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Introduction

Chapter 1

There are many different fields of research in this world. When we learn about a new research
area, what is the best part? Of course, there is no right answer to this question. However,
if I were to venture a guess, I would say that the new perspective changes the way we see
the world before. For example, let us say you learn about geology. You will understand that
you will be able to read the history of millions of years from geological clues in a field that
you have never seen before. You will realize that observing phenomena is not simple, and
what you can decipher depends on your understanding. In fact, the act of observation is not
so simple and in itself reflects how the observer understands the phenomenon with a model.
This lecture covered a branch of geophysics. How does geophysics expand our horizons?

Physics is the study of symmetry and universality. In geophysics, we observe some geo-
physical data about the Earth and read information from it. Symmetry and universality are
very important criteria for interpreting a phenomenon. Consider a situation where the data
seem to be too complex. Even in such a case, once we recognize the governing process,
previously unseen symmetries may unexpectedly emerge. If you understand how to manage
to understand them, such symmetry may often appear sparkling like a kaleidoscope. But if
you do not understand the background theory, they just look like a mess.

Let us imagine a scene where the wind makes waves on the surface of a river. If you have
a background in the physics of water waves, you can see the dispersion of the waves and
observe how they change depending on the depth of the water. If there is a current in the
river, you can also observe the effect of the current. Suppose that there is a duck swimming
in the river (Fig. 1.1). First of all, you would notice that the duck is swimming faster than the
speed of the wave, so it is creating a shock wave. You may also notice that the group velocity
behind the duck differs from the phase velocity. Then you also notice the angle made by the
wedge-shaped wave behind the duck. Thus, if you have a background in physics, you will be
able to decipher some of the information about the wind and water depth. The purpose of this
lecture is to learn such a physical background to interpret wave information.

In this chapter, I will first explain what seismology deals with and then discuss the im-
portance of understanding seismic wave propagation in this context. This is followed by an
overview of what is covered in seismic wave theory.
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Fig. 1.1: Waves made by ducks. Such waves are generally called wake waves, and the ripples
are described by the Kelvin pattern.

§1.1 How to interpret waveforms
of recorded seismograms

In this section, we review briefly the basics of seismic wave propagation.

Seismology™® D does not cover research on earthquakes but also seismic wave propagations
of the Earth generally. Roughly speaking, we can categorize research areas of seismology into
two. The former is how geophysical phenomena excite seismic waves. From the observed
seismic records, seismologists infer the physical processes such as earthquakes, volcanic
activities, and land slides™'€ 2. The latter one is a seismic exploration of the Earth’s interior.

When we observe a natural phenomenon, we assume a model implicitly. For example,
most seismologists had been interested in "earthquake" data. Of course, "earthquake" itself
as faulting is an important topic, and the "earthquake" also illuminate Earth’s interior. Seis-
mologists, therefore, recognized seismic wave field excited by an "earthquake" as a signal,

note 1) The term of "seismology" originated from ancient Greek (o€ 1o ud g (seismds, "earthquake") and doyia
(-logia, "study of").

note 2) Of course, other approaches such as geology and geochemistry are also crucial for understanding earthquakes
and volcanic activities.
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whereas they recognized seismic wave field excited by other phenomena —including ocean
swell, human activities, and so on— as noise. In spite of the explicit or implicit model, we
call a phenomenon, which is described by the model, a signal, and vice versa. "Noise" for
somebody could be a "signal" for others.

3s

time

Fig. 1.2: Schematic figure of seismic wave field at an instance excited by an earthquake. We
can see the concentric shape, which shows the propagation.

Here we consider a simple example. When we enjoyed fireworks on a summer night, we
realized the lag time between the light and the sound. The lag is originated from the difference
in propagation speeds between light and sound (Figure 1.2). This situation is similar to the
seismic wave field of P- and S- waves: P- wave corresponds to light, and S-wave corresponds
to sound. One can infer the distance between the observer and the firework by the lag. This
principle is similar to locating a hypocenter of an earthquake from seismic data. When we
know the distance in advance, we can infer sound velocity from the measured lag time, as in
the seismic exploration of the Earth’s interior.

For seismological investigations, the theoretical background of seismic wave propagation is
indispensable. In this lecture, I introduce a framework for how we interpret seismic wavefields.
note 3)

Last ten years, numerical methods for calculating seismic wavefields in a 3-D heterogeneous
medium have become popular. They a feasible for estimating the 3-D seismic velocity structure
and understanding the source processed of earthquakes. For interpreting the calculated
seismic wave field, the background of seismic wave propagation based on physics and analytic
representation is important.

note 3) Research on seismic wave propagation had been developed as an application of applied mathematics. For
example, Jeffreys, who is famous for reference 1-D structure (Jeffreys and Bullen), is also known as a great
applied mathematician (e.g. WKBJ approximation and Bayesian statistics.). Although a classic textbook of
seismology focuses on techniques using complex analysis, this lecture emphasizes a more intuitive manner.
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| §1.2 Outline of this lecture

In this lecture, first, let us review a brief summary of governing equations of elastic media.
Next, I introduce Green’s function for understanding wave propagations in an infinite medium.
Then, I will explain the representation theorem as a generalization of the Huygens principle.
They give us a framework for understanding wave propagation.

As a first step for understanding wave propagations in a realistic medium, let us review the
effects of a free surface. Reflections and refractions are keys to understanding. In general, a
propagation problem in a semi-infinite medium is known as Lamb’s problem. Under some
situations, analytic formulations are obtained. Rayleigh wave is originated effects of the free
surface.

Next, let us consider wave propagations in a two-layer medium. For understanding, re-
flections, and refractions on the inside boundary are given. Based on the framework with
knowledge of the reflections and refractions, let us interpret wave propagation of the direct
wave, head wave, and reflection wave in a two-layer medium. Love waves can exist in a
two-layer medium, although they can’t in a semi-infinite medium.

The last chapter describes ray theory, which is a framework for interpreting wave propaga-
tions in a multi-layer medium. The theory originated from optics, and the mathematical and
physical treatments were already established firmly.

1§1.2 Textbook

Dahlen and Tromp (1998)” and Aki and Richards (2009)(") are standard textbooks in the
area of seismic wave propagations. The mathematical approaches in an intuitive manner are

given in Snieder and Wijk (2015).4 Saito (2009) is also a good textbook in this area but in
Japanese.

151.3 Bibliography

[1] K. Aki and P.G. Richards. Quantitative Seismology. Univ Science Books, 2nd edition,
2009.

[2] F.A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press,
Princeton, 1998.

[3] Roel Snieder and Kasper van Wijk. A Guided Tour of Mathematical Methods for the
Physical Sciences. Cambridge University Press, 3 edition, 2015.

[4] AIREIESE. HUE R @, Al RS HIRE, 2009.
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Equations for the
elastic Earth

Chapter 2

In this chapter, I summarize governing equations of an elastic medium. For further under-
standing, please read Theoretical global seismology.(")

| §2.1 A microscopic model for
Hook’s law

For a better understanding of P- and S-wave propagation in an elastic medium, let us
consider a simple mass-spring model. In particular, for S-wave propagation, "cross spring" is
important.

§ 2.1.1 1-D case

Restoring force (stress) against
stress in an elastic medium causes seis-
mic wave propagations. First, let us m ok
consider a 1-D case for simplicity. Fig- OWW—O-MN-OWW=O-M-O-MWAV-O
ure 2.1 shows such an example that 5 5.
masses (mass m) are connected by
springs (spring constant k).

The equation of motions can be written by

i i+l > X

Fig. 2.1: A 1-D mass-spring model.
d%s
M
or?

The right-hand term is the second-order finite difference of s. If the spatial interval of mass
Ax is small enough, in the limit of a continuum, the equation becomes a wave equation as,

= k(six1 —28; +5i-1). (2.1

m 0%s 9%

——— = (kAx) — 2.2
A g KA o (2.2)
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where m/Ax represents the density p, and kAx represents the elastic modulus k. Here «
satisfies the relation x = pc? between p and the wave speed c. The wave equation can be
rewritten by

d%s d%s

— =K. 2.3

Por Ox2 @3)

Since strain E is given by E = 3—i, the stress T is written by 7 = kE. Therefore, the wave
equation
d%s _or
a2 ox
can be interpreted by the equation of motions of the elastic body. Because the direction of
particle motions coincides with the propagation direction, in this case, the wave corresponds
to a P wave. Details will be explained in the next chapter.

o (2.4)

l 2.1.2 2-D case: P and S waves

(1) BEPEA 2RISR LT p 20010 %

|

(2) IES D fERedide

@PHELEMIBI B0, WL TV B LRI S,
JEORNZ AL 4L %,

e |
&
S
I
=
of
I |
(4) BREIHD M D L. ALERRET BT28IT shear DABDD B,
ZDHRH %55,
D — <

Fig. 2.2: Deformation of the medium associated with P-wave propagation.

