this is the same as the area of the circle centered at the origin, its radius is
𝜆/(

√
2𝜋). In other words, the first zero crossing point from the origin in polar coordinates is

around 0.39 wavelengths away, which is more extended than 𝜆0/4 when considered in plane
waves. This summation can be interpreted as giving the phase difference 𝜋/4 note 10).

This phase shift can be interpreted from the conservation of energy with a natural extension
of the negative cross section 𝑑𝑆2.

𝐸1𝑑𝑆1 = 𝐸2𝑑𝑆2 (8.39)

leads to 𝐴2 = 𝐴1𝑖. This originated from the flip of the ray coordinates before and after a
passage at a caustic. In a case of a passage at a focus, the amplitude reverses because the
phase flips twice (𝑖2 = −1) according to the two directions.

An example of the caustic is PP waves, whose phase is shifted to the direct P waves. This
typical example is intuitively confusing, so I will explain it below. Since the ground reflection
complicates the behavior, let us consider a mirror image of the hypocenter with respect to the
surface (Figure 8.5). If we fold back the ray path of the PP wave radiated downward from
the hypocenter at the surface, we can see that it intersects before the observed station. On
the other hand, the pP wave radiated from the hypocenter does not intersect. Therefore, the
waveforms of the pP and direct-directed waves have the same shape, but the PP wave has a
distorted shape to the direct P wave (they are related by the Hilbert transform to each other).

Translated with www.DeepL.com/Translator (free version)

note 10) For an accurate evaluation, we need to approximate the singularity by the Airy function using the WKBJ
approximation (see Yomogida’s textbook(5) for details). A more physical explanation (corresponding to
diffraction) is given in Landau-Lifshitz’s classical field theory §59
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Fig. 8.5 Schematic diagram of PP waves passing through caustic. In this figure, we can
see that the PP waves intersect, while the pP waves do not.
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§8.6 Travel time analysis
Although generating parameter, 𝜎 gives us an insight of this system, it is not related to

observables directly. In this section, relations among observables: epicentral distance 𝑋 (𝑝𝑥),
travel time 𝑇 (𝑝𝑥), and ray parameter 𝑝𝑥 are presented for a stratified mediumnote 11).

𝑋 (𝑝𝑥) = 2𝑝𝑥
∫ 𝑍 (𝑝𝑥 )

0

1
(𝛼−2 (𝑧) − 𝑝2

𝑥)1/2 𝑑𝑧 (8.40)

𝑇 (𝑝𝑥) = 2
∫ 𝑠𝑝

0

𝑑𝑠

𝛼
= 2

∫ 𝑍 (𝑝𝑥 )

0

𝛼−2

(𝛼−2 (𝑧) − 𝑝2
𝑥)1/2 𝑑𝑧 (8.41)

Following subsections show ray paths and travel time for some typical seismic structures.

8.6.1 In a case of monotonically increasing seismic velocity
with depth

In the simplest case, let us consider travel time for monotonically increasing seismic velocity
with depth. Figure 8.6 shows such an example. The ray parameter 𝑝𝑥 conserves along the
ray path. For this reason, the seismic velocity at the turning depth matches the corresponding
apparent horizontal velocity (1/𝑝𝑥). The ray path dives to the turning depth, then it returns
to the surface.

This figure shows that with decreasing parameter 𝑝𝑥 = sin 𝜃/𝛼(𝑧) (decreasing the emer-
gency angle equivalently), the ray reaches farther (the epicentral distance 𝑋 (𝑝) becomes
longer). In this case, 𝑑𝑋/𝑑𝑝𝑥 < 0, as shown in the figure, is referred to as prograde. With
increasing epicentral distance, the ray density decreases. (This means that ray density can be
estimated by 𝑑𝑝𝑥/𝑑𝑋 as shown in this figure.) Therefore, the amplitude decreases with the
epicentral distance.

note 11) For details, read the textbook by Shearer(3)
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Problem 8.1

1. Let us consider wave propagations in upper 𝑥𝑧 plane (𝑧 > 0). When the seismic
velocity 𝛼 is a linear function given by 𝑎 + 𝑏𝑧, show that the ray path becomes
a circle given by (

𝑥 −
√

1 − 𝑝2
𝑥𝑎2

𝑏𝑝𝑥

)2

+
(
𝑧 + 𝑎

𝑏

)2
=

1
𝑝2
𝑥𝑏2

. (8.42)

Hint: The equation can be derived from Equation 8.8 and the Eikonal equation.
2. Derive equation 8.41.
3. Show that 𝑇 (𝑝𝑥) is given by

𝑇 (𝑝𝑥) =
2
𝑏

cosh−1
(

1
𝑝𝑥𝑎

)
. (8.43)

4. We can calculate a ray path by numerically integrating the Hamilton equation
with respect to 𝜎. For example, ray paths in Figure 8.6 are calculated from the
integration. Calculate the ray paths numerically in the same manner. Compare
the analytic solution of the ray path and the numerical calculation.
∗ Note: The first parameter of the Hamilton equation describes the change
of the location, whereas the second one determines the slowness vector as
conserved the total energy along the ray path (in other words, to satisfy the
Eikonal equation).
Hint:

𝑑 cosh−1 (𝑧)
𝑑𝑧

=
1

√
𝑧2 − 1

(8.44)
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Fig. 8.6 Ray paths for linearly increasing seismic structure with depth. We can see a
relation of 𝑝𝑥 = 𝑑𝑇/𝑑𝑥.
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8.6.2 In a case of a positive seismic jump at a depth

Next, let us consider a positive jump of seismic velocity at a depth.
When a ray path exists in the upper layer, it reaches further with the decreasing emergency

angle (prograde 𝑑𝑋/𝑑𝑝<0). When the ray enters the layer of steeply increasing seismic veloc-
ity, the ray path backs to the source side according to Snell’s law. This feature characterized
by 𝑑𝑋/𝑑𝑝 > 0 is referred to as a retrograde ray. When the emergency angle decreases further-
more, it dives into the deeper lower layer, and the ray path becomes prograde again. At the
point for 𝑑𝑋/𝑑𝑝 = 0, known as caustic, because the ray path density diverges, the amplitudes
diverge. Due to the singularity, ray theory cannot handle the wave field at around the point
for 𝑑𝑋/𝑑𝑝 = 0note 12).

X decreasing 

p  decre
asin

g 

Retrograde

Fig. 8.7 Schematic figure of a retrograde path.

Basic features, in this case, are common with those in a two-layer medium discussed in the
previous chapter.

If you only look at the wavefront, you may find it difficult to see the triplication area because
they overlap each other. Therefore, let’s zoom in on the ray near the triplication area with the
wavefront at the same time (Figure 8.9). The retrograde ray corresponds roughly to the green
color. The caustic surface is formed at the point where the retrograde starts. When triplication
occurs, the rays are folded. The wedge-shaped base of the folded wavefront corresponds to
the wavefront that passes through the caustic surface, resulting in a 90-degree phase shift.
You can also see that the positive velocity gradient just below the discontinuity bends the
rays toward the surface, which increase the amplitude of the retrograde branch. Thus, when
considering seismic waves, it is important to consider both the rays and the wavefront together.
You can also see that in the 𝜏 − 𝑝 region, triplication is unfolded and becomes a single-valued
function.

Consider another example. It is known that a 410 km discontinuity and a 660 km discon-
tinuity exist globally in the Earth’s interior. These two discontinuities correspond to phase
changes in minerals (corresponding to olivine −→spinel and spinel−→perovskite, respec-
tively). Let’s take a look at Figure 8.10. Here is a seismic waveform record in Alaska of
an earthquake that occurred in the Aleutians at a depth of about 100 km. The waveforms
are complicated, but we can see multiple P-wave packets arriving in 13◦ ∼ 30◦. This is

note 12) Because the high-frequency approximation is broken down at the point close to the caustic, we must consider
an appropriate solution of the wave equation which connects to the ray theoretical solution. Such a solution
leads to jumping off the phase of 90◦ after the passage through the caustic. The phase jump is also discussed
in the later section about amplitudes of a ray theoretical solution.
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Fig. 8.8 Ray paths in a case of positive seismic jump at a depth.

the result of triplication at the 410 km and 660 km discontinuities. The lower figure shows
the theoretical travel time. You can see that it roughly represents the characteristics of the
observed waveforms.

Let us imagine that there is no information on the Earth’s interior. From Figure 8.10, we
can see that it is difficult to interpret the waveforms of the P wave except at the first arrival
time when there are multiple arrivals. In the figure, this corresponds to the blue rising edge.
The rise of the first arriving wave packet is easy to read (because the ground is quiet before
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Fig. 8.9 Wavefront with positive seismic velocity jump. The emergence angle is shown
in color, and the wavefront (isochrones of travel time) is also shown

the arrival) and can be measured with good accuracy. If we only have information on the
first arrivals, it is difficult to distinguish it from the travel time curve for a structure without
the discontinuities (e.g, 8.6)． In other words, when inferring the internal structure of the
earth from the travel time, without information on triplication, the information on the internal
discontinuity cannot be correctly estimated, and an over smooth structure will be inferred
(since the simple model can also explain the measured first arrivals).

Problem 8.２

Let us consider wave propagation in 𝑥𝑧 plane (𝑧 > 0) for seismic speed 𝛼 given by

𝛼(𝑧) = 5 + (1 + tanh(𝑧 − 40)) ∗ 2 + 𝑧

200
. (8.45)

By numerical integration of Hamilton equations with respect to 𝜎, calculate the ray
paths. And as in Fig 8.7, plot the relations between slowness and Travel time, that
between distance and 𝜏, and that between 𝜏 and slowness. Then compare the results
with two layered mediums.
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Fig. 8.10 A typical example with a positive seismic velocity jump. Velocity waveform
(0.05-4 Hz) observed by USArray (Alaska) for an earthquake that occurred in the Aleutians.
For a better display, the travel time of the waveform was reduced (specifically, 𝑇(10 km/s)𝑋
is plotted against 𝑋). Positive amplitudes are shown in red and negative amplitudes are
shown in blue. It can be seen that there are multiple arrivals of P-wave wave packets in
this distance range. The lower figure also shows the corresponding theoretical travel times,
where we can see the triplication corresponding to the positive jumps in the two seismic
velocity jumps (410 km discontinuity and 660 km discontinuity).
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8.6.3 In a case of a negative seismic jump at a depth

When a negative jump of seismic velocity with depth exists, rays cannot reach a certain area
on the surface known as a shadow zone. Because rays tend to avoid the low-velocity zone,
as shown in Figure 8.11, the seismic exploration of the seismic structure becomes difficult in
general.
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§8.7 1-D inversion

8.7.1 Herglotz-Wiechert inversion

𝑇 (𝑝) = 2
∫ 𝑧 (𝑝𝑥 )

0

𝛼−2 (𝑧)√
𝛼−2 (𝑧) − 𝑝2

𝑥

𝑑𝑧 (8.46)

𝑋 (𝑝) = 2𝑝
∫ 𝑧 (𝑝𝑥 )

0

𝑑𝑧√
𝛼−2 (𝑧) − 𝑝2

𝑥

(8.47)

Herglotz-Wiechert formulas

𝑧(𝛼−1) = 1
𝜋

∫ 𝑋 (𝛼−1)

0
cosh−1 (𝛼𝑝𝑥)𝑑𝑋 (8.48)

8.7.2 𝜏-P inversion

𝜏(𝑝) = 2
∫ 𝑧 (𝑝𝑥 )

0

[
𝛼−1 (𝑧)√

𝛼−2 (𝑧) − 𝑝2
𝑥

− 𝑝2
𝑥√

𝛼−2 (𝑧) − 𝑝2
𝑥

]
𝑑𝑧 (8.49)

= −
∫ 𝑧 (𝑝𝑥 )

0

√
𝛼−2 (𝑧) − 𝑝2

𝑥𝑑𝑧

§8.8 Tools for travel time analysis
When we calculate the travel time for a stratified Earth, taup (http://www.seis.sc.

edu/taup/) is a common toolkit among seismologists. A direct Eikonal solver using fast
marching algorithm is also common. This algorithm is applicable to a complex 3-D medium.
Some different programs using fast marching algorithms are available at a website by Nick
Rawlinson (http://rses.anu.edu.au/~nick/)。

http://www.seis.sc.edu/taup/
http://www.seis.sc.edu/taup/
http://rses.anu.edu.au/~nick/
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§8.A IASPEI standard phase list
For details, see http://www.isc.ac.uk/standards/phases/.

8.A.1 CRUSTAL PHASES

Pg At short distances, either an upgoing P wave from a source in the upper crust or a P wave bottoming in the upper
crust. At larger distances also, arrivals are caused by multiple P-wave reverberations inside the whole crust with
a group velocity of around 5.8 km/s.

Pb (alt:P*) Either an upgoing P wave from a source in the lower crust or a P wave bottoming in, the lower crust
Pn Any P wave bottoming in the uppermost mantle or an upgoing P wave from a source in the uppermost mantle
PnPn Pn free-surface reflection
PgPg Pg free-surface reflection
PmP P reflection from the outer side of the Moho
PmPN PmP multiple free surface reflection; N is a positive integer. For example, PmP2 is PmPPmP
PmS P to S reflection/conversion from the outer side of the Moho
Sg At short distances, either an upgoing S wave from a source in the upper crust or an S wave bottoming in the

upper crust. At larger distances also arrivals caused by the superposition of multiple S-wave reverberations and
SV to P and/or P to SV conversions inside the whole crust.

Sb (alt:S*) Either an upgoing S wave from a source in the lower crust or an S wave bottoming in, the lower crust
Sn Any S wave bottoming in the uppermost mantle or an upgoing S wave from a source in the uppermost mantle
SnSn Sn free-surface reflection
SgSg Sg free-surface reflection
SmS S reflection from the outer side of the Moho
SmSN SmS multiple free-surface reflections; N is a positive integer. For example, SmS2 is SmSSmS
SmP S to P reflection/conversion from the outer side of the Moho
Lg A wave group observed at larger regional distances and caused by the superposition of multiple S-wave rever-

berations and SV to P and/or P to SV conversions inside the whole crust. The maximum energy travels with a
group velocity of approximately 3.5 km/s

Rg Short-period crustal Rayleigh wave

http://www.isc.ac.uk/standards/phases/
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8.A.2 MANTLE PHASES

P A longitudinal wave, bottoming below the uppermost mantle; also an upgoing longitudinal wave from a source
below the uppermost mantle

PP Free-surface reflection of P wave leaving a source downward
PS P, leaving a source downward, reflected as an S at the free surface. At shorter distances, the first leg is represented

by a crustal P wave.
PPP analogous to PP
PPS PP, which is converted to S at the second reflection point on the free surface; travel time matches that of PSP
PSS PS reflected at the free surface
PcP P reflection from the core-mantle boundary (CMB)
PcS P converted to S when reflected from the CMB
PcPN PcP are reflected from the free surface N-1 times; N is a positive integer. For example PcP2 is PcPPcP
Pz+P (alt:PzP) P reflection from the outer side of a discontinuity at depth z; z may be a positive numerical value in

km. For example, P660+P is a P reflection from the top of the 660 km discontinuity.
Pz-P P reflection from the inner side of a discontinuity at depth z. For example, P660 － P is a P reflection from

below the 660 km discontinuity, which means it is precursory to PP.
Pz+S (alt:PzS) P converted to S when reflected from the outer side of discontinuity at depth z
Pz-S P converted to S when reflected from the inner side of discontinuity at depth z
PScS P (leaving a source downward) to ScS reflection at the free surface
Pdif (old:Pdiff) P diffracted along the CMB in the mantle
S Shear wave, bottoming below the uppermost mantle; also an upgoing shear wave from a source below the

uppermost mantle
SS Free surface-reflection of an S wave leaving a source downward
SP S, leaving a source downward, reflected as P at the free surface. At shorter distances, the second leg is represented

by a crustal P wave.
SSS analogous to SS
SSP SS converted to P when reflected from the free surface; travel time matches that of SPS.
SPP SP reflected at the free surface
ScS S reflection from the CMB
ScP S converted to P when reflected from the CMB
ScSN ScS multiple free-surface reflections; N is a positive integer. For example ScS2 is ScSScS
Sz+S (alt:SzS) S reflection from the outer side of a discontinuity at depth z; z may be a positive numerical value in

km. For example, S660+S is an S reflection from the top of the 660 km discontinuity.
Sz-S S reflection from the inner side of discontinuity at depth z. For example, S660－ S is an S reflection from below

the 660 km discontinuity, which means it is precursory to SS.
Sz+P (alt:SzP) S converted to P when reflected from the outer side of discontinuity at depth z
Sz-P S converted to P when reflected from the inner side of discontinuity at depth z
ScSP ScS to P reflection at the free surface
Sdif (old:Sdiff) S diffracted along the CMB in the mantle

§8.B Stratified Earth models
You can find a reference stratified Earth model.
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8.B.1 PREM

Preliminary Reference Earth Model http://ds.iris.edu/ds/products/emc-prem/

8.B.2 AK135

http://ds.iris.edu/ds/products/emc-ak135-f/
http://rses.anu.edu.au/seismology/ak135/intro.html

§8.3 Bibliography
[1] K. Aki and P.G. Richards. Quantitative Seismology. Univ Science Books, 2nd edition,

2009.
[2] F.A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press,

Princeton, 1998.
[3] P.M. Shearer. Introduction to Seismology. Cambridge University Press, 2009.
[4] H.W. Zhou. Practical Seismic Data Analysis. Cambridge University Press, 2014.
[5] 蓬田清. 演習形式で学ぶ特殊関数・積分変換入門. 共立出版, 2007.

http://ds.iris.edu/ds/products/emc-prem/
http://ds.iris.edu/ds/products/emc-ak135-f/
http://rses.anu.edu.au/seismology/ak135/intro.html
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Normal mode
Chapter 9

ここまで、実体波と表面波を概観してきました。地震学で取り扱う周期帯は 3×10−4 ∼ 100
Hzの範囲です。おおよそ 0.005 Hz (5 mHz)より高周波数側では進行波 (実体波、表面波)
として取り扱うことが多く，低周波数側では定在波 (地球自由振動) として取り扱う事が
多くなります。地球自由振動帯域では、波長が 1000kmを超え定在波の重ね合わせとして
理解したほうが便利なためです。

§9.1 Standing wave of the Earth:
Earth’s free oscillations

5000 10000 15000 20000
秒
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離
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)
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Rayleigh波

Fig. 9.1 Vertical components of broadband seismometers when the 2014 Chilean earth-
quake on April 1st.
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When a huge earthquake occurs, a seismic wave with a period longer than 200 s propagates
around the Earth, as shown in Figure 9.1. This figure shows global long-period surface
wave propagations when the 2010 Chilean earthquake. They lasted for one day because the
amplitudes attenuated with propagation distance. In this case, a modal approach is more
feasible for interpreting them.

On December 26th, 2004, a huge earthquake in the Indian Ocean off Sumatra occurred.
The moment magnitude is greater than 9, which is the largest one last 50 years. When the
earthquake, a global network of seismometers recorded multi-orbit surface waves (more than
8). Although most of the modes (long-period surface wave equivalently) attenuated several
days after the origin time, oscillations of the gravest modes lasted for several months. Only
huge earthquakes (> 8.5) can excite the gravest mode on observable levels.

Figure 9.2 shows the vertical seismograms at Matsushiro, Japan. Although at a glance, this
figure is similar to Figure 9.1, I note the difference of the horizontal scales. Figure 9.2 shows
two-month records. The second panel shows seismogram bandpass filtered from 0.1 to 1mHz,
which shows that the Earth was oscillating for more than one month. The standing wave is
also known as Earth’s free oscillation. Lower panels of Figure 9.2 show the spatial pattern of
standing wave revealed by observed records (vertical components) at stations in Germany, the
US, Australia, and Japan 1 month after the origin time. As already shown in previous figures,
seismograms usually show seismic wave propagations. On the other hand Figure 9.2 shows a
synchronized motion. This means that the Earth is expanding and shrinking alternatively (also
known as breathing mode) with 1112 seconds. The amplitudes are about 0.03 mm. Although
the amplitudes seem to be small, only a huge earthquake can excite the mode. Once the mode
is excited, the mode oscillates for a long time. In the case of the Sumatra earthquake, the
oscillation was lasting for 3 months on the observable level. There are many modes, such as
football mode (see a box below) and pear mode, other than breathing mode.

A seismic wave field excited by an earthquake can be likened to playing the piano. Each
key of a piano corresponds to a mode. The seismic wave field (sound of a piano) can be
represented by a superposition of modes (striking keys of a piano). Seismologists imagine
Earth’s interior from Earth’s sound.
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Fig. 9.2 Seismic records (vertical components) when the great Sumatra earthquake in
2004. This figure shows that the oscillation lasted for more than one month. Lowe panels
is enlarged seismograms one month after the earthquake. They show synchronized vertical
motions, which represent the breathing mode.
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§9.2 Eigenfrequencies and eigen-
functions

(2)–(6)

§9.3 Oscillation of a string
長さ 𝑙 の弦の振動を考えます。まず、波動方程式

𝜌0
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2

= 𝜅0
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 (9.1)

を満たす固有関数について考えてきます。境界条件として両端で固定端を考えます。固有
周波数および対応する固有関数を、それぞれ次のようになります。

𝜔𝑛 =
𝑛𝜋

𝑙
𝑐0, 𝑢𝑛 (𝑥) = 𝐴𝑛 sin

𝑛𝜋𝑥

𝑙
(9.2)

正規化は (𝜌0𝑢𝑖 , 𝑢 𝑗 ) = 𝛿𝑖 𝑗 を満たすように係数 𝐴𝑛 を求めればよい。内積を計算すると、

(𝜌𝑢𝑖 , 𝑢 𝑗 ) =
∫ 𝑙

0
𝜌0𝑢

∗
𝑖 (𝑥)𝑢 𝑗 (𝑥)𝑑𝑥 = 𝜌0𝐴

∗
𝑖 𝐴 𝑗

∫ 𝑙

0
sin

𝑖𝜋𝑥

𝑙
sin

𝑗𝜋𝑥

𝑙
𝑑𝑥 = 𝜌0 |𝐴𝑖 |2

𝑙

2
𝛿𝑖 𝑗 (9.3)

となるので、結局、

𝐴𝑛 =

√
2
𝜌0𝑙

i.e. 𝑢𝑛 (𝑥) =
√

2
𝜌0𝑙

sin
𝑛𝜋𝑥

𝑙
(9.4)

が正規化された固有関数 (normalized eigenfunction) 𝑢𝑛 (𝑥) ですnote 1)。
次に撃力に対する応答を考えます。

𝜌0
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2

= 𝜅0
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 + 𝛿(𝑥 − 𝑥0)𝛿(𝑡) (9.5)