The P wave propagates faster than the S wave. The travel time difference is crucial for
locating a hypocenter of an earthquake (e.g. Omori formula™® . An early warning system
of a large earthquake forecasts the arrival of the large S wave using the faster P wave arrivals.
Why is the P wave faster than the S wave?

Let us consider a thought experiment described by Figure 2.2.

note 1) You can find the paper at http://hdl.handle.net/2261/32677.
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. Put pressure on the surface of a thin sheet.

2. The thin sheet shrinks.

3. Align compressed thin sheets and decompressed thin sheets alternatively. The decom-
pression of a thin sheet causes the expansion as shown in this figure.

4. The thin sheets must be welded. To fit the boundaries, the thin sheets are accompanied

by shear deformation. To keep the boundary of thin sheets, P waves require shear

deformation. The deformation of the P wave in an elastic medium is composed of

volumetric deformation and shear deformation, which corresponds to the S wave. As

aresult, the P wave is faster than the S wave.

Let us extend the 1-D mass-spring
model to a 2-D one. "Cross-springs" are
crucial for representing S-wave propaga-
tion in a 2-D case. Here we consider a
simple model as shown in Figure 2.3.

First, let us consider a pain wave prop-
agation of the S wave in the y direction.
The displacement does not depend on x.
The ith mass is moved with displacement
Sy; in the x direction. The spring shown by
the thick line in the Figure exerts restoring
force T to the mass m. TS can be written as,

FEKOEEAE

T.S—1

F=3 2.5)

K(sxiet 5 Sx 13 3: A 2-D mass-spring model. (
Because the lower spring also exerts restoring force to the mass, the total restoring force is
TiS - TlS_ ;- Then we obtain a discretized wave equation.

Next, let us consider P-wave propagation. The displacement does not depend on x. The ith
mass is moved with displacement s, in the y direction. The spring shown by the thick line in
the Figure exerts restoring force 7° to the mass m. T? in the x direction can be written as,

3
Ti = Sk(syin = sy.0)- (2:6)

The total restoring force is Tl.P — Tf_) |- A comparison of equation 2.6 with equation 2.5 shows
that the restoring force of the P wave is stronger than that of the S wave. This leads to faster
P-wave propagation than S-wave one.

Last, the relation of the mass-spring model to the Lamé constant is clarified as follows.
A model depicted in Figure 2.3 leads to 1 = u = V3/4k. In the case, S-wave 8 speed is
determined by rigidity ¢ and density p, whereas P-wave velocity V p) is related to both A and
M as,

A+2u
a =
ol
u
B = =, (2.7)
Jol

For P-wave propagation, A represents restoring force related to fluid pressure, whereas u
represents restoring force to suppress tangential motions.
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Problem 2.1

Derive equation 2.5 and equation 2.6.

Hint: Because we consider a plane wave, rel-
ative motions depending on x are negligible.
For a simple mode shown in the right Figure,
calculate the restoring force to displacement
sy and sy.

A simplified model.

§ 2.1.3 T Attenuation

Although most of this lecture note does not cover seismic attenuation, observed seismic
waves decay with time. This is because elastic energy is gradually dissipated into thermal
energy. This subsection briefly summarizes physical models of seismic attenuation in a spring—
mass system. For simplicity, we will consider connecting a damper, which is responsible for
viscous dissipation, to the spring—masssystem considered in the previous section.

Dashpot

If only the spring is considered, there is no energy dissipation (i.e., no seismic attenuation).
In order to consider damping due to energy dissipation, a dashpot is considered in addition to
the spring.

Fig. 2.4: Dashpot

Here we consider a displacement s(¢) given at the lower right end. Since the dashpot is
under viscous resistance 7, the applied force o (¢) is given by

ds
=n—. 2.8
o=n_ (2.8)
Kelvin-Voigt model
Here we consider a model of a spring—mass system with a dashpot.

In this case, the relationship between the applied force o at the lower right end and the
displacement s can be written as:

o'=k(s+——). 2.9)
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Fig. 2.5: Kelvin—Voigt model and the response.

On the right-hand side, when a constant force oy is applied at time ¢, the force o is given by:

0, <0,
{ = (2.10)
og, t=>0.

The displacement (Creep response function J(#)) when a constant force oy is applied at time
tis:
s:@(l—e‘%f). 2.11)
k
If only a spring is considered, the displacement would be o/ k instantaneously (black dashed
line), but due to viscous relaxation, it can be observed that the displacement reaches the final
value with a delay.

Zener model

k1 ’
. ) N s =J(t)oo
—MMWA— 5,0 t
11 ko

Fig. 2.6: Zener model and the response.

Let us consider a more realistic model by adding one more spring.
The relationship between the force o applied at the lower right edge and the displacement
S is represented by

do ds
o (1) +T€E = kg (s +T0-E) , (2.12)
wherek,, 7. and 7, are defined as
kiks
kgr = T =1nlki,Te = ki +kp). 2.13
R= T n/ki,te =n/(ki +k2) (2.13)

Similarly, if we apply a force o = ogH(t) (H(t) is the Heaviside function) at the right end.
If a force is applied, the response is 0J(t), where J(¢) is the creep response function given
by

1 | 7y — .
J(t)= —Te LT Te [1_6-;], (2.14)
kr 7o kr To
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Complex elastic constant

Here we consider a periodic input o as o = gge %!, s = spe™*!. After the sustitution,
the Kelvin-Voight model is given by
_ .
o0 =k (1-iw]) 5o, 2.15)
and Zener model is given by
1—i
0o = kg —2T7 4o, (2.16)
1 —iwte

With complex elastic constant K, they can be rewritten by

K, =k (1 —iw%) 2.17)
.

K, = kg—2 (2.18)
1 —iwTte

Thus, by extending the elastic constants to complex numbers, the attenumation can be de-
scribed.
In the case of Zener model, Q! is given by

Te wT

-1 To' -
= , 2.19
0 (@) T 1+w?t? (219)
where T = T, Te.
Anelastic parameter Q
Let us consider displacement s
s(1) = sy cos(wt — 8) (2.20)
for a given input o
o (t) = o cos wt, (2.21)

where 07, s> and w are real constant.
When the energy E decreases by AE during one period of oscillation, the anelastic parameter
Qis

2n AE

= 2.22
0" E (2.22)
This can be expressed as where AE, the amount of energy dissipated in one cycle, is
2n
w ds
AE = —, 2.23
L 229
and E is |
E = Eo-(O)s(O) (2.24)

can be evaluated as
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c(w)

Fig. 2.7: Physical dispersion

Physical dispersion

To consider the dispersion of phase velocity caused by damping, we generalize the spring-
mass model. Here, we consider the Zener model instead of the spring and similarly consider
periodic oscillations characterized by the angular frequency w. In this case, by taking Ax to
be small, the wave equation with coefficients extended to complex numbers can be written as
follows:

9%50(x)
ox?

—wpso(x) =K, (2.25)
Let us consider displacement sg, which describes wave propagation with phase velocity ¢(w)
as wX ; X

50(x) = e @O ' “elwr (2.26)

In this case ¢ (w) changes with frequencies (dispersion). The dispersion relation can be written

by
kr To —Te W2
=4/— 1+ . 2.27
c(@) \/ P ( 21 1+ w?7? (227)

In the seismic frequency band (1073-10 Hz), Q is known to be frequency independent
and approximately constant. Combining a spring-mass system with dashpot is known to
explain the frequency independence of Q. Now in the Zener model, corresponding to a
single relaxation time (7, ), there is a frequency band in which the damping works, but the
phase speed changes with frequency significantly. In reality, the Earth has many different
relaxation time scales corresponding to many physical processes. Therefore, by combining
Zenner models with different relaxation times, we can extend the frequency range where Q™!
is constant.
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Problem 2.2

1. When a wave propagates through a medium, the medium loses the oscillation
energy and converts it into heat, causing the wave to attenuate. The propagation
of a wave sy oscillating at angular frequency w can be expressed using the
anelastic parameter Q as:

|w

so(x, 1) = e_ﬁei“’(f_’) (2.28)

where Q is a positive real number. Consider the wave generated when an
impulse is applied at x = 0 at # = 0. Since the impulse contains all frequency
components equally, the wave packet propagating in the positive x direction for
t > 0 and x > 0 can be written as:

1 % _lekx . (x
s(x, 1) = — / e 20 ¢«(E71) do (2.29)
T J-co

Assuming ¢ and Q are constant with respect to frequency, find the analytical
solution for s. Also, illustrate the time evolution at position x.