この問題では、両端を固定された棒に対し 1 [Ns]の力積を与えたときに、どのような運動
をするかを表していますnote 2)。両辺時間に対してフーリエ変換をとると

− 𝜔2𝜌0𝑢̃(𝑥, 𝜔) = 𝜅0
𝜕2𝑢̃(𝑥, 𝜔)
𝜕𝑥2 + 𝛿(𝑥 − 𝑥0), (9.6)

で表されます。ここで ˜はフーリエ成分を表す。これと、波動解 𝑢(𝑥, 𝜔) の固有関数展開

𝑢̃(𝑥, 𝜔) =
∞∑
𝑛=1

𝑎𝑛 (𝜔)𝑢𝑛 (𝑥) (9.7)

note 1) 固有関数の規格化から 𝑢−2
𝑛 は重さの次元をもつことが分かります。この値はModal massと呼ばれます。

note 2) 一見次元が分かりづらいが、 𝑓 (𝑥) = − 𝑓0 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑡) は [N/m]の次元を持つため、 𝑓0 は [Ns]の次元を
もちます。任意の力 𝑓 (𝑥, 𝑡) に対する振動は、以下で求める撃力応答 (Green関数と呼ばれる)との畳み込
み積分で表現出来ます。無限空間の場合、Green関数は??参照。
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Fig. 9.3 積分経路

を式 (2)に代入して、両辺と固有関数 𝑢𝑛 (𝑥) の内積をとると、

𝜌0𝜔
2𝑎𝑛 (𝜔) − 𝜌0𝜔

2
𝑛𝑎𝑛 (𝜔) = −𝜌0𝑢𝑛 (𝑥0) i.e. 𝑎𝑛 (𝜔) = − 𝑢𝑛 (𝑥0)

𝜔2 − 𝜔2
𝑛

(9.8)

を得ます。
最後に逆フーリエ変換で時間領域に戻すnote 3)。

𝑎𝑛 (𝑡) = − 1
2𝜋

∫ ∞

−∞
𝑎𝑛 (𝜔)𝑒−𝑖𝜔𝑡 𝑑𝜔 = −𝑢𝑛 (𝑥0)

2𝜋

∫ ∞

−∞

𝑒−𝑖𝜔𝑡

𝜔2 − 𝜔2
𝑛

𝑑𝜔 (9.9)

ここで、積分値を求めるため、𝜔を複素数空間の変数だとみなして、図 9.3のような経路
で積分を実行し、𝑅 → ∞の極限をとります。ただし、積分経路上に極があると積分を実
行できないため、極を実軸から −𝑖𝜖 (𝜖 > 0) だけずらした関数

𝑔(𝜔, 𝑡, 𝜖) = 𝑒−𝑖𝜔𝑡

2𝜔𝑛

(
1

𝜔 − 𝜔𝑛 + 𝑖𝜖
− 1
𝜔 + 𝜔𝑛 + 𝑖𝜖

) (
lim
𝜖→0

𝑔(𝜔, 𝑡, 𝜖) = 𝑒−𝑖𝜔𝑡

𝜔2 − 𝜔2
𝑛

)
(9.10)

の積分を実行してから 𝜖 → 0の極限をとります。ここで、2つの極を正にずらすか負にず
らすかで 4通り考えることができますが、いずれの場合も解は微分方程式を満たします。
しかしながら、外力を受ける 𝑡 = 0以前には変位がないという物理的な条件を満たすため
には、2つの極は負の方向にずらさなくてはいけません。
𝑡 > 0の場合は極が積分経路内にあるので、∫

𝐶1
𝑔(𝜔, 𝑡, 𝜖) 𝑑𝜔 +

∫
𝐶2
𝑔(𝜔, 𝑡, 𝜖) 𝑑𝜔 (9.11)

= −2𝜋𝑖{Res𝜔=−𝑖 𝜖 +𝜔𝑛𝑔(𝜔, 𝑡, 𝜖) + Res𝜔=−𝑖 𝜖−𝜔𝑛𝑔(𝜔, 𝑡, 𝜖)} = −2𝜋 sin𝜔𝑛𝑡 𝑒−𝜖 𝑡

𝜔𝑛
. (9.12)

note 3) 複素積分に関して詳しくは、Mathematical Methods for Physicists, Fifth Edition, Arfken, Weber, and Frank
Harris(1) や演習形式で学ぶ特殊関数・積分変換入門、蓬田清 (7) などを参照のこと。
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この式が 𝑡 → ∞で発散しないためにも、極は負にずらす必要があると言えます。正にず
らした場合、𝑒𝜖 𝑡 の項がかかってしまい、𝑡 → ∞ で発散します。上式で 𝑅 → ∞ および
𝜖 → 0の極限をとると、経路 𝐶2の積分が 0になるので、∫ ∞

−∞

𝑒−𝑖𝜔𝑡

𝜔2 − 𝜔2
𝑛

𝑑𝜔 = −2𝜋 sin𝜔𝑛𝑡
𝜔𝑛

(𝑡 > 0). (9.13)

一方、𝑡 < 0の場合、積分経路内に極がないので、∫
𝐶1
𝑔(𝜔, 𝑡, 𝜖) 𝑑𝜔 +

∫
𝐶3
𝑔(𝜔, 𝑡, 𝜖) 𝑑𝜔 = 0. (9.14)

上式において、𝑅 → ∞の極限をとると、経路 𝐶3の積分が 0になるので、∫ ∞

−∞

𝑒−𝑖𝜔𝑡

𝜔2 − 𝜔2
𝑛

𝑑𝜔 = 0 (𝑡 < 0). (9.15)

以上より、求める 𝑢(𝑥, 𝑡) は 𝑡 > 0の場合、弦の振動の励起の式

𝑢(𝑥, 𝑡) =
{∑

𝑛
𝑢∗𝑛 (𝑥0)𝑢𝑛 (𝑥)

𝜔𝑛
sin𝜔𝑛𝑡 𝑡 ≥ 0

0 𝑡 < 0
(9.16)

この式に規格化された固有関数を代入すると、求める 𝑢(𝑥, 𝑡) は 𝑡 > 0の場合、

𝑢(𝑥, 𝑡) =
∞∑
𝑛=1

𝑎𝑛 (𝑡)𝑢𝑛 (𝑥) =
∞∑
𝑛=1

[
2 sin𝜔𝑛𝑡
𝜌0𝑙𝜔𝑛

sin 𝑘𝑛𝑥0 sin 𝑘𝑛𝑥
]

(9.17)

となりますnote 4)。ここで 𝑘𝑛 = 𝑛𝜋/𝑙 と定義します。
見通しを良くするために、上記の式を積和の公式を用いて上式を書き直しますnote 5)。

𝑢(𝑥, 𝑡) = − 1
2𝜌𝑙

∞∑
𝑛=1

1
𝜔𝑛

[ sin(𝜔𝑛𝑡 − 𝑘𝑛 (𝑥 + 𝑥0)) − sin(𝜔𝑛𝑡 + 𝑘𝑛 (𝑥 + 𝑥0))

− sin(𝜔𝑛𝑡 − 𝑘𝑛 (𝑥 − 𝑥0)) + sin(𝜔𝑛𝑡 − 𝑘𝑛 (𝑥 − 𝑥0))] (9.18)

ここで ∑∞
𝑛=1

sin 𝜔𝑛𝑡
𝜔𝑛

をじっとにらんでみると微分してみると 𝛿 関数の形であることが分か
ります。つまり Hevisideの階段関数 𝐻 (𝑡) note 6) と関係していることが分かります。やや
天下り的ですが、0 ≤ 𝑥 < 𝑙 の区間で 𝐻 (𝑥) − 𝑥/𝑙 という式を考えフーリエ級数展開すると

𝐻 (𝑥) − 𝑥/𝑙 = 2
𝜋

∞∑
𝑛=1

1
𝑛

sin 𝑘𝑛𝑥, (9.19)

となります。この関係式を使って式を整理すると、

𝑢(𝑥, 𝑡) = 1
4𝜌0𝑐0

∞∑
𝑛=1

𝐻𝑝 (𝑐0𝑡+(𝑥−𝑥0))+𝐻𝑝 (𝑐0𝑡−(𝑥−𝑥0))−𝐻𝑝 (𝑐0𝑡−(𝑥+𝑥0))−𝐻𝑝 (𝑐0𝑡+(𝑥+𝑥0)),

(9.20)

note 4) 次元を考え式を眺めてみると、見通しが良くなります。1 [Ns] の力積を与えた場合の運動量変化分を求
め、Modal massで割って速度を計算します。そして、周波数で割って変位に直していると解釈できます

note 5) 詳しくは、キーナー応用数学下巻
note 6) Hevisideの階段関数 𝐻 (𝑡) 以下のように定義される。

𝐻 (𝑡) =


1 𝑡 > 0
0.5 𝑡 = 0
0 𝑡 < 0
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と書き下せます。ここで 𝐻𝑝 (𝑥) = 𝐻 (𝑥) − 𝐻 (−𝑥),−𝑙 < 𝑥 < 𝑙 と定義し,空間で 2𝑙 の周期性
があるとします。𝑡 = 0直後の伝播の模式図を図 9.4に示す。𝑡 = 0では、最初の 2項が完
全に打ち消しあっていますnote 7)。そこから伝播をはじめ、直後の 𝑡 = 𝑡0 では中心から変位
が広がっていきます。これは力積を与えられて弦が上方に移動しようとしているとも解釈
できます。左向きに伝搬している波 𝐻𝑝 (𝑐0𝑡 + (𝑥 − 𝑥0)) が左端 𝑥 = 0に達すると、境界条
件を満たすため位相が反転し反射 (固定端反射)します。反射はは 𝐻𝑝 (𝑐0𝑡 − (𝑥 − 𝑥0)) で表
現されます。𝑥 = 0付近では、𝐻𝑝 (𝑐0𝑡 − (𝑥 − 𝑥0)) と振幅を打ち消しあうので変位は 0にな
ります。
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Fig. 9.4 模式図。

実際に 𝑛 = 1, 2, · · · , 40 までを足してみた結果を図 9.5 左と図 9.6 に示します。パラ
メータは 𝜌0 = 1[kg/m], 𝜅0 = 1 [N], 𝑙 = 1 [m], 𝑥0 = 0.3 [m]としました。このとき、情報は
𝑐 = 1 [m/s] で伝播します。力を加えた場所から左右に常に正の振幅が伝播します。固定
端で反射されると図 9.4の一方の符号が反転するため、結果として、反射した波がもう一
方の波の振幅と打ち消しあって 0になる様子が見えます。
また、sin(𝜔𝑛𝑡)/𝜔𝑛 を exp

(
−𝜔2

𝑛𝜏
2
0
)
cos(𝜔𝑛𝑡) で置き換え 𝜏0 = 0.01 [s]とした場合の結果

が図 9.5の右図と 9.6であるnote 8)。パルスが波源から 2方向に伝播し、両端で位相が逆に
なる様子が確認できます。また、伝播速度は 1 [m/s]であり、与えたパラメータから求ま
る速度 𝑐0 =

√
𝜅0/𝜌0 = 1 [m/s]と一致しています。

以下補足です。次に弦の運動量変化を考えてみましょう。1 Nsの力積を与えたという
ことは、棒が固定端を感じるまでは棒の持つ運動量は 1Ns となるはずです。そこで棒の
持つ運動量を計算してみます。まず簡単のため 0 < 𝑥 < 𝑙/2と仮定し 0 < 𝑡 < 𝑥0/𝑐0 の時
刻区間を考えます。運動量は

𝜌
𝑑𝑢(𝑥, 𝑡)
𝑑𝑡

=
𝛿(𝑐0𝑡 + (𝑥 − 𝑥0)) + 𝛿(𝑐0𝑡 − (𝑥 − 𝑥0))

2
, (9.21)

と書けます。脚注でも述べたとおり図 9.5 右と図 9.6 のグラフは速度波形と対応するた
め、この速度波形の解析解とも対応しています。積分し棒全体での値を計算すると 1 [Ns]
となる。𝑥0/𝑐0 < 𝑡 < (𝑙 − 𝑥0)/𝑐0 の時刻区間では

𝜌
𝑑𝑢(𝑥, 𝑡)
𝑑𝑡

=
−𝛿(𝑐0𝑡 + (𝑙 − 𝑥0)) + 𝛿(𝑐0𝑡 − (𝑥 − 𝑥0))

2
, (9.22)

note 7) 伝播方向が逆向きの 𝐻𝑝 (𝑐0𝑡 + (𝑥 − 𝑥0)) と 𝐻𝑝 (𝑐0𝑡 − (𝑥 − 𝑥0) を考えている事に注意。ダランベールの
解の形になっていて、直感的に理解しやすい。

note 8) この置き換えは sin(𝜔𝑛𝑡)/𝜔𝑛 を時間微分して速度波形にし、周期 𝜏0 でローパスフィルターをかけてい
るとも解釈できます。
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Fig. 9.5 計算した波動伝播の様子。

となり、全空間で積分すると運動量は 0 [Ns]となります。つまり左端に波が到達すると、
固定端のため端で下方に 1[Ns]の力積 (運動量変化分)をうけます。

9.3.1 ポイント

1. 規格化を忘れずに。𝜅(𝑥), 𝜌(𝑥) が分布を持つ場合は、密度を含めた形で内積を定義
しないと固有関数が直交しない。

2. 複素積分のさいに、𝑡 の符号により積分路を変える必要があることに注意。上記の
議論で極が 𝑧 = 0より下にのみ存在する時は因果律を満たすことが分かる。主値積
分を考える場合は、極限をとっても特異点周りの積分の寄与が消えないことに注
意note 9)。

§9.4 Spheroidal and toroidal
modes

Earth’s seismic mode of a stratified Earth can be categorized into (i) spheroidal modes and
(ii) toroidal modes. seismic wave field can be represented by the superposition completely.

The reason why we can count up the number of modes is that the Earth has a finite spatial
size. The scale of the Earth is closely related to the frequency spacing of the modes. From a
mathematical point of view, this is an eigenvalue problem of ordinary differential equations.

• spheroidal modes 𝑛𝑆𝑙 , where 𝑛 represents the radial order, and 𝑙 shows number of
nodes in the horizontal direction. The superposition of spheroidal modes represents

note 9) 複素積分をせずとも、𝑡 = 0での解の接続を考えれば泥臭く解くことも出来る。
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Fig. 9.6 (a) 撃力応答に対する、計算された波形のスナップショット。(b)励起項を置
き換えた場合の、波形のスナップショット。

the P-SV wave. In particular, spheroidal modes with 𝑛 = 0 are called fundamental
spheroidal modes, which correspond to the Rayleigh wave.

nS0 nS2 nS3

• Toroidal modes 𝑛𝑇𝑙 , where 𝑛 is the radial order, and 𝑙 shows number of nodes in the
horizontal direction. The superposition of toroidal modes represents the SH wave. In
particular, toroidal modes with 𝑛 = 0 are called fundamental toroidal modes, which
correspond to Love wave.

nT2 nT3
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9. Normal mode

§9.5 Normal mode of a homoge-
neous sphere

∇2𝑃 = −𝜔
2

𝑐2 𝑃 (9.23)

∇2 =
1
𝑟2

(
𝜕

𝜕𝑟
𝑟2 𝜕

𝜕𝑟
+ ∇1

2
)

(9.24)

∇1
2 =

1
sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
+ 1

sin 𝜃2
𝜕2

𝜕𝜑2 (9.25)

Assuming that 𝑃 = 𝑅(𝑟)Θ(𝜃)Φ(𝜑).

1
𝑟2

[(
𝜕𝑟𝑟

2𝜕𝑟𝑅

𝑅

)
+
∇2

1 (ΘΦ)
ΘΦ

]
= −𝜔

2

𝑐2 . (9.26)

9.5.1 Horizontal direction

∇2
1 (ΘΦ)
ΘΦ should be constant. Such a solution of ΘΦ can be represented by a spherical

harmonics 𝑌𝑚𝑙 with the angular oder 𝑙 and azimuthal order 𝑚, because

∇2
1𝑌
𝑚
𝑙 = −𝑙 (𝑙 + 1)𝑌𝑚𝑙 , (9.27)

9.5.2 Radial direction

Search eigenvalues of the following ODE

1
𝑟2𝑅

(
𝑑

𝑑𝑟
𝑟2 𝑑

𝑑𝑟
𝑅

)
=
𝑙 (𝑙 + 1)
𝑟2 − 𝜔2

𝑐2 . (9.28)

with the boundary condition: 𝑅 = 0 at 𝑟 = 𝑟0. The first term of the right-hand side
represents the squared horizontal wavenumber, and the second one represents the squared
total wavenumber.

§9.6 Vector spherical harmonics
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Rlm = 𝑌𝑚𝑙 r̂ (9.29)
Slm = ∇1𝑌

𝑚
𝑙 (9.30)

Tlm = −r̂ × ∇1𝑌
𝑚
𝑙 (9.31)

Vector spherical harmonics are more complicated than spherical harmonics, but they are also
eigenfunctions for ∇2

1 as e.g. ∇2
1Tlm = −𝑙 (𝑙 + 1)Tlm. See Dahlen and Tromp 1998 p. 872 for

details (please be aware of the different normalization of spherical harmonics).
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§9.7 Rayleigh wave and Love wave

§9.8 An example of an observed
spectrum

Figure 9.7 shows an example of the Fourier spectrum of vertical ground motion at a
Japanese station when the Chilean earthquake in 2010. We can identify many modal peaks
of fundamental spheroidal modes. The dominance exhibits that the source depth is shallow.
When a huge deep earthquake occurs, the Fourier spectrum shows large amplitudes of the
overtones.
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Fig. 9.7 Fourier spectrum of vertical ground motion at a Japanese station when the Chilean
earthquake in 2010.

図 9.1 は Rayleigh 波の波群が地球をグルグルと巡っている様子が見てとれます。波群
の現れる間隔は表面波が地球を一周する時間に対応しています。図 9.7のスペクトルピー
クの間隔と、表面波が地球一周するのに要する時間を比較しみましょう。Jeansの関係式
から波長 𝜆は地球半径を 𝑅𝐸 とすると

𝜆𝑙 =
2𝜋𝑅𝐸
𝑙 + 1/2 (9.32)

と書くことができます。𝑙 に対応する固有周波数 𝑓𝑙 は位相速度を 𝑐𝑝 とすると

𝑓𝑙 =
𝑐𝑝

𝜆𝑙
=

(𝑙 + 1/2)𝑐𝑝
2𝜋𝑅𝐸

(9.33)

となります。大雑把に 𝑐𝑝 = 4.5 km/sとすると、 𝑓𝑙+1 − 𝑓𝑙 ∼0.1 mHzとなり、おおよそ観測
されたモードの間隔と一致します。
ピークの包絡線に注目すると周期的に山があるように見えます。この山について考察し

てみましょう。方位量子数 𝑙(𝑚 = 0を仮定)のモードの振幅の絶対値は、震源と観測点の
角距離を Θとすると

|𝑃0
𝑙 (cosΘ) | ∼

√
2

𝑙𝜋 sinΘ
| cos[(𝑙 + 1/2)Θ − 𝜋/4] | (9.34)
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と書けます。いま Θを固定して 𝑙 を変化させると、おおよそ 𝜋/Θごとに山ができそれが
繰り返されることが分かります。チリ地震の場合 SGNまでの角距離は 154度です。この
場合対蹠点 (震源の真裏)に波が集まってくるので、対蹠点からの角度 (180-154)度で見積
もるとわかりやすいnote 10)。この場合山の幅は 𝑙 が 7個分と見積もられ観測と一致します。
これらの現象は、単純にモードの節が繰り返し現れるために起こります。
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note 10) もちろん Θ = 150◦ でも見積もることができるが、その場合には 𝑙 が整数であることに気をつけること。
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Seismic
Interferometry

Chapter 10

§10.1 Introduction
地球内部の構造を知るには、地震波の伝わり方が重要な手がかりとなります。これま

で、地震の引き起こした地面の震動を観測する事によって、地震波速度構造がイメージン
グされてきました。2000年代に入り、地震以外の現象が引き起こすランダムな地面の揺
れを調べる事で、地球の内部構造を調べる手法 (地震波干渉法)が一般的note 1)となってき
ました。この章では、これまで学んだ知識を持とに、地震波干渉法の原理について解説し
ていきます。
本解説ではランダムな波動場として、海洋波浪が引き起こす脈動について取り上げます

(4.7.1章参照)。ランダムな波動場としては、地震のコーダ波 (多重散乱した地震波。詳し
くは Sato Fehler and Maeda 2012(10) 参照)も重要です。コーダ波を使った地震波干渉法も
広く研究されています (例えば Campillo and Paul, 2003)(2) が、今回は時間の都合上詳細は
述べません。興味がある場合は、前に上げた review論文や教科書を参照してください。

§10.2 A brief history of Seismic
Interferometry

note 1) 最近多くのレビュー論文 (例えば Snieder and Larose (2013)? や教科書 (例えば、Schuster, (2009)(19) Sato,
Fehler and Maeda (2012),(10) Nakata et al (2019)(7) 等をを参照)。
地震波干渉法は、地球だけではなく実験室スケール (e.g., Lobkis and Weaver, 2001)(6)、建築構造物 (e.g.,

Snieder and Wapenaar, 2010),(13) 日震学 (e.g., Gizon et al., 2010)(5)、海洋音響学 (e.g., Roux and Kuperman,
2004)(9) など色々な現象に適応されています。
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地震波干渉法のアイデアは 1950 年代までさかのぼります。Aki (1957)(1) による空間
自己相関法 (SPAC 法) のアイデアは地震波干渉法の先駆けです。Ocean acoustics の分野
では Cox (1973),(4) exploration seismologyの分野では Claerbout (1968)(3) の先駆的が仕事
があります。Aki のアイデアはしばらくの間注目されませんでしたnote 2)。しかし発表か
ら 26年後の 1983年に元北海道大学岡田広らを中心とする研究グループが Akiの手法に
注目し (岡田・坂尻, 1983)(20)、主に表層付近の地盤特性を調べるための手法 (微動探査,
microtremor survey )として盛んに研究されるようになりました。その後微動探査は地表
付近のごく浅い構造を推定する際には、標準的と手法なりました。
地震学の分野で地震波干渉法が注目されるようになったきっかけの論文は Campillo and