2. The solution obtained in (1) is, strictly speaking, physically impossible. Dis-
cuss the reasons for this.
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| §2.2 Lagrangian and Eulerian
variables

Here we consider that a particle at x in a continuum at time 0. "°°? move with time as
r(x,t). A Lagrangian variable describes a quantity with time by the initial location of x, and
an Eulerian variable describes a quantity with time by a fixed frame as r(r,7). An Eulerian
quantity g% can be related to the Lagrange quantity g* as,

q"(x,1) = ¢"(r(x.0).1). (2.30)
Time derivatives of the equation lead to
dq" = dq" +u” -Vrq" = Dig", (231)

where u” is Euler velocity. Material derivative D, represents the Lagrangian time derivative
of a particle in the Eulerian form. Later, 9, is an abbreviation of %. This relation holds for
vector quantity as particle velocity u” and u”. As a ¢F, here we consider acceleration d,u’
as

ou" = 8u” +u® -V,u® = Du", (2.32)

When we consider seismic records, the Lagrangian description is more natural because the
seismometer is pinned at a surface point.

Later we consider an infinitesimal deformation in a framework of linear elasticity. Let us
consider small deformation s as,

r(x,t) =x +s(x,t). (2.33)

q=(r,1) =q°(r) + 51 (r, 1),
g"(x,1) = ¢"(x) + "' (x,1). (2.34)

Because s is small, the perturbations e of Eulerian variable ¢*!andLagrangianoneq™ can
be written by,
gl (r,0) = g% (x, 1), " (x,1) = ¢“ (r,1). (2.35)

We note that the perturbations do not depend on x, r.
Next, let us consider a relation between an Eulerian preterition ¢©! and a Lagrangian one
g™'. When we consider first-order perturbation g*! can be written by

qu(x, t) = qu(r, t)+s- quo. (2.36)

This equation is the integration of material derivatives. In a framework of linear elasticity,
because we can neglect the second term of the right-hand side, we do not need to distinguish
Eulerian from Lagrangian. However, because stress and density have initial values (V¢°),
the spatial derivatives cause the discrepancy between the Eulerian and Lagrangian. When
we must consider initial stress (e.g. hydrostatic pressure owing to gravity), we must need
attention to the difference between the descriptions. In §9.1, we will take such an example.

note 2). A bold symbol like x show a vector in this textbook.
note 3) See §3.2 of Dahlen and Tromp (1998)(" in details.
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1§2.3 Strain

In order to measure the deformation of an elastic body, let us trace two particles (r,r + dr).
At t = 0, they are located at x,x + dx. dr can be related to dx as,

dr =Vyr-dx = (I +Vys) - dx. (2.37)
The change of the distance between the particles is estimated to be

|dr|? - |dx|* = 2(dx - EL - dx). (2.38)
Here E* is Green-Lagrange strain defined by

1

EL = (2.39)

|

1(@ 9si 83!@)
; .

Vs + (Vs)T = (Vs)TVs] = = —
[ S+( S) ( S) S] 8x,-+6xj axiaxj

When s is enough small to neglect the second-order term, the stress can be simplified as,

EL =

T _1 3S] asi
95+ V)1 =3 |5 + 55 (2.40)

| =

Here, following Einstein’s summation convention, we calculate the summation of the term
over all the values of the index. Although strain tensor E” is a Lagrangian variable, we do
not need it from Eulerian strain when the infinitesimal deformation. The strain tensor has 6
independent components because of the symmetry.

Problem 2.3

Calculate the strain tensor up to the first order when considering a rigid rotation with
an infinitesimal angle in 2-D. You can find second-order terms, although rigid rotation
should not cause strain from a physical point of view. Next, show Green-Lagrange
strain of an infinitesimal rigid rotation vanishes completely.

§ 2.3.1 Strain in an arbitrary coordinate

Here we consider linear strain in an arbitrary coordinate. A displacement vector s can be
represented by orthogonal unit vectors as

s= ) sk (2.41)
J
The gradient of the vector is written by
0
V=i;—. (2.42)
axi

The insertion of the definition of s leads to the following equation:

. os R (9SJ'A (9)2j
Vs:ina—XiZin . a_xlx]-kzsja_xl . (243)
i i J J
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The second order tensor E can be represented by basis vectors and the corresponding com-
ponents as

E =) Ej&t;. (2.44)
i
The complication originates from the partial derivatives of the basis vectors.

Strain in a cylindrical coordinate (7, ¢, 7)

Here we consider strain in a cylindrical coordinate (r, ¢, z). Partial derivatives of the unit
vector F are given by, 7, ¢, 2 TT,

oF oF oF

—_— = O — = - = 0

or o e 0z

96 R N

9% _, b _ ;. 9% _

or 0y 0z

0z 02 0z

= =0, — =0, — =0. 2.45
or 0y 0z (245)

The definition of the strain with the above equations leads to the following representation of
the corresponding components as:

ds, 10sy s, ds,

Err = et =—-——F7 T, = —

ar’ %Y r dgp * r’ T 0z

ds, Os Os, Os

2E,, = L E, =L E, 2.46
pz ¢ * 9z "¢ 0z " or (2.46)

0 Stp 1 3Sr

2E,, = 9 (Se), 1o

¢ "or ( r )+ r oy

Problem 2.4

Derive the strain in a cylindrical coordinate shown above.

Strain in a spherical coordinate (r, 6, ¢)

Here only the results are shown as,

E Js, 1 dsg LS 1 (Osy o cosd) 2 ST
= —_ = - — —, = — | — Ky —
" ar> %% T F 60 T r % rsing oy 0
1ds, 1 O0sg 1 OJs, 0 (S¢
2Egp, = —— - — - 0),2E, = —— —(—) 2.47
o r 99 " rsind ( dp ¢ ) o= rsing dp  or \ 7 @47
0 So lasr
2Eyo - 9 (s0) 105
ro rc')r r " r 06
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I §2.4 Stress and traction

i

Let us consider a small surface d¥ in a continuum
with the normal vector 2. Traction is defined by
force f per unit area acting on dX. The traction is d
parallel to the normal vector 7, and the positive sign
is defined by force from the positive side according to
the normal vector to the negative side. Stress T5m0¢4
is defined by

f=dza-TE. (2.48)

Traction f, of medium 1 from medium 2 is f5;.

1§2.5 Conservation of angular mo-
mentum

Conservation of angular momentum requires that the stress tensor is symmetric as T;; = T;.
note 5) as : Tij — Tji
This symmetry is held without microscopic spin interaction.””)

note 4) This stress is Cauchy stress in a precise manner. There are two other definitions (see Dahlen and Tromp 1998
in details).
note 5) This symmetry is derived from the equilibrium of the moment of an infinitesimal volume.
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Problem 2.5

Let us consider angular momentum along the z axis of an infinitesimal cube with a
side of €. Show T, = T}, from the conservation of angular momentum in cases:

1. Tyy and Ty are constant, and other T;; are zero.
2. (Optional)

Txy (x) = Txy (xO) + Txyax(xO)(sx + Txy’ y(xO)éy, (249)
Tyx (x) = Tyx (.X‘()) + Tyxax(xO)(sx + Tyx’ )’(xo)5y, (250)

and other 7;; = 0.

I §2.6 Conservation of mass

Let us consider governing equations conservation of mass first. This equation becomes
important for buoyancy force.
In general, conservation of mass can be written as,

0:pF = -V - (pFuF), (2.51)

where uf is Eulerian particle velocity.
Here we consider the first-order perturbation of the density as

pE = p0 + pEl. (2.52)
Time integration of the first order perturbation leads to
Pt ==V (pos). (2.53)

The right-hand term represents the divergence of the mass flux, whereas the left one does the
change of the mass. On the other hand, the Lagrangian form can be written by

Pt = —poV - (s). (2.54)

Because we focused on a particle, the right-hand side shows corresponding expansion or
deflation.

We note the discrepancy that the Lagrangian density perturbation pZ! is pf'! = —pV - s.
If Vpy is 0, they are the same. However, they are different in general. When the wavelength
of a seismic wave is much smaller than the typical scale of density change, we can neglect the
difference.
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1§27 Equation of motions: conser-
vation of momentum

Let us consider a temporal change a volume V’.

d
— [ pEufavi =F, (2.55)
dt G

The external force F can be written by surface force acting on 9V’ and body force acting
throughout the volume, such as gravity and electromagnetic force as

F=F+Fp=[ (A" -TF)dz'+ / ptgtav'. (2.56)
Vt

ov?