Paul, [2003](2) です。この論文ではメキシコで発生した地震波を解析しました。地震波記
録のなかでも、十分に散乱したコーダ波部分の相互相関を計算することによって、表面波
の伝播を抽出できることを示しました。2005年に Shapiroらは (12)、脈動が色々な方向か
ら常に到来しているという事実を逆手に取り、その波の伝わり方からカリフォルニアの地
殻構造を推定する事に成功しました。ambient noise tomographyと呼ばれる手法です。こ
の研究に続き、北米、日本、中国、ヨーロッパなど、数多くの地域で同種の研究が行われ
るようになりました。
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Fig. 10.1 MAJO(松代)と他の観測点間の上下動記録の相互相関関数を観測点間の距離
で並べた図。周期 20-200秒のバンドパスフィルターをかけています。レーリー波の伝
播を見て取れます。遅延時間が正の波束を causal partとよび，負の波束を acausal part
とよびます。)

地震波干渉法で基本になる観測量は、2つの観測点を選び地震波形の相互相関関数であ
す。相互相関関数の波形は、あたかも一方の観測点に震源 (a virtual source) があり、 も
う一方の観測点で波形を記録していると解釈できます。ここで図 10.1を見て見ましょう。

note 2) 安芸さんの仕事は博士論文としてまとめられています。自伝によると、ウィナーのサイバネティクス (筑
摩文庫，岩波文庫)から着想を得たそうです。博士論文として、理論、観測機器の設計作成、観測、構造
の推定まで独力で行いました。コンピュータが普及する前の時代なので、相互相関係数の計算もアナログ
回路の設計からしたそうです。当時、東大理学部のグランドで観測を行ったそうで、最後自分でグラウン
ドを掘って、構造推定の結果を確かめたそうです。
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松代にある観測点と他の観測点の相互相関関数を示しています。この手法には大きく分け
てメリットが 2つあります。

1つ目は地震が無い領域でも、仮想的にイベントを置くことが出来ることです。通常地
震が無い領域では、地震波速度構造の詳しい地震波速度構造は分からないため、地震を必
要としないのは大きなメリットであす。図 10.1も確かに、あたかも松代が震源であるか
のような Rayleigh波の伝播を見て取れます。

2 つ目は地震を待つ必要がない点であす。通常地震波トモグラフィ解析を行うために
は、十分な地震データが蓄積されるのを待つ必要があります。地震波干渉法では、一定
期間観測すれば十分な質のデータを確保することができますnote 3)。地震を待つ必要が無
いという性質は、地震波速度構造の時間変化を調べる上で非常に有利です。地震を使っ
て、微少な地震波速度構造の時間変化を調べるためには、繰り返し同じ場所で地震が起こ
る (繰り返し地震と呼ばれる) 事を待つ必要があります。しかし、そのような都合の良い
地震が起こることは非常に希です。あるペアの相互相関関数を計算し、その時間変化を見
ることは、繰り返し同じ場所で起こっている地震の記録を解析する事に相当します。実
際、火山や地震に伴う構造の時間変化が盛んに研究されるようになってきたました (例え
ば Sens-Schönfelder Wegler, 2006(11)).
ここでは、理論的背景を説明し、地震波干渉法の原理について解説していきます。ここ

の解析事例は、冒頭で挙げた review論文を参考にしてください。

Rough Earth Club and Smooth Earth Club

SI brings a reunion of different research fields: ocean acoustic (Cox, 1973), seismic explo-
ration (Claebout, 1968), and seismology (Aki 1957). Surprisingly the ideas were proposed
independently and simultaneously.

Even in the seismological community, there were different cultures: one is the rough Earth
club and smooth Earth club. Keiiti Aki defined them in his letter to V. I. Keilis-Borok, as

. . . To a geodynamicist, the earth’s property is smoothly varying within bodies
bounded by large-scale interfaces. Most seismologists also belong to this “smooth
earth club” because once you start with an initial model of smooth earth, your data
usually do not require the addition of small-scale heterogeneity to your initial model.
As summarized well in a recent book by Sato and Fehler (1998), the acceptance of coda
waves in the data set is needed for the acceptance of small-scale seismic heterogeneity of
the lithosphere. There is an increasing number of seismologists who accept it, forming
the“rough earth club.”I believe that you are also a member of the rough earth club,
judging from the emphasis on the hierarchical heterogeneity of the lithosphere. . .

(‘‘Seismology of Earthquake and Volcanic Prediction’’, Lecture notes, Aki 2003). Seismic
wavefield above 1 Hz was a territory of the "rough Earth club," whereas that below 0.1 Hz
was a territory of the "smooth Earth club." The members of the rough Earth club are familiar
with stochastic treatments of the seismic wavefield. The recent development of SI means a
reunion between the "rough Earth club" and the "smooth Earth club."

The dominant frequency of microseisms at around 0.2 Hz corresponds to the gap between
"rough Earth club" and "smooth Earth club". SI enables us to utilize coherent signals from
random seismic wavefields with an assumption of stochastic stationary excitation. Although
surface wave tomography was a tool of the "smooth Earth club," SI broke the gap. Scattering
due to strong lateral heterogeneities in the crust and the sediment was a big barrier for "smooth
Earth club." When we apply SI, the scatterer is important because it enhances the randomness.

note 3) 周波数帯にもよりますが、大雑把な感覚でいうと、0.05-0.5 Hzであれば数ヶ月、それより高周波数だと
数日で十分なことが多いです。もちろん、十分な精度を確保するためには長期間の観測の方が有利となり
ます。
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SI plays a complementary role in the "smooth Earth club." This role of SI is true of other
communities, such as seismic exploration, acoustic, physical oceanography, and so on.

In this lecture, the next chapter explains the excitation mechanism of microseisms by ocean
swell. The next chapter explains the basic principle of SI with a demonstration by a WEB
application. Then the last chapter explains some applications, which are done by our group
mainly.
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§10.3 Theoretical background of
Seismic Interferometry: a closed
system
地震波干渉法の理論を理解するため単純な場合を考えてみましょう。note 4)。
まず最初に、相互相関関数の定義をおさらいします。ウェブアプリを作ったので ( http:

//www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html) 適宜実行
しながら読むと分かりやすいと思います。

10.3.1 Cross-correlation analysis

τ=(l2-l1)/c

l2

l1

c: Seismic velocityEvent

Station 1

Station 2
time

CCF

τLag time

u1(t)

u2(t)

u1(t’)u2(t’+t)dt’

t

Fig. 10.2 Schematic figure of cross-correlation analysis for a pair of seismograms when
an earthquake ocurred.

First, we consider a transient phenomenon such as an earthquake or a volcanic explosion.
図 10.2のようにある位置で地震が起きたことを考えます。観測点 1と 2の地震計記録に
対して相互相関関数 𝜙12 を

𝜙12 (𝑡) = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑢1 (𝜏)𝑢2 (𝑡 + 𝜏)𝑑𝜏. (10.1)

のように定義します。相互相関関数は |𝑡 | が大きくなると十分速く 0に収束すると仮定す
るとそのフーリエ変換 Φ12 (𝜔) を

Φ12 (𝜔) = 〈𝑈∗
1 (𝜔)𝑈2 (𝜔)〉 (10.2)

と定義出来ますnote 5)。その場合、観測点 2は観測点 1より 𝜏 秒だけ遅れて波が到達する

note 4) 理論的な取り扱いを大局的に理解するには、Snieder et al. (2010)(14) がお勧め。
note 5) 正確には、定常過程を考える場合には、長時間の積分をアンサンブル平均で近似しています。定常的に波

動場が励起されていると仮定しているので、𝑢𝑖 (𝑡) は自乗可積分とはならないので、通常の意味でフーリ
エ変換は出来ません。より厳密に理解したい場合は時系列解析の参考書などを参照してください。

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
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(図 10.2 右)。その場合相互相関関数は 𝑡 = 𝜏 にピークをもつ。つまり、相互相関関数の
ピークの時刻を読むことによって、地震波到達時刻の差 (走時差)を読むことができます。
実際精密に震源位置を決定するために、相互相関関数による精密な走時差の測定は良く利
用されます。

Fig. 10.3 点震源を置きシミュレーションした結果の例。右下の図は、観測点 1から 5
で観測された波形を表し、右上はその相互相関関数を表す。

ウェブアプリでは、クリックすると震源を任意の場所に置くことが出来、sを押すとシ
ミュレーションが始まります。右下に観測点 1-5 での波形を、右上にその相互相関関数
(例えば 14は 1と 4の相互相関関数)が表示されます。相互相関関数のピークの時刻を読
み取ることによって走時差を測定することが出来ます。色々試してみてください。
以後は過渡的な現象 (地震や火山の噴火)ではなく、微動や脈動など統計的にランダム

かつ定常と近似できる現象について考えていきます。

10.3.2 In a case of a closed system

地震波干渉法を理論的に考える上で、normal mode のアプローチは抽象的ですが本質
を捉えており、地震波干渉法のアイデアを理解しやすいという利点があります (例えば
Lobkis and Weaver, 2001(6))。そこで、まずは normal mode のアプローチで考えていき
ます。
弾性体が有限な大きさを持つ仮定は、地球が有限サイズを持つことを考えると、自然

な仮定である事が分かります。ここでは簡単のため 1次元周期境界の問題を考えますが、
normal modeの議論をそのまま 2次元、3次元へと適応することができます。

Ensemble of repeating experiments

仮想的に、実験室で繰り返し実験している状況を考えます。𝑡 = 0より前では弾性体は
静止しており、時刻 𝑡 = 0で弦に対してランダムな力を 𝑓 𝑘 (𝑡, 𝑥) の力を加えます。力を加
えた後に、弦の振幅を測定するという実験を考えます。このような操作を 𝑘0 回繰り返し
ます。note 6)。
ランダムな力による励起の問題を normal modeのアプローチで考えていきます。𝑡 = 0

note 6) 厳密に言うと、アンサンブル平均をとって期待値をとることと、最初に定義したような時間積分による相
互相関は一致するとは限りません (エルゴート性)。
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に 𝛿(𝑡) 𝑓 (𝑥) という力がかかっている場合を考えます。この場合に運動方程式は

𝜌
𝜕2𝑢𝑘

𝜕𝑡2
= 𝜅

𝜕2𝑢𝑘

𝜕𝑥2 + 𝑓 (𝑥)𝛿(𝑡) (10.3)

となります。
Green関数を使って外力 𝑓 に対する変位の応答を考えていきましょう。??章式 9.16か

ら、𝑡 ≥ 0での Green関数は固有関数 𝑢𝑛 と固有周波数 𝜔𝑛 を使って

𝐺 (𝑥, 𝑥 ′; 𝑡) =
∑
𝑛

𝑢𝑛 (𝑥)𝑢𝑛 (𝑥 ′)
𝜔𝑛

sin𝜔𝑡, (10.4)

と書くことができます。𝑘 回目の試行での外力 𝑓 𝑘 に対する弦の励起振幅 𝑢𝑘 (𝑥, 𝑡) (𝑡 ≥ 0)
を求めるためには、外力 𝑓 を Green関数で畳み込むと

𝑢𝑘 (𝑥, 𝑡) =
∑
𝑛

sin(𝜔𝑛𝑡)
𝜔𝑛

𝑢𝑛 (𝑥)
∫

𝑢𝑛 (𝑥 ′) 𝑓 𝑘 (𝑥 ′)𝑑𝑥 ′, (10.5)

となります。ここで 𝐴𝑘𝑛 ≡
∫
𝑢𝑛 (𝑥 ′) 𝑓 𝑘 (𝑥 ′)𝑑𝑥 ′ と定義すると

𝑢𝑘 (𝑥, 𝑡) =
∑
𝑛

𝐴𝑘𝑛𝑢𝑛 (𝑥)
sin(𝜔𝑛𝑡)
𝜔𝑛

, (10.6)

という形で変位応答を書くことができます。

White noise

ここではランダムに加えられた外力 𝑓 について考えていきます。今外力は、あらゆる
波数成分を等しく含んでいる不規則変動だと定義しましょう。このような性質を持つこと
を白色雑音とよ呼びますnote 7)。そのために Φ( 𝑓 ) = 𝑐𝑜𝑛𝑠𝑡 となります。
もう少し具体的に考えていきましょう。Figure 10.4 の左の図を見てください。いま空

間間隔 Δ𝑡 で離散化された外力 𝑓 𝑘 (𝑖Δ𝑥) を考えます。各位置 𝑖Δ𝑥 で、ランダムにサイコロ
を振り (平均 0分散 1の正規分布に従うとします)。ここで自己相関関数 𝜙(𝑥, 𝑥 ′) を考えて
みましょう。

𝜙(𝑥, 𝑥 ′) = lim
𝑁→∞

1
𝑁

𝑁−1∑
𝑘=0

𝑓 𝑘 (𝑥 ′) 𝑓 𝑘 (𝑥 ′ + 𝑥) (10.7)

と自己相関関数を定義します。いま 2点間の位置が Δ𝑥/2だけ離れたら、外力に相関では
全く相関がないことを仮定します。そうすると 𝜙 は 𝑥 − 𝑥 ′ だけの関数となり、𝜉 ≡ 𝑥 − 𝑥 ′
とすると

𝜙(𝜉) =
{

1 |𝜉 | ≤ Δ𝑥

0 𝑒𝑙𝑠𝑒
(10.8)

となります。𝜙(𝜉) フーリエ級数展開すると、Φ(𝑘𝑛) = Δ𝑥 となります。ここで 𝑘𝑛 は波数
2𝑛𝜋/𝐿 です。パワースペクトル (片側スペクトル)は 2Δ𝑥 となります (図 10.4)。
理論的な事は計算できました。では実際に数値データを作り計算してみたらどうなるで

しょうか？乱数を使い白色雑音を生成し、フーリエ解析してみましょう。

note 7) 太陽光のアナロジーです。一般に白色はあらゆる周波数成分を含む事を、赤色は低周波に富む事、青色は
等は周に富むことを意味します。
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Fig. 10.4 図左:白色雑音の特徴を持つ外力 𝑓 𝑘 (𝑥)。図右:スペクトルをとりパワースペ
クトルを計算した結果。アンサンブル平均をとる数を増やす毎に、推定値は 1に近づい
ていく。

まずは切り出したウィンドウ 1つを考えてみましょう。波数 𝑘𝑛 でのフーリエスペクト
ルを考えてみましょうnote 8)。 𝑓 (𝑥𝑘) は乱数なので、そのフーリエ成分 𝐹 (𝑘) も乱数になり
ます。パワースペクトルは | 𝑈 (𝑘) |2 で計算出来るため、一定の値を足らずランダムな値
を取りますnote 9)図 10.4 右のグレーの点が実際に計算した点です。これは少し奇妙です。
Φ( 𝑓 ) = 1となるはずが 1回離散フーリエ変換するだけでは、2と同じ桁という程度のこ
としか分かりません。何故でしょうか？
それは自己相関関数が統計的な量なためです。多くのアンサンブルに対して平均を (こ

こでは 𝑘 がアンサンブルの要素に対応付けた番号です)取らないと意味のある値になりま
せん。より具体的に言うと推定誤差が 100% となってしまいます。一見とても奇妙です
が、この振る舞いは統計的に 1サンプルのみを評価していることに起因します。
そこで何度もフーリエ級数展開をしてアンサンブル平均をとってみましょう。段々と 2

に近づいていくことがわかると思いますnote 10)。このようにパワースペクトルとるはあく
まで統計的な量なため、十分な数だけ平均化しないと推定誤差が大きくなりすぎてしまい
ます。例えば 𝑁 回サンプリングして平均化した場合を考えてみましょう。時系列が正規
分布に従う場合推定誤差は 1/

√
𝑁 となります。このように誤差が 𝑁 にしたがって小さく

なっていく様子も、図から見て取れます。

Equipartition of energy

外力のした仕事がどのようにエネルギー分配されているか考えていきましょう。速度は

𝜕𝑢𝑘 (𝑥, 𝑡)
𝜕𝑡

=
∑
𝑛

𝐴𝑘𝑛𝑢𝑛 (𝑥) cos(𝜔𝑛𝑡), (10.10)

note 8) 実際に計算するには空間的に離散化する必要があり離散フーリエ変換する必要があります。離散フーリエ
変換とフーリエ級数展開の整合性をとると

𝐹 (𝑘𝑛) = Δ𝑥
𝑁∑
𝑗=0

𝑓 (𝑥 𝑗 )𝑒−𝑖2𝜋𝑘𝑛𝑥 𝑗 = 𝛿𝐹𝐷𝐹𝑇 (𝑘𝑛) , (10.9)

となります。
note 9) 正確には 𝜒2 分布に従います。

note 10) 確認ですが、今時間領域で分散 1の時系列を考えています。Percivalの公式からパワースペクトルの積分
は 2 × 0.5となり一致します。
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モードあたりの運動エネルギー 𝑇𝑛 は 𝜌𝑢𝑛 をかけて空間積分すればよく

𝑇𝑛 =
1
2
(𝐴𝑘𝑛)2 cos2 𝜔𝑛𝑡) (10.11)

となることが分かります。一方弾性エネルギー 𝑉𝑛 は歪の固有関数 𝜕𝑢𝑛
𝜕𝑥 を両辺にかけて空

間積分すると評価でき
𝑇𝑛 =

1
2
(𝐴𝑘𝑛)2 sin2 𝜔𝑛𝑡) (10.12)

全エネルギー 𝑇 +𝑉 は
𝑇 +𝑉 = (𝐴𝑘𝑛)2 (10.13)

で評価できることが分かります。つまり白色の特徴をもつ外力 𝑓 で叩くと、各モードにエ
ネルギーの期待値 〈(𝐴𝑘𝑛)2〉𝑘 は一定となります。この条件が満たされるとき、エネルギー
が当分配 (equipartition of energy)されていると呼ぶことにします。

Cross-correlation functions

ここで 𝑢𝑘 (𝑥1) と 𝑢𝑘 (𝑥2) の相互相関関数 𝜙𝑘 (𝑥1, 𝑥2; 𝜏) を考え、相互相関関数を

𝜙𝑘 (𝑥1, 𝑥2; 𝜏) ≡ lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑢𝑘 (𝑥1, 𝑡)𝑢𝑘 (𝑥2, 𝑡 + 𝜏)𝑑𝑡, (10.14)

と定義します。
𝑘0 回試行した後そのアンサンブル平均 𝜙(𝑥1, 𝑥2; 𝑡) を

𝜙(𝑥1, 𝑥2; 𝑡) ≡
〈
𝜙𝑘 (𝑥1, 𝑥2; 𝑡)

〉
𝑘
= lim
𝑘0→∞

1
𝑁

𝑁−1∑
𝑘=0

𝜙𝑘 (𝑥1, 𝑥2; 𝑡) (10.15)

とします。ここで今後は簡単化のため 〈〉𝑘 は 𝑘 に関するアンサンブル平均を表すことにし
ます。
いま白色な特徴を持つランダムな力で叩いているため、各モードのエネルギー (弾性エ

ネルギーと運動エネルギーの和 𝑇 +𝑉)が等しく分配され、それぞれの変動 (振幅 𝐴𝑛)が無
相関です。𝐴𝑛 の相互相関の期待値は以下のように書くことが出来ます。

〈𝐴𝑚𝐴𝑛〉 ≡ lim
𝑁→∞

∑
𝑘

𝑁−1∑
𝑘=0

𝐴𝑘𝑚𝐴
𝑘
𝑛 = 𝛿𝑚𝑛

𝐴2
0

𝜔2
𝑛

. (10.16)

となります。
簡単な計算の後

𝜙(𝑥1, 𝑥2; 𝑡) = −
𝐴2

0

2𝜔2
𝑛

𝑑

𝑑𝑡
(𝐺 (𝑥1, 𝑥2; 𝑡) − 𝐺 (𝑥2, 𝑥1;−𝑡)) (10.17)

と書ける。相互相関関数の微分とグリーン関数を結びつける式を導出した。また、この式
を式変形し相互相関の微分の形、

𝑑

𝑑𝑡
𝜙(𝑥1, 𝑥2; 𝑡) = −

𝐴2
0

2
(𝐺 (𝑥1, 𝑥2; 𝑡) − 𝐺 (𝑥2, 𝑥1;−𝑡)), (10.18)
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に変形でき、オープンな系の場合と比較することが出来るnote 11)。
現実の相互相関関数と比較する場合、一番大きな問題点は、エネルギー当分配の仮定で

す。球対称地球のを考える場合、地球内部を含め外力が白色の特徴を持つならば、水平方
向 (angular order 𝑙 と azimuthal order 𝑚) にはエネルギーの当分配を考えることができま
す。しかし、励起源が地表付近に集中している状況では、半径方向 (radial order 𝑛)にはエ
ネルギーは等分配されません。特に 𝑛 = 0の基本モードが卓越することとなります
また閉じた系で考えているため、減衰を考慮に入れないと、持続的な外力 (海洋波浪な

ど)を考えた場合には振幅が発散してしまうnote 12)問題があります。この簡単な見積では、
繰り返し実験するという (非現実的な) 状況設定なので定常状態を考えていないために発
散の問題は起こりません。厳密な議論のためには減衰の効果を考慮する必要があります。

問題 9.1

相互相関関数の具体的な表式を計算し、式 (10.18)を導け。

10.3.3 In a case of an open system

本節では 2次元無限媒質中に 2点観測点がある場合を想定します。単純ですが、表面波
を考える上ではかなり良い近似です。また理想的な条件の元では、相互相関関数と Green
関数を結びつけることができます。note 13)

まずは閉じた系の問題設定を素直に拡張し、2次元平面を考え、𝑡 = 0のタイミングでラ
ンダムに叩く状況を考えます。表現定理を使って考察すると無数に励起源がある状況は、
観測点を囲う閉曲線に沿って励起源を分布させることと等価である事が分かります。地震
波干渉法を考えるときにいくつか違った仮定を用いるのですが、その等価性と違いを理解
する事がこの節の目的です。

In a case of many random sources

雨粒が水面を叩いている状況を思い浮かべてみましょう。雨粒のように、まずは 2次元
平面上に無数に励起源が分布している状況を考えてみましょう。ここでも 𝑡 = 0でランダ
ムな外力が働く状況を、繰り返し観測している事を考えます。
𝑖番目の励起源 (𝑖 = 0, · · · , 𝑁)の力を 𝛿(𝒓𝑖 − 𝒓𝑠)𝛿(𝑡) 𝑓 𝑘𝑖 とします。𝑘 番目の試行での変位

𝑢𝑘 (𝑥, 𝑡) は
𝑢𝑘 (𝒓, 𝑡) =

∞∑
𝑖=0

𝑔2𝐷 (𝒓 − 𝒓𝑖; 𝑡) 𝑓 𝑘𝑖 , (10.20)

と書けます。ここで 𝒓𝑖 は 𝑖 番目の励起源の位置を表します。

note 11) normal modeの章で述べたように Green関数は

𝐺 (𝒙, 𝒙′, 𝑡) =
∑
𝑘

𝑢𝑘 (𝒙)𝑢𝑘 (𝒙′)
𝜔𝑘

sin 𝜔𝑘 𝑡𝐻 (𝑡) , (10.19)