Fb

With a help of Gauss’s divergence theorem, they can be written by

pEDwuE =V, - TE — pEvgE! (2.57)
If we can neglect initial stress up to the first order, it can be simplified as
pod?s =V - TEL (2.58)

When we consider hydrostatic pressure, the equation of motions up to the first order can be
written as
pods =V - TE — pEvgE, (2.59)

where ¢F is gravity potential "°®. When we consider gravity, we must consider hydrostatic
pressure, which sustains the gravity force. Deviatoric stress 7! from the hydrostatic pressure
can be written by,
E_ _ 0 El
Tij =-=p 6ij+Tij . (260)

Because the hydrostatic pressure sustains the gravity force, the pressure should satisfy the
relation as,
Vp? = —poVe'. (2.61)

[hey lead to
p00%s =V -TE V[ p%s - V¢l — pOVpt! — pElved. (2.62)
t

note 6) Here we consider gravity, but we neglect perturbation of gravity (an effect of self-gravitation). This approxi-
mation is known as the Cowling approximation in the field of astrophysics. In particular, this approximation
is effective for a stratified atmosphere. The effect of self-gravitation becomes important in a period longer
than 3000 s as described later.
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§2.8 Conservation of energy
Total energy (kinetic energy + elastic energy) U, and energy flux K can be written by
1
U= 75 |podss - drs + ZJ} E Ty |, (2.63)
K=-T:06s. (2.64)
Conservation of energy can be written as,
oU+V-K=0. (2.65)
Elastic energy W can be defined by
1
W= Z E; T (2.66)
ij
Stress can be represented by the spatial gradient of W as
ow
T;; = . 2.67
ij aEij ( )

We will discuss the condition for the existence of elastic energy W as a potential energy below.
Work per unit volume 6R done by the internal stress 7;; can be given) by

SR = ~T;;6E;;. (2.68)

For deformation from E = 0to E = AE of a given infinitesimal volume, the corresponding
work AR by the internal stress is given by

AE
AR = — / > TijdEq;, (2.69)

which depends on the history of the deformation. Then we deform it again from E = AE to
E = 0. Elastic deformation requires AR = 0 because the internal stress should be conservative.
The conservative property requires the following condition

Ty; 0Ty
0Ey B aE,-j'

(2.70)

In the 2-D case (in this case, the number of the independent stress/strain components is 3), this
condition can be interpreted as vortex-free (Problem 2.8). Consequently, the elastic energy
W can be interpreted as a scalar potential.

Problem 2.6

Derive
dR = -T;;dE;;.

(Hint: Estimate work done by the internal force F; = 9;T;;.)
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Problem 2.7

1)

Let us consider works
for two different defor-
mation paths for a sim-
ple 2-D case. A rectan-
gular area is deformed
according to the strain
of Eyy = AE,y, Eyy =
AEy, with two dif- L )
ferent paths: (i) first

deform the area with Fig. 2.8

AE,,, then deform it with AE,,. (ii) First deform it with AE,,, then deform it
with AE, as shown in Figure 2.8. Estimate works of AR and AR for the cases
(i) and (ii), respectively.

When the stress satisfies the condition of a conservative force, AR”) = ARUD is
required. Show the following condition of elastic modulus, which satisfies the above
requirement.

A4
¥

Cijki = Criij, (2.72)

Problem 2.8

In order to understand the relation (equation 2.70):

Ty 0Ty

= , 2.73
0Ey OE;j ( )

let us consider the 2-D case (3 independent variables of stress/strain components).
Derive the condition for the case that works d R, which is work done by the internal
stress, does not depend on deformation paths.

This condition guarantees that the spatial gradient of a scalar potential W can represent
stress T'. Thus elastic energy W can be interpreted as the scalar potential for stress T.
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|§2.9 Constitution equation: Hooke’s
law

To determine elastic deformation, we must know the constitutional relation between stress
T and strain E7 ;. For understanding the deformation of an arbitrary volume, Lagrangian
description is essential. First, we do not take care of the difference between Lagrangian and
Eulerian without considering initial stress. For a linear elastic medium, a relation between
stress and strain can be represented by Hook’s law as

Tij = CijuEr, (2.74)

where C; i 18 elastic tensor with 81 components. The symmetry of stress and strain tensor
leads to the symmetry of C;ji; as Cijk; = Cjixi, Cijki = Cijik. 1st law of thermodynamics
requires C;jx; = Crij"° "5 As aresult, the elastic tensor has 21 independent components.
When an elastic medium is isotropic, the elastic tensor can be simplified using Lamé
constants A, u as,
Cijki = A0;j0k1 + u(0ik 1 + 6:10 k). (2.75)

Here we derive Hooke’s law for the isotropic medium explicitly for further sections.

Ty = (A+2u)Exy + A(Eyy + E7), Ty =2uE,,, Ey, =2uE,;
Tyy = (A+2u)Eyy + A(Exx + E7), Ty, =2uE,,
T,; = (A+2u)E; + A(Exx + Eyy). (2.76)

The are several different definitions of the elastic constant, although they are identical in
theory. Young modulus £ and Poisson’s ratio v are also major, and they can be related to

Lamé’s constant as
Ee uBA+2u) A

= —. 2.77
A+u Y 2(A+ ) @77

Here we consider the effects of hydrostatic pressure on elastic medium. In the deep Earth,
the hydrostatic pressure reaches several hundred GPa, the initial pressure is not negligible in
some cases. In order to trace the temporal change of an infinitesimal volume V’, the variables
are described by Lagrangian as,

pt=po+ptt. (2.78)

The constitutional relation can be written by
pEl = —A(x)V - 5. (2.79)

Eulerian equation of motions can be written by

pEl =5 Vpy - pt. (2.80)

The initial hydrostatic pressure pg should meet the following condition,

Vp()+p0g =0. (281)

note 7) See a textbook of continuum mechanics in details.
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With the conservation of mass, we obtain the following equation,

pod;s = Vpt +po[(V-5)g - V(s g)]. (2.82)

With wrong descriptions by a mixture between Eulerian or Lagrangian, the buoyancy term
disappear. When we consider buoyancy owing to gravity, we must take care of the difference
between Eulerian and Lagrangian descriptions.
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I §2.10 Boundary conditions

When we solve equations of motion, the boundary conditions are indispensable. Lagrangian
description of the boundary conditions is natural. However, we do not take care of the
difference when we do not consider initial stress.

§ 2.10.1 Solid-solid boundaries such as Moho and 660 km
discontinuity

Fig. 2.9: Schematic figure of a plane X* and X~.

Let us consider plane X* and £~ surrounding the boundary. The equilibrium of force and
the continuity of the displacement s lead to the following boundary conditions:

Continuity of displacement : [s]* =0.
Continuity of traction: [TL! - A]* = 0.

l 2.10.2 Solid-fluid boundaries such as ocean floor and
core-mantle boundary

For solid-fluid boundaries, free slip condition in the horizontal direction is important.
The discontinuous property of displacement causes trapped modes along the boundary as
explained in later sections™¢®.

Continuity of displacement: [s - 2]* = 0. Horizontal slip to discontinuity is allowed.
Continuity of traction :  [TX'-Aa]* =74 - [A4-TE! - 4]t = 0. Note that shear stress in the fluid
vanishes.

§ 2.10.3 Continuity of gravity potential for all boundaries

[¢511t =0
[n-V¢E! + 471G p°n - 5]t =0

note 8) When we need to consider hydrostatic pressure or initial stress, we must take care about the contribution
[Dahlen and Tromp, 1998].(")
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| §2.11 Comparison with terms of

the equation of motions

i(kx—wt

Let us estimate the order of each term of the equation of motions for u = e , Where

w is angular frequency, and k is wavenumber.

Inertia: po?s —pw?s
Elasticity: V-T  k’ks
Gravity: pksg

Table 2.1: Estimation of each term of the equation of motions.

Here g is gravity acceleration, « is a typical elastic constant (pseismic-wave velocity?). A
comparison between the gravity term and the elasticity term is given by,

Gravity pg
—_— ~ —. 2.83
Elasticity  k« (283)

T 2nseismic-wave velocity ~ 30005 (2.84)

8

The period corresponds to the gravest mode of the Earth. We do not need to consider the
gravity term in a period shorter than 100 s. For infra-gravity waves in the atmosphere, because
the sound velocity is 340 m/s, the gravity term becomes comparable to the compressibility
term for a period longer than 200 s.

At periods longer than 1000 s, Coriolis force originating from Earth’s rotation is not
negligible. In such a case, seismic wave velocity depends on the propagation direction™©?),
Figure 2.10 shows the splitting of resonant peaks of 9S> due to Coriolis force during when
2004 Sumatra—Andaman earthquake. The directivity breaks the reciprocity of elastic Green’s
function, which is explained in the following chapter (see Dahlen and Tromp 1998 for details).
Read Snieder er al. (2016)" for details of the Coriolis effects.

Problem 2.9

Based on a comparison of the Coriolis term and elastic restoration force, estimate the
period at which the Coriolis force becomes significant.

note 9) An example of the 1960 great Chilean earthquake can be found in The Feynman lectures on physics http:
//www. feynmanlectures.caltech.edu/I_51.html. We can imagine the atmosphere of Caltech in 1960’


http://www.feynmanlectures.caltech.edu/I_51.html
http://www.feynmanlectures.caltech.edu/I_51.html
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Fig. 2.10: Coriolis splitting of the resonant peak of (S, when the great Sumatra-Andaman
earthquake in 2004.
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Green’s function and
representation theorem

Chapter 3

Green’s function is useful when considering seismic wavefield excited by an event. This
chapter explains a framework for interpreting seismic wavefields excited by various events,
such as earthquakes and volcanic eruptions, using the representation theorem, which can
be regarded as a natural extension of Huygens’s principle. First, an acoustic (scalar) wave
treatment is explained, then an elastic (vector) wave treatment is explained briefly.

1§3.1 A solution of the wave equa-
tion in 1-D medium

First, let us consider the simplest case of a wave equation: 1-D wave equation. Here we
consider acoustic wave propagations. The elastic constant x and density p are homogeneous
for simplicity. Pressure fluctuation p satisfies the following wave equation:

L& p

— =0, 3.1
a?  0r? 0x2 G-I

where « is sound speed given by a = W

For understanding, the wave equation is mapped into the time-frequency domain by Fourier
transform. The Fourier component P(k, w) of the pressure fluctuation becomes a function of
wavenumber k and the angular frequency w as:

2
(% - kz) P(k,w) = 0. (3.2)

Thus P must satisfy a dispersion relation w?/a*> — k> = 0. Here we consider one Fourier
component P(k,w)e'(“**¥)  Because the dispersion relation leads to k = +w/a, the The
Fourier component can be rewritten as P(k, w)e'(“(*¥/®) which represents the propagation
toward the positive and negative directions of the x axis, respectively.

33
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d’Alembert solution

Let us evaluate the behaviors of the solution more mathematically. With changes of
variables; & = x — at, 7 = x + at, the solution of the 1-D wave equation can be represented by
the arbitrary function ¢ and ¢ as,

p(x,t) = ¢(x —at) + ¥ (x + at). 3.3)

The first term of the right-hand side represents the propagation toward the positive direction
along the x axis, whereas the second term represents that toward the negative one.

Initial value problem

Let us consider how to solve the problem for the initial value at t = 0 given by

p(x,O) =P0(x), (34)
ap B
ol qo(x). (3.5)

By comparing the initial value with the d’Alembert solution as

Po = (]5()(?, 0) +l//(x’0) (36)
_ o[22 _%
qo = a(at at)- 3.7)

Integrating equation 3.7 leads to the solution of ¢ & . By the insertion of ¢ and ¢, we obtain
the solution p(x, t) as,

1 1 xX+at ,
p(6.1) = 2 [polx — at) + pox + )] + — / dolx')dx'. (3.8)
2 20! xX—at

Problem 3.1

1. Derive equation 3.3.
2. When p meets the initial condition at # = 0 given by

x2

p(x,0) =¢ o2 3.9
op(x,0)
o - 0 (3.10)

solve and plot the solution.
3. When p meets the initial condition at # = 0 given by

p(x,0) =0, (3.11)
XZ
P& _ -5 (3.12)
it |,

solve and plot the solution.
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| 3.2 Acoustic Green’s function

An external force can represent the excited waves when considering seismic waves caused
by geophysical phenomena such as earthquakes and volcanoes. In this case, we can evaluate
the excited wave motion by considering the impulse response (Green’s function) to the external
force and by convolving the spatiotemporal distribution of the external force. This section
first shows the features of Green’s function.

First, let us consider acoustic wave propagation for essential understanding. Equation of
motions and Hook’s law («V-s = —p) lead to a wave equation concerning pressure perturbation

p(x,1) as,

v Vo0 1 9p(x.0) :_V.(f(x”)), (3.13)

po(x)  k(x) or? po(x)

Here we consider a Green’s function g(x,t; &, 7), which is an impulse response for impulsive
force 6(x — £)5(t — 7)™ D as

Ve(x,;6,7) 1 Pglxnén) )
s S v (3.14)

-V

Problem 3.2

Explain the physical meaning of the external force term —d(x — &) of equation 3.14
(divergence of the particle velocity V - v).

If the boundary condition is time-independent, the Green’s function exhibits time invariance
as,
g(x’t;f’T):g(x’t_T;f’o)' (315)

Therefore, the time difference ¢ — 7 is enough variable to represent this problem.
Pressure field p(x,t) can be represented by superposition of Green’s function (g(x,t —

7;£,0)) as
pwn = [ gtrnén-v- (i).dwf)dr. (3.16)
\% Po

note 1)
£(0) = / F(x)8(x)dx.

Therefore note that the dimension of the delta function is 1/m.
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Next, the representation of the equation in the frequency domain is considered. P(w,x)
shows the Fourier transform of pressure p, and w is the angular frequency”°® )
We do not consider hydrostatic pressure here.

' VP(x,w) N w?
po(x)  k(x)

P(x,w) = F(x,w), 3.17)

po(x)
Green’s function in frequency domain satisfies the following equation,

where F is Fourier transform of external force term V - (f (x,1) )

. VG (x,¢&,w) N w?

V' Tk

G(x,&,w) =6(x—¢), (3.18)

where G(x,¢, w) is Green’s function in frequency domain. Then, pressure field P excited
by an arbitrary force distribution F can be represented by a convolution between Green’s
functions and the force distribution as,

p= / G (x,£,0)F (£, w)dV(&). (3.19)
1%

| §3.3 Green’s function in an infinite
homogeneous medium

To understand the behaviors of Green’s function, this section explains the explicit repre-
sentation of Green’s function. First, let us summarize the basics of the wave equation.

l 3.3.1 Derivations of Green’s function in a 1-D medium

For an infinite homogeneous medium, equation 3.18 can be simplified as,

1 21D 2
007 Y61 = 5(). (3.20)
K

po 072

note 2) Tyke care about definitions of the sign and the normalization of the Fourier transform because the definition
depends on the field. Fourier transform # and inverse Fourier transform 7! are defined as

0o

U((u)=‘77(u)5/ u(r)e ™ tds,

—00

u(t) =F 1 (U) = % /_OOU(f)ei“”da).

Details of the definition in this text are shown in the appendix 3.E.
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Problem 3.3

1. Solve the equation except for z = 0.

2. At z = 0, the equation is singular because of the delta function. Integrate
equation 3.20 in a rage of —€/2 <= z <= €/2). Then derive the following
equation,

(9G1D +€/2
[ ] = po. 3.21)

9z —-€/2

Note that integration of Green’s function in the infinitesimal range is negligible
from equation 3.19.

3. By continuation of the two solutions at z = 0, derive the following result of
1-D Green’s function as,

G'P(z,w) = EZe M, (3.22)
4. Tnverse Fourier transform of G!'2 show

g'P(z,1) = {0 £ <zl/a (3.23)

—Fpo t>=|z|/a.

5. Problem 3.1 (3) gave the initial velocity at # = 0. Compare the solution to the
above solution of this problem and interpret the physical relation.

Derivation of 1D Green’s function using complex integration

Here, we calculate a Fourier transform in the spatial direction and use complex integration
to find G'P. For simplicity, we define k as k% = pow?/k.

Considering the Fourier transform of G'? with respect to space (z), we denote its Fourier
component as G. When we consider the Fourier transform of the wave equation, the spatial
derivative becomes ik using the wavenumber k, thus:

G=_F0 (3.24)

k2 — k2

By considering the inverse Fourier transform, we can find G'?:

L [ po
G'P = —/ tkz gk 3.25
21 Jowo K} - kze (3:25)

We need to evaluate this integral using residues. However, as it stands, the first-order poles
(k = +ko) lie on the real axis, making evaluation difficult. Therefore, we consider causality
and shift the poles to +kg +ie, taking the limit as € approaches zero. Physically, this represents
a situation where the wave propagates from the origin to the future, with a slight attenuation
in amplitude.
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We can calculate G'? as ,
G'(z,w) = ’;—(Ze—"kolzl (3.26)

by evaluating the residue.

§ 3.3.2 Derivations of Green’s function in a 2-D medium

Here we consider a cylindrical coordinate (r, ¢) with origin at xi.

118(8G2D
r

W?
- )+—G2D =6(x —xp). (3.27)
or K

po 1 Or
1. Except for r = 0, a solution of equation 3.27can be represented by superposition of Oth
order Bessel function of the first kind Jy(r) and Oth order Neumann function Ny(r).
2. At r = 0, the equation is singular. Then integrate equation 3.27 at an infinitesimal
circular area (C) at around the origin. Using Gauss’s divergence theorem, show

aGZD
/ S—dl = po. (3.28)
C r

3. By continuation of the two solutions at the origin » = 0 derive the following result of
2-D Green’s function as 00
. 2
G = _Tﬂg ) (kr). (3.29)
Here H(()Z) is Hankel’s function of the second kind.
4. In the time domain, the corresponding Green’s function can be written by,

_po H(t—r/a)

2n 2 =2 ]a?