と書ける。
note 12) オープンな系であれば、境界から外向きのエネルギフラックスと、励起源による仕事の釣り合いを考える

ことができます。
note 13) 相互相関関数を計算することにより観測点間の波動伝播が抽出されるデモを作成しました。実行しな

がら読むと理解が深まるかもしれません。http://www.eri.u-tokyo.ac.jp/knishida/Seismology/
wave2Drandom2.html

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
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ここで見通しをよくするために時間に関してフーリエ成分を考えますnote 14)。

𝑈𝑘 (𝒓, 𝜔) =
∞∑
𝑖=0

𝐺2𝐷 (𝒓 − 𝒓𝑖;𝜔) 𝑓 𝑘𝑖 , (10.21)

𝑟

𝑡𝑡0

Fig. 10.5 平面内に一様にランダムな励起源が分布している場合の模式図。

ここで 𝑡 = 0以降に原点ではどのような振幅が観測されるかを考えていきましょう。時
刻 𝑡0 での振幅を考えてみましょう。今 2次元均質媒質の Green関数を考えているために、
原点から 𝑟 = 𝑐𝑡0 だけ離れた点で励起された波が到着することになります。すなわち半径
𝑟 の同心円上に位置する外力が励起した波が一斉に原点に到達することになります。今外
力の間隔は平均的に Δ𝑥 だとします。そうすると半径方向に Δ𝑥 の幅を考えると、おおよ
そ 2𝜋𝑟/Δ𝑥 個の外力が分布していることになります (図 10.5 左)。振幅の距離減衰はおお
よそ 𝑟1/2 ですので、原点での自乗振幅はおおよそ 2𝜋𝑟/Δ𝑥(𝑟1/2)2 = 2𝜋/Δ𝑥 となり距離に
依存しなくなります。つまり原点には 𝑡 > 0ずっと同程度の振幅の波が到来し続けること
となります (図 10.5右)。
ここで、表現定理を思い出しましょう。今円内での変位を観測していることとします。

この場合に、半径 𝑟 の円外に分布する外力によって励起された波は、円上の応力と変位が
分かれば、円内の変位分布は完全に再現することができます。つまり、円外の外力の寄与
は円上に分布させた外力で置き換えることができます。ただここで気をつけなくてはいけ
ないのは、外力を加えたのは 𝑡 = 0のタイミングのみですが、円上に仮想的に考える励起
源は時間的には 𝑡 > 0のあいだ励起が続くという点です。今 𝑡 = 0で円内の外力も考えて
いますが、無限に長い時間を考えた場合にその寄与は無限に大きくなるために、円内の外
力の効果は無視することができます。つまり、円上のみに外力が分布する場合 (ただし時
間的には持続的)と等価であることが分かります。
地震波干渉法の web 上のデモ http://www.eri.u-tokyo.ac.jp/knishida/

Seismology/wave2Drandom2.html はこの条件でシミュレーションしています (図
10.6)。
ここでは簡単のため、再び時間平均がアンサンブル平均と同じであると仮定します。つ

まり円周上に 𝐹𝑘𝑖 (𝜔) の外力が分布しているとします。このような外力による地震波の励
起を 𝑁 回行って、そのアンサンブル平均を考える状況を考えます。外力 𝐹𝑖、他の励起源
𝐹𝑗 と互いに無相関であり、𝐹 が白色であると仮定すると

〈𝐹𝑘∗𝑖 𝐹𝑘𝑗 〉𝑘 = 𝛿𝑖 𝑗𝐹2
0 , (10.22)

と書けますnote 15)。このことからクロス・スペクトル (相互相関関数のフーリエ変換)Φ12

note 14) 大文字でフーリエ成分を表すことにします。
note 15) 𝑙𝑎𝑛𝑔𝑙𝑒〉𝑘 は 𝑘 に関してアンサンブル平均を取った事を表すことにします

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html


182

10. Seismic Interferometry

Fig. 10.6 円上にランダムな外力が分布している場合の波動場の例。励起は時間的に持
続的である場合を考えています。

は

Φ12 (𝜔) ≡ 〈Φ𝑘12〉𝑘 =
∑
𝑖, 𝑗

𝑔2𝐷∗ (𝒓1 − 𝒓𝑖 , 𝜔)𝐺2𝐷 (𝒓2 − 𝒓 𝑗 , 𝜔)〈 𝑓 𝑘𝑖 (𝜔) 𝑓 𝑘𝑗 (𝜔)〉𝑘

=
∑
𝑖

𝐺2𝐷∗ (𝒓1 − 𝒓𝑖 , 𝜔)𝐺2𝐷 (𝒓2 − 𝒓𝑖 , 𝜔)𝐹2
0 (10.23)

と書くことが出来ます。
励起源の数が十分に大きいと、励起源が観測点を囲んでいる場合には上式の和は線積分

で置き換えられ、

Φ12 = 𝑓 2
0

∫
𝑙𝑠

𝐺2𝐷∗ (𝒓1 − 𝒓𝑠 , 𝜔)𝐺2𝐷 (𝒓2 − 𝒓𝑠 , 𝜔)𝑑𝑙𝑠 , (10.24)

と書ける。グリーン関数の畳み込み積分を空間で積分している形になっています。この式
が地震波干渉法における基本式です。

積分の評価: 相互相関関数と Green関数の関係
この積分を評価するために、図 10.7のような励起源の配置を考えます。励起源の位置

は原点からの距離 𝑟𝑠 と角度 𝜙𝑠 で表現します。
単純化のため Green関数が 𝑒𝑖𝑘𝑟−𝜋/4/

√
𝑘𝑟 に比例すると近似します。この近似は距離 𝑟
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Fig. 10.7 (a) 𝑟𝑠 を固定し 𝜙𝑠 に対し被積分関数をプロットした図。(b) は 𝑟𝑠 = 3 の円
(図 10.7(a)参照)に沿った値をプロットした図。

が波長に比べて長いときには妥当な近似ですnote 16)。そうすると

Φ12 ∝
∫
𝑙𝑠

𝑒𝑖𝑘 (𝑟2𝑠−𝑟1𝑠)

𝑘
√
𝑟1𝑠𝑟2𝑠

𝑑𝑙𝑠 , (10.25)

𝑟1𝑠 , 𝑟2𝑠 は図 10.7にあるように観測点 1𝒓1,観測点 2𝒓2 と励起源 𝒓𝑠 の間の距離です。式に
あるように、点震源 𝒓𝑠 から放射される波の観測点 1と 2とでの位相差は、距離の差を波
長で割った値できまります。等位相差の曲線は観測点を焦点とする双曲線となります。そ
うすると、2 観測点を通るパスに沿っては位相の変化は緩やかとなり (停留点, stationary
point)、その他の領域では激しく振動します (図 10.7)。ランダムな励起の問題を考える場
合、二観測点間を通るパスに沿った励起源の寄与 (stationary zoneと呼ばれる)が大きくな
り、その他の領域の励起源の影響は打ち消されます (停留値法,例えば蓬田 2007参照)。ま
た虚部は 𝜙𝑠 に対して反対称となっているため、励起源の分布が一様の場合には打ち消さ
れるnote 17)。
以下少し視点を変えて、もう少し直感的な説明を試みます。図 10.7赤点で書いたよう

にランダムな励起源がある限られた領域に分布しているとき、十分に遠くで観測する場合
多重極 (mono pole, dipole, quadrapole 等) の重ね合わせで表現できます (多重局展開と呼
ばれる)。𝜓𝑠 が図にあるように 70◦ 程度の場合を考えます。この場合、2観測点の間に節
が入る確率はランダムです。そのために、𝑟𝑠 からでた波が 2つの観測点で同位相である確
率と逆位相である確率は等しくなります。一方 𝜙𝑠 が 0か 𝜋 の時には (stationary zoneの

note 16) Green関数は具体的には
𝐺2𝐷 (𝒓 , 𝑡) = − 1

2𝜋
𝐻

(
𝑡 − 𝑟

𝑐

)√
𝑡2 − 𝑟2

𝑐2

,

周波数領域では、
𝐺2𝐷 (𝒓 , 𝜔) = − 𝑖

4
𝐻

(2)
0 (𝜔𝑟/𝑐) ∝ 1

√
𝑘𝑟
𝑒𝑖𝑘𝑟−𝜋/4,

と書けます。ここで波数 𝑘 は 𝑘 ≡ 𝜔/𝑐 と定義され、𝐻 (2)
0 第 2種ハンケル関数である, 𝐻 () は Heviside

の階段関数です。
note 17) 被積分関数が激しく振動する性質は重要です。なぜなら、一様に励起源が分布していない場合にも、

stationary zoneの寄与が卓越することが期待されるためです。励起源の分布に対して、相互相関関数の波
形がロバストである性質は、データ解析上重要な点です。
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場合)、励起源から見て 2つの観測点の方向は同じため常に 𝑟𝑠 から出る波は同位相となり
ます。つまり stationary zoneに励起源がある場合のみ、相互相関波形に寄与します。

問題 9.2

以上周波数領域で評価たが、相互相関波形の形を理解するために時間領域で考
える。ここでは数のような状況をかんがえる。周波数領域で 𝐺2𝐷∗ (𝒓1 − 𝒓𝑠 , 𝜔) ∗
𝐺2𝐷 (𝒓2 − 𝒓𝑠 , 𝜔) と書いた項は時間領域 (フーリエ逆変換すると)グリーン関数の畳
み込み積分で表現できる。

1. 図でしめした位置で外力を加えたとき、相互相関関数を計算せよ。
2. 図で示した円周上に体力が分布していることを考える。(1)で計算した相互
相関関数を角度方向に平均し、相互相関関数を評価せよ。ここで、図中双
曲線の内側にある外力の寄与が多きことに注意せよ。

3. 相互相関関数がピーク値を取る時刻と、観測手間の距離の関係を考察せよ。

𝑟

以上大雑把に積分の寄与を見積もりました。ここで Wapenaar and Fokkema (2006)(17)

に従い 𝑢 が 𝑙𝑠 上で
𝜕𝑢

𝜕𝑛
= −𝑖𝑘𝑢 (10.26)

という放射境界条件を満たすとして、もう少し考察していきます。。Rayleighの相反定理
と合わせて考えると

Φ12 = 𝑓 2
0

∫
𝑙𝑠

𝐺2𝐷∗ (𝒓1 − 𝒓𝑠 , 𝜔)𝐺2𝐷 (𝒓2 − 𝒓𝑠 , 𝜔)𝑑𝑙𝑠 , (10.27)

∼ 𝑓 2
0
𝜌𝑐

2𝑖𝜔

(
𝐺2𝐷∗ (𝒓1 − 𝒓1, 𝜔) − 𝐺2𝐷 (𝒓1 − 𝒓2, 𝜔)

)
(10.28)

と、相互相関関数と Green 関数を結び付けられれますnote 18)。相互相関関数の微分が、
Green関数に比例する形式になっていますnote 19)。
ここで重要なのは、ここでは減衰を考慮していないという点と、放射境界条件をとって

いるために地表反射等の自由境界表面を考慮できないという点です。現実の状況設定を考

note 18) 詳細はWapenaar and Fokkema (2006)(17) 参照
note 19) Aki (1957)の spatial autocorrelation method (SPAC法)では、遠方から平面波がランダムに入射している