¢ (r,1) = (3.30)

where H is the Heaviside step function.
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Fig. 3.1: Propagation of 2-D Green’s function.

Problem 3.4

1. Show that Hankel function of the first kind can be approximated by a cylindrical
wave in far field.

2. Interpret distance dependence of the amplitude based on the conservation of
energy.

3. Show the amplitude of 2D Green’s function in time domain (equation 3.30) is
proportional to 1/+/r if the distance r is enough long.

l 3.3.3 Green’s function of a 3-D medium

This subsection explains Green’s function in a 3-D medium, which describes 3-D wave
propagation for the forcing §(x)d(z).

110 (,08°P\ 1 5,0?
——=—|r=]+-g" = =- 31
o720 (r prral o 5(x)o(1) (3.31)

To consider the amplitude, first, let us consider the d’Alembert solution™¢ ¥, With a change
of the variable as p = p/r, the solution is given by,

_polt—rja) pit+r/a)
p= + ’
r r

(3.32)

which represents spherical waves outward and inward. The amplitude decays with 1/r. The
distance-dependent is also given by energy conservation on the expanding (or shrinking)
wavefront.

Green’s function in a 3-D medium is given by

B0y = 08U =r/a) (3.33)
4 r

note 3) Ty general, behaviors of solution of wave equations in even dimensions are quite different from those in odd
dimensions. The former is localized close to the wavefront and lasts for a long time.
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See Problem 3.5 for the derivation.

Problem 3.5

Here we consider a spherical coordinate (r, 8, ¢) with origin at &.

110 (,0GP\ ?
p—oﬁa( 2 or )+7G3D:6(X—§) (334)

1. With a change of variable as G*” = G /r, rewrite the above equation.

2. Solve the equation except r = 0.

3. Atr =0, the solution is singular. Integrate equation 3.18 within an infinitesimal
sphere. Then show the following equation

dZ = py, (3.35)
> or
using Gauss’s divergence theorem.
4. By continuation of the two solutions at the origin r = 0 derive the following
result of 3-D Green’s function as,
G3D _ _@ e—ikr
4 r

(3.36)

5. Calculate inverse Fourier transform the above equation.

l 3.3.4 "Green function in n-dimension space

2 RITD Green BEL Y . 1 XIT » 3 KITD Green FAFII T VRA LIRA BV EWVE T,
CDETIE, —RIOTEHHERDD Green BAOME %2 A TWL T8 T, ZORZHF W
FATWEET, ZOREEK, EATLNETITOTRARILTLEVWERA,

3 &5t Green B X 1 2RIt Green B DR

3 RILDHBEITIE

1108 (,0GP\ ? 5 &)
—— —G" = —= 3.37
po r? or (r or )+ K 4rr? 37
EEZET, G =P/r ERLEHTZ L
1 Y w? 5*(r)
Bl | /e
po Or2  «k 4nr
1 do*(r)
=" 3.38
4 dr ( )

CORZLCo kD2 &, i3 1 KK ETERXDOB I o TnEDT, Wik 1 X
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JC Green BB 7L ZBABDM D 2 D r ICEAT 2 BIAADE TP IT 2 Z e oD 3,

=—— . (3.39)

CZTRERIZ2 Z2IT7-0E,. GP 33 % Green BABUIZBUCE L T 012X LTl
I CTERINTVAE D TT, HEHNZ 3 KT Green By 1 XIT Green FA%UZ

G3P = b 9G'P

2nr  Or

EVSBERTHOMT 2 Z e HkRE T, THELET DG TEM L7 Green BID
LD D 5 Z L BHIKE T,

(3.40)

n 2R3t Green B & n + 2 X7t Green B DR

n Xt Green BIEUZ. n Kot EI SR E2E 2 £ 3, Green BRI AT L THRT
Hbr LT, WMEETr AN ZES T2
5*(r)

S )
por"!

L 9 ( n-19G" (3.41)

or or

+k3G" =
"=l 9y ) 0

LWIORDELNET, 22T, & n Kok LmEL r ZMEE Lo EEICE LT
o Lizl-dicHTtExs, £7/25, &

n/2.,.n-1
Sp= 2 (3.42)
r'(%)
YWOEMER B LE T, £
Su2= 205, (3.43)

O BRERZLE T,

3T EN AR 1 RoTOf & Bl R BR TR S DI 2 Z e BHIRE L, —MiC
n+2 RITDRY n KITDREFEVDT 2 Z e BHEKZVDTL & 50? R OT 3
ZEDHRETT, TITRKIEOHTIEDDETH, 9" %

g = 196 (3.44)
r or
CERLT, n4+2 X007 77> 7 v RERIE 3 2, BMRREMD OFE»S
10 (0P 10( 1 [, 09
rtl or (r or ) S ror (r”‘1 or (r or )) (3.43)

D EY. DFD n JOTHETEK (eq. 3.3.4) DM r DRI ZE D, r THIS &\

1 P 11 *
ﬁ(r"“a—)mgw = —i( d ) (3.46)

il or or "~ poSy 1 dr\ -l
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EESZEPHRET, TITHAZBILTAEL x5, EMEAWT DL

1d{ ot ot dét 1 of
——( ) =—(n-1)—+ =-n——-~ (3.47)
rdr

rn—l rn+1 Wr_n rn+l

ERDFET, ZZTTAXBEEBICET 2MTOXZENE Lz, Sy =278, /n 2o T
BELET L

6+

18,09
— | — kfP" = 20— 3.48
i+l or (r or ) MG ﬂpoSnJrzr"” (3.48)
Db, 5
1 10G"
G"? = 5o (3.49)

Fn 42 Ot AHRERZTHEZLTWE 2200 3, 2% D HHRD Green B E
WHEHEHICZ AL —DEFLTED, RANVADFREEZEIGHREZ Z 02 hET (2
Rz IRE —RICRD 5 Z e DR ET), FHIITDES. Green BIEUX

L 110\7T
G —( 2zrr(9r) G (3.50)
YL AR ET, BEIOTOBAIE. HRICIEOES ST ST L E W
X G2 e Do e 5, —fRiC
Gn:_iﬂ(Lﬁ

n_
2
0 ) H?_l(kr) (3.51)

27 r Fn

rELZeHHERET, 22T HP 135 2 7 Hankel BIEC 3o,

Problem 3.6

1. The pressure response for forcing f(x) = 6(z) in a 3-D medium can be
interpreted by 1-D Green’s function. Based on this fact, show the relation
between 1-D Green’s function and 3-D Green’s function.

2. Equation 3.30 shows 2-D Green’s function does not go zero after the arrival
of the wavefront. Derive 2-D Green’s function from the 3-D Green’s function
based on 3-D Green’s function with a line source given by §(r).

noted) 3 C % OREFHEITEHERE T,
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| §3.4 Green’s function in a homo-
geneous elastic medium

Let us consider the equation of motions

92 0
p@si = ETU +fi. (352)
Here we neglect self-gravitation and initial stress.

For an isotropic and homogeneous elastic body, the equation can be simplified as,

pﬁtzs =A+)V(V-s) +uV3s +f

=(A+2W)V(V-s) —u(VXVxs) +f (3.53)

Pwave Swave

The first term of the right-hand side represents the P wave with volumetric changes, whereas the
second one represents the S wave with shear deformation. Later we consider a homogeneous
and isotropic medium

| 3.4.1 Elastic potential: Separation between P save and S
wave

In order to clarify the perspective, displacement s is written by scalar potential ¢"°*®> and
vector potential ¢ using Helmholtz’s theorem as

s=Vop+Vxy. (3.54)

I note that vector potential ¢ has ambiguity for the choice of the reference. Vector potential
U’ =y +Vyleadsto VXY’ = Vxy. For static magnetic field, we choose a vector potential as
V -y in general. In the case of an electromagnetic field, vector potential is related to the scalar
potential for each other, whereas, in the case of elastic deformation, they are independent, as
shown in later sections. In the case of an elastic wave field, we can separate the P wave and
S wave without the choice of a reference of vector potential as V X ¢ = 0. For example, for
a stratified medium described in later chapters, a form of vector potential as V X (¢ + V X x)
becomes convenient because the two terms (¢ and y) represent horizontally polarized S waves
(SH) and vertically polarized S waves (SV), respectively.”

Insertion of equation 3.54 into equation 3.53 leads to

62
V2 (Pa—tf - (/l+2u)V2¢) -V f

0’y
V XV X thquVxx// =Vxf

(3.55)

where a is P-wave velocity and S is S-wave velocity (1 +2u = pa?, u = pf?).

note 5) Based on the definition, the scalar potential ¢ can be related to pressure p = —pa2 V2.
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A formula of vector analysis of
VxVxy=V(V-y) -V

and Vx [V(V -¢)] =01lead to

2

9
VxVX|[p— — uViy|=Vx f.
(pM M !ﬁ) S

Similarly, the Helmholtz decomposition of f is given by

[f=VO+V XY

Thus, to satisfy the equation of motions,

62

a—t;ﬁ - (/l+2u)V2¢ =0
o’y
gz THYY =Y

(3.56)

(3.57)

(3.58)

(3.59)

is sufficient "% These equations correspond to wave equations of P-wave and S-wave,

respectively.

note 6) There are also terms for translational motion and rigid body rotation (see Problem 3.7) as solutions, but they

can be dropped because they violate the infinitesimal assumption.
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Problem 3.7

Let us consider the equation:

a? 0t?

2
V2 (ia—‘p — v2¢) =0 (3.60)

1. Estimate ¢, which satisfies VZ¢q(x, 1) = 0.
2. Show that ¢ + ¢ also satisfies equation 3.60.
3. Show that ¢ represents a translational motion when ¢ satisfies equation 3.53.
4. Let us consider the same discussion for the vector potential ¥ given by
0 Txy Txz\([X
Yo =|—Txy 0 rvz [V | (3.61)

—Txz ~Ty; 0 [f\z

which represents a rigid rotation. Based on the discussion for scalar potential,
the vector potential satisfies the governing equation. In this text, we drop the
effects because they are not first-order variables.
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| 3.42 Green’s function for an explosive source

In general, an excitation problem in an elastic medium by a force is complicated. In order to
understand the important concept of "near field" and "far field", let us consider an excitation
problem of elastic waves by an explosion source, which can be described by only a scalar
potential. This simple example could be helpful for understanding elastic wave propagation.

First, let us consider Green’s function G¢ for scalar potential ¢. For an impulsive pressure
6(1), the Green’s function is given by

82G‘/’(x, tE,7) _ 1

o7 ?Vzcd’ =6(x —&)6(r—1) (3.62)

1 —
G¢(x,t;§,7)=m6(t—7—Ixafl) (363)

Near field term and far-field term for a point explosive source

First, let us consider a response for a point explosive source for simplicity. Within an
infinitesimal sphere with radius Ar at the origin suddenly increase the pressure Ap att = 0 as,

pSOUICe (& 1y — Ap(1 — H(rg — Ar)H(7), (3.64)

where r¢ is the distance between the origin and £, and H () is Heaviside function™ 7). The
minus sign originated from the difference between pressure and stress tensor. Because an
explosive source cannot cause shear deformation in a homogeneous medium, we consider
only scalar potential ¢ here. ¢ can be given by convolution between the Green’s function and

the source term pSOUICe a5

0= / " G0 (x.1.£,7) SN (£, 1)V (§)d

_ ApAPH(t-F)
T 3pa? r )

(3.65)

'3 . L
re . Potential at x against time
7 |
T |
/ l t=rla
A RSN - I
1 I i 1
Pressure source : N
_ _ApAr—
3207

N %

Fig. 3.2: Schematic figure of the deformation by the explosive source.

The displacement s can be represented by gradient of the scalar potential ¢ as

_ ApAr? H(t=rfe) — 8(t=r/a)
- 3/30/2 r2 ar ' (366)

Sy

Near field term  far field term

noe ) () =1,t >0,H(t) =0, <0
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The displacement of the near field term can be interpreted as static deformation by the
incremental pressure at a point. For ¢ = oo equation 3.62 can be simplified as,

V2G? = —a’S(x - £). (3.67)

The form of this equation is equivalent to a static electric field by a point charge.

The far-field term represents a propagation of the delta function. The amplitude decreases
with distance ~ 1/r. This result means that net energy flux on a given sphere is constant
(4rr?(r~1)? is constant) against the propagation distance. This result originated from energy
conservation owing to the wave propagation.

vspace3cm

Problem 3.8

1. Derive equation 3.65.
2. Derive equation 3.66, and plot the near field term and the far field term.

l 3.4.3 Green’s function of a homogeneous medium for

impulsive force: a general case

Green’s function is feasible for estimating an elastic response by a general forcing. Let us
consider Green’s function for an impulsive force Xy(7)d(¢) in the x direction,

2
%G =a’V(V-G) - BH(VxVXG)+[6(x)Xo(1),0,0] (3.68)

The external force can also be represented by scalar potential® and vector potential ¥
based on Helmholtz theorem as,

[6(x)Xp(2),0,0] = VD +V X V. (3.69)
div of the both sides of the equation leads to

V20 = Xo(n 20X (3.70)
Ox

Here we consider the Green’s function (equation 3.3.3) satisfies the following equation:

1 1
il e R (3.71)
4 |x|
The comparison leads to "8,
_ Xo(m o 1
T 4n Ox|x |
Xo(2) 0 1 o 1
b O 2 x1 "oy ix1): 3.72
4 ( 0z x| 6y|x|) (3.72)

note 8) gee Aki and Richards'") in details.
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G can be also represented by a superposition of scalar potential ¢ and vector potential ¥
based on Helmholtz theorem as,
G=Vop+Vxy. (3.73)

Each potential satisfies the wave equation. For example, the scalar potential satisfies the
following equation,
¢
912

¢ can be given by convolution between the scalar Green’s function in the 3-D medium and
the forcing term @ (see the first section of this chapter).

The scalar potential can be written by a convolution between the scalar Green’s function
and @ as

=a*V2¢ + . (3.74)

1 |x — x0] 1 0
) =——— Xolt — ——dV 3.75
#x.1) (47T)2/OC¥2/V °( a )|x xol oxo o 0 BT

A change of variables of |x — &| = a7 leads to the following equation:

_ 1 X()(l - T) o b
o(x,t) = (n)2pa? / ([/ 9% |§|dS) T. (3.76)

Here we focus on the integral ff dS. The circle in
Figure 3.3 represents a spherical shell with the radius £
at. The surface integral of a potential 1/r leads to
an analogy to a problem of gravity potential. If the
mass is the uniform distribution on a closed shell, the
term represents the spatial gradient of the potential
along x direction at the origin O (i.e., it corresponds 0 X
to x component of gravity ). Based on the analogy
for a problem of gravity, when the point O is inside
the shell, the gravity is 0. On the other hand, when
it is outside the shell, the mass is concentrated at the

center x virtually. This result leads to the following ~ Fig. 3.3: Coordinate for evaluation
form: the potential ¢.

o(x,1) = b (il)/ Xo(t—7)dt. (3.77)
drp \oxr) Jy

The vector potential is also written similarly. With some calculations, we obtain the

potentials as,
1 o1 r/a
o(x,1) = (——) / Xo(t — T)dT
0

47rp oxr
(3.78)
1 o1 a1y P
U(x,t) = - 7Xo(t — 7)dr.
(’)z r’oyr) Jo

By substituting the scalar and vector potentials into s = V¢ +V X, we obtain the following
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expression:
1 a 1\ [k
(x,1) = — - Xo(t —1)d
i (%, 1) 4mp (axiaxr)[/a Xolt = T)dr
1 or or r
L el e B (Y
drpar (ax,- ax) 0 @
1 or d
s ——— 00 - — ) xo [t - =] (3.79)
drnpBr ox; dx B

The first term represents a near field, the second represents a far field of the P wave, and the
third represents a far field of the S wave.

Now let us consider the near and far field terms in more detail. We can determine whether
we are near or far based on two timescales: the characteristic time of X(¢), and the P-S
travel time difference r/B8 — r/a. From a simple calculation (see Problem 3.9), when the
characteristic time of X(r) is sufficiently smaller than the P-S travel time difference, the
second and third terms are proportional to 1/r, and the first term is proportional to 2. The
first term is negligible at an enough distant point, whereas it represents the static displacement
corresponding to the crustal movement at a near-source point. On the other hand, if X (7) is
sufficiently longer than the P-S travel time difference, all terms are proportional to 1/r, and
all terms become important. The details will be explained in the next chapter. Still, the actual
earthquake is a bit more complicated, and there are intermediate terms in addition to the far
and near terms, which can be understood using Green’s function derived in this section.

Problem 3.9

1. In a case of X(¢) = 6(¢), evaluate the near field term (the first term of the
right-hand side of equation 3.79.

2. In a case of X(¢) = H(t), evaluate the near field term (the first term of the
right-hand side of equation 3.79. Here H is the Heaviside step function.

Problem 3.10

1. When r is large enough, the far-field term of Green’s function proportional to
1/r (the second term of equation 3.79) becomes dominant at the distant point.
By evaluating the P-wave potential V¢ (equation 3.78), estimate the far field
term of P-wave displacement.

2. Derive equation 3.79.

3. For X (¢) = 6(¢), evaluate the near field term (the first term of equation 3.79).
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Reciprocity of acoustic wave states that an acoustic wave at AN
point A excited by a source at B is the same as an acoustic wave \
at point B excited by a source at A. "If I can hear you, you can v\’\'\,\,\/\l v

hear me."."Y) The theorem is valid under a certain condition. For
example, the "wind" effect breaks the theorem. In this section, I
try to explain the physical and mathematical background of the
reciprocity theorem of the acoustic wave.
Here we consider that an external force F(x, w) exerts on the system, and causes a pressure
perturbation P(x, w).

' VP(x,w) w?
po(x)  k(x)

Px,w)=F(x,w)=F [V . (i)} . (3.80)
Lo

Here we consider a pair of acoustic wave fields (P, F and P,, F,) "' 9,

‘ VP (x,w) N w?
po(x) Kk(x)
. VP, (x,w) N w?
po(x)  k(x)

Pl(x,a))zFl(x,w), (381)

\Y Pr(x,w) = F(x,w). (3.82)

Here we consider the difference between two quantities (i) F P, and (ii) F>P;. Multiple
equation 3.81 with P, multiply equation 3.82 with Py, and subtract the resulting expressions.
Integration over volume within ¥ leads to "0 10

1
/(PzFl — P F>)dV = / —(P,VPy — P\VP,) - AidX. (3.83)
% Y

Here we consider a problem under a homogeneous boundary condition (on the boundary
2, P =0or VP = 0). The left-hand side of equation 3.83 disappears. Green’s function for
F) = 6(x), F, = §(¢) exhibits the spatial symmetry as,

G(x,x,w) =G(x1,x,w). (3.84)

This equation is known as reciprocity, which is not crucial for theoretical consideration but
also for numerical applications.

In the case of the Earth, the ground can be approximated by free surface (p = 0). I note that
Coriolis force owing to Earth’s rotation, breaks the reciprocity at very low frequency (< 1073
Hz). When we consider an advection term of the mean flow, such as infrasound propagation
within a layer of a westerly jet, the reciprocity is also broken.

tBecause the mathematical operations are a bit abstract, you may find it difficult to under-
stand the physical meanings. Here we will try to explore the physical implications a little
further. However, you may skip the following, as it anticipates the contents of the later further
chapter (8 chapter).

note 9) In this case, because we neglect the advection term due to the smaller amplitude, the wavefield can be
characterized by pressure perturbation.
note 10) 4e Hoop [1988]¢") wrote “As far as acoustic wave fields are concerned, Lord Rayleigh is commonly credited
as the first to derive a reciprocity theorem; it applies to harmonic sound vibrations in a homogeneous, ideal
fluid. (He denotes it as Helmholtz’s theorem but gives no reference to Helmholtz. )”
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First, the governing equations are abstracted as linear partial differential operators.
\Y%
L=V . (3.85)
po(x)

Here we consider arbitrary functions « and v.
The operator £ that satisfies

(/fﬁmﬂ :/wiww. (3.86)

is called the Hermitian conjugate operator with L. If £ satisfies

L=1, (3.87)

we call £ the Hermite operator or self adjoint operator " 1),

The Hermitian operator has two important characteristics (i) the eigenvalues are
real, and (ii) the eigenfunctions are orthogonal and form a complete system. Therefore any
function can be expanded in terms of eigenfunctions.

Here we consider eigenvalues A,, and eigenfunctions u,, for an operator £ as:

note 12).

An
K(x)

Expanding the Green’s function in terms of eigenfunctions yields

-Eun:_

Up. (3.88)

G= Z Anlty. (3.89)

The insertion of the expansion into the wave equation leads to

-2
}:(3——£)mﬂn:&x—xo. (3.90)
K(x)
From the orthonormality of the eigenfunctions:

/ i (X) ()

dV = 6,, 3.91)
k(x)

the coefficients a,, are given by

un(x1)
=—. 3.92
Accordingly, Green’s function can be written by
un(x1)un(x2)
G= e 3.93
Z w? -, ( )

From this expression, Green’s function satisfies the reciprocity property. This discussion also
shows that, generally, when the eigenfunctions can be described as self-adjoint operators,

note I 1 the case of one-dimensional problems, the equations can be reduced to ordinary differential equations of
the Sturm-Liouville type. In the case of horizontally stratified structures, the equation can be rewritten in the
Sturm-Liouville form by separating variables. Therefore, the various properties have been studied in detail
and are easy to treat.

note 12) Remember the Hermitian matrix
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the eigenfunctions satisfy orthogonality and completeness, and therefore, the reciprocity is
satisfied. For example, in the case of sound waves with mean wind, when the sound wave
propagates upwind or downwind, the travel time changes due to the effect of the mean wind,
and thus, the reciprocity is not satisfied. In this case, the governing equations do not satisfy
the self-associative property.

Also, the definition of the Hermite operator shows that checking the interaction quantity is
checking whether the self-adjoint property is satisfied. When rewritten in matrix form, the
Hermitian operator corresponds exactly to the Hermitian matrix, and the various properties
become easier to understand "¢ 13,

Problem 3.11

1. Using Green’s theorem, Derive equation 3.83. Hint : Use V - (Fu) = F(V -
u) +u - VF, and Gauss’s divergence theorem.

note 13) For example, the Hermitian matrix corresponds to an orthogonal matrix that is diagonalizable and whose
eigenvalues are real numbers
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l 3.5.1 TPhysical interpretation of interaction quantity

Evaluating the quantity of interaction, we can derive the reciprocity. However, it is not quite
clear what it means in the physical sense. Let us consider the interaction quantity, focusing
on how the order of deformation changes the work done by external forces.

Total amount of work done by external forces on the fluid

First, we evaluate the work done by external forces on the fluid per unit time. The work per
unit time, w(t), done by external forces in the region V is given by

w(t) = /Vf vdV (3.94)

where v is the particle velocity. In this chapter, we use pressure p as the variable, so we
consider the expression in terms of p instead of v. From the equation of motion,

po0:v(x,1) = =Vp(x,t) (3.95)

If we define h(?) as the function obtained by integrating p once with respect to time, v can be
written as

y(x, 1) = —piowz(t) (3.96)

Using the relation V - (Fu) = F(V-u)+u - VF,

_ (L
w(t) = /V (v (po))hdv (3.97)

We now consider the integral of w(z) over all time. From the generalized Parseval’s theo-
rem™ 19 we find that

*© 1 *© P
/ w(t)dt = — / / F*(x,w) ().c,a)) dwdV
oo 27 Jv J-oo iw

L
P0
summary, by integrating the Fourier component F*P/(iw) over the frequency domain, we
can estimate the total work done by external forces on the fluid.

Here, F is the Fourier component of V - ( ), and P(w) is the Fourier component of p. In

Why can we compare components at each frequency?

To compare work, we need to consider the time integral of f(#)p(¢) or the equivalent
frequency integral of F(w)P(w). However, the interaction quantity is evaluated at each
frequency. Why is this? This is because there is a condition that the order in which forces f;
and f, are applied does not matter.

note 14) The generalized Parseval’s theorem states that for any functions f and g,

[m fr(t)g(t)dt = % /_Oo F'(w)G(w)dw (3.98)

The left-hand side can be interpreted as the cross-correlation function at lag 0, and this equation can be derived
by considering the inverse transform of the cross spectrum.
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t=0 t=71

pi(t)

Fig. 3.4: Att =0, a force fi(x,?) is applied, generating a sound field p;(x,t). Att =7, a
time-reversed force f» (7 —1) is applied, and we consider the sound field p (7 —t) in the reverse
time direction. We evaluate the total work done by the external forces. The order of applying
the forces is then reversed, and the respective works are compared.

Let us consider a situation like in Figure 3.4. Suppose a force fi(x,t) is applied at ¢ = 0,
generating a sound wave p(x,t). At time ¢t = 7, a force fo(x,7 —t) is applied, and we
consider the time-reversed sound field p>(x, 7 —¢). In this case, the work done by f; on p;
can be written as

//OTfl (x,0)p2(x, 7 —1)dV(x)dt, (3.99)

Since this equation holds for any time shift 7, the work is a function of 7. Considering the
Fourier transform with respect to 7, we find that

/F1 (x,w)Pr(x,w)dV(x), (3.100)
v

Thus, it can be decomposed into components at each frequency. Since it must hold for any
time shift, we need to consider the balance of each Fourier component.

Changing the order of applying forces

(i) Applying f; first to generate a sound wave, and then applying the time-reversed