事を仮定して議論しています。大枠としては、この章の議論に近いが詳細は異なります。例えば 2次元の
場 SPAC 法に準拠すると (Nakahara 2006 参照)、相互相関関数の Hilbert 変換が Green 関数となります。
これは遠方から入射する波が、Green関数と平面波 exp{𝑖 (𝜔𝑡 − 𝒌 ¤𝑥) }と違うことに起因すします。
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えると、注目している領域を囲む形で地中にも励起源が分布していないと Green 関数と
は解釈できません。そのため現実の相互相関関数は、Green関数 (大雑把に言って地震記
録)に比べ、実体波の振幅が小さくなります。実体波特に地表反射を上手く抽出できない
という問題点は、コーダは (例えば Tonegawa et al., 2009)(15) ある程度回避することができ
ます。

問題 9.3

地震波干渉法の web 上のデモ http://www.eri.u-tokyo.ac.jp/knishida/
Seismology/wave2Drandom2.html を実行して、波が伝播するとこを確認し、
理論との対応を考察すること。

10.3.4 In a case of an attenuating medium under a realistic
situation

系に対する入力 (励起源による仕事)と減衰によるエネルギーの散逸の釣り合いを考え
ることで、定常振幅を見積もってみましょう。ここでは単純化のために一次元の問題を考
えます。運動方程式は、変位 𝑢,密度 𝜌,応力 𝜎,外力 𝐹 を使って

− 𝜌𝜔2𝑈 (𝑥, 𝜔) = 𝜕𝜎(𝑥, 𝜔)
𝜕𝑥

+ 𝐹 (𝑥, 𝜔) (10.29)

とかけます。
応力 𝜎(𝑥, 𝜔) は歪み 𝜖 = 𝜕𝑈/𝜕𝑥 を使って

𝜎(𝑥, 𝜔) = 𝜅(𝜔)𝜖 (𝑥, 𝜔) (10.30)

と書けるとします。ここで 𝜅 は複素弾性定数とし、減衰を含めて考えます。式 10.30を式
10.29に代入すると、

𝜌𝜔2𝑈 (𝑥, 𝜔) = 𝜕

𝜕𝑥

(
𝜅(𝜔) 𝜕𝑈 (𝑥, 𝜔)

𝜕𝑥

)
+ 𝐹 (𝑥, 𝜔) (10.31)

となります。
周期境界条件の場合の問題を考えます。変位 𝑢(𝑡, 𝑥)が周期境界条件、𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥+𝐿)

を満たすとします。

− 𝜌𝜔2𝑈 (𝑥, 𝜔) = 𝜅(𝜔) 𝜕
2𝑢(𝑥, 𝜔)
𝜕𝑥2 + 𝐹 (𝑥, 𝜔) (10.32)

ここで 𝐹 (𝑥, 𝜔) は forcing termです。
𝑈 と 𝐹 を固有関数 𝑢𝑛 (𝑥) で展開すると

𝑈 (𝑥, 𝜔) =
∑
𝑛

𝑎𝑛 (𝜔)𝑢𝑛 (𝑥)

𝐹 (𝑥, 𝜔) =
∑
𝑛

𝑓𝑛 (𝜔)𝑢𝑛 (𝑥). (10.33)

http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html
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となります。そうすると複素固有値を −𝑘𝑛 とすると

− 𝜔2𝑎𝑛 = −𝜅(𝜔)𝑘2
𝑛𝑎𝑛 (𝜔) + 𝐹𝑛 (𝜔) (10.34)

とります。ここで簡単化のため複素固有周波数 𝜔2
𝑛 ≡ 𝜅𝑘𝑛/𝜌 を定義します。以上まとめ

ると、
𝑎𝑛 (𝜔) = − 𝑓𝑛 (𝜔)

𝜔2 − 𝜔2
𝑛

(10.35)

となります。
ここで、cross spectrum 〈𝑈∗ (𝜔, 𝑥1),𝑈 (𝜔, 𝑥2)〉 を考えます。

〈𝑈∗ (𝜔, 𝑥1),𝑈 (𝜔, 𝑥2)〉 =
∑
𝑛,𝑛′

〈𝑎∗𝑛𝑎𝑛′〉𝑢∗𝑛 (𝑥1)𝑢𝑛′ (𝑥2). (10.36)

この式を評価するために 〈𝑎∗𝑛𝑎𝑛′〉 を評価します。ここで forcing がホワイトだと仮定す
ると、

〈𝐹∗
𝑛𝐹𝑛′〉 = 𝐹2

0 𝛿𝑛,𝑛′ (10.37)

と書けます。すなわち、

〈𝑈∗
𝑛𝑈𝑛′〉 =

𝐹2
0

(𝜔2 − 𝜔2
𝑛) (𝜔2 − 𝜔∗2

𝑛 )
𝛿𝑛,𝑛′ (10.38)

と書き直せ、クロススペクトル Φ(𝜔, 𝑥1, 𝑥2) = 〈𝑈∗ (𝜔, 𝑥1),𝑈 (𝜔, 𝑥2)〉 は

Φ(𝑥1, 𝑥2, 𝜔, ) =
∞∑
𝑛=0

𝐹2
0

(𝜔2 − 𝜔2
𝑛) (𝜔2 − 𝜔∗2

𝑛 )
𝑢𝑛 (𝑥1)𝑢∗𝑛 (𝑥2) (10.39)

=
∞∑
𝑛=0

𝐹2
0

2 Im[𝜔2
𝑛]

(
1

𝜔2 − 𝜔2
𝑛

− 1
𝜔2 − 𝜔∗2

𝑛

)
𝑢𝑛 (𝑥1)𝑢∗𝑛 (𝑥2) (10.40)

=
∞∑
𝑛=0

𝐹2
0𝑄𝑛

2(𝜔𝑛)2

(
1

𝜔2 − 𝜔2
𝑛

− 1
𝜔2 − 𝜔∗2

𝑛

)
𝑢𝑛 (𝑥1)𝑢∗𝑛 (𝑥2) (10.41)

と書き直せます。ここで 𝜔𝑛 ∼ Re{𝜔𝑛} + 𝑖 Re{𝜔𝑛}/(2𝑄𝑛) としました。ざっと式を見る
と 𝑘𝑙 に対して ±𝜔𝑛 の値で極大をとります。つまり 𝑥 が正の方向に伝搬する波束 (causal
part)と、負の方向に伝播する波束 (causal part)を表しています。
エネルギーがどのように分配しているか見ていきましょう。単位長さあたりの運動エネ

ルギーは 𝜔2𝜌Φ(𝑥, 𝑥, 𝜔) となるため、全エネルギーは∫
𝜔2𝜌Φ(𝑥, 𝑥, 𝜔)𝑑𝑥 ∼

∑
𝑛

𝐹2
0𝑄𝑛

𝜔𝑛
(10.42)

と見積もることが出来ます。つまり外力が白色雑音出会った場合にも、モードあたりのエ
ネルギーは周波数に反比例し、𝑄𝑛 に比例します。つまり 𝐹2

0 ∼ 𝜔𝑛/𝑄𝑛 となって初めてエ
ネルギーは等分配されます。このため現実の地球はエネルギーは等分配されているわけで
はなく、その点を考慮する必要があります。
式 10.38でモード間の相関が無いという点が本質的です。励起源の空間分布が不均質な

場合にはモード間の相関が出てしまい、相互相関関数の評価は難しくなります。現象論的
には、多くの場合モード間に相関が無いという仮定は第 0次近似としては成り立っている
ように見えます。そこからの補正をどうするか、現在盛んに研究されています。
より 3次元弾性体に対する見積もりは Nishida (2011)などを参照のこと。
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まとめ: Green関数と相互相関の比較
1. 地震波干渉法の理論は大きく分けて、オープンな系で外部を包むように内部を照ら
す状況設定と、閉じた系にたいし釣り合いを考える立場がある。色々なバックグラ
ウンド (物理探査、グローバル地震学、強震動)の研究者がいるために、問題の取り
扱い方が分野によって微妙に異なる。例えば equipartitionという単語一つとっても
文脈によって定義が統一されていないので注意が必要 (Snieder et al. 2010)。

2. 表面波のみ議論するときは Green関数との比較が可能。ある程度励起にむらがあっ
ても、観測点間の情報を抽出することが可能。

3. 実体波の相対振幅は、Green関数より相互相関関数の方が小さいと期待される。
4. とくに相互相関により地表反射波を抽出することは難しい。

Summary: pros and cons

1. ◦伝搬距離が短いパスの情報を使える。
2. ◦ 0.05 Hzよりも短周期でも、散乱や減衰の効果を受けづらい。
3. ×励起源の分布に偏りがあると、見かけの走時異常が生じる可能性がある。

まとめ: Ambient noise tomographyの強みと弱み
1. ◦パスが震源分布に依存せず、パス密度に偏りが少ない。
2. ◦ アレー観測の場合には、良い初期モデル (局所的 1 次元構造) を推定することが
可能。

3. ×励起源の分布に偏りがあると、見かけの走時異常が生じる可能性がある。特に方
位異方性の推定や、減衰構造の推定に際して深刻。

ToDO:バネおもりモデルを使った地震は干渉法とブラウン運動の関係

§10.4 An application for seismic
monitoring
地球内部で起こる現象のダイナミクスを考える上で、速度構造の時間変化を捉える事は

非常に重要です。火山噴火や地震に伴い応力やひずみの状態が変化し、それに伴って速度
構造や異方性の変化することが期待されるためです。
実際に地下構造の時間変化を求めようとする場合、コントロールソースを用いて繰り返

し地震波トモグラフィを繰り返す事が想的です。しかし多くの場合現実的ではありませ
ん。一方自然地震を使う場合、震源の不確定性や震源分布の偏りなどに起因する不確定性
が速度構造の不確定性を引き起こします。そのため、たとえ時間変化が見かけ上見えたと
しても、それはただのノイズなのか本当の速度変化なのかはっきりとしません。
それに対し、地下構造の時間変化を検出する場合に地震波干渉法は非常に有効な方法で

す。なぜなら、期間を区切って相互相関関数を計算することによって、仮想的に繰り返し
地震を観測出来るためです。最も単純な例を考えてみましょう。地表宇野 2点で地震観測
をし、その記録の相互相関関数の変化を見続けます。この場合には、その 2点間の局在化
された構造変化を時々刻々モニターすることができます。ここでは詳細については述べま
せんが、先駆的な研究として、 Sens-Schönfelder Wegler (2006) (インドネシアの Merapi
火山)やWegler and Sens-Schönfelder (2007) (中越地震の解析)がある。
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§10.5 Practical problems when
applying actual data

10.5.1 Azimuthal dependence of incident waves

入射波振幅の方位依存性を考えるために、Coxの式 (4)

∞∑
𝑚=0

𝑖𝑚𝐽𝑚

(
𝜔𝑟

𝑐(𝜔)

)
[𝑎𝑚 (𝜔) cos(𝑚𝜁) + 𝑏𝑚 (𝜔) sin(𝑚𝜁)] (10.43)

を考えます。
この場合に走時異常は

𝛿𝑡 =
𝐵′′(0)

2𝑡𝜔2𝐵(0)
for the causal part

=
𝐵′′(180)

2𝑡𝜔2𝐵(180)
for the acausal part (10.44)

と書くことが出来ます (Weaver et al., 2009)(18)。この式を使って、入射波の非等方性を補
正する事が可能です。

10.5.2 Finite frequency effects

地震波干渉法を適応する場合には、通常の地震と同じ sensitivity kernelを考慮すれば良
いのか自明ではありません (16)。励起源が等方均質の場合に、表面波の sensitivity kernel
は地震と同じである事は分かっていますが (8)、励起源にむらがある場合には厳密には補
正が必要です。
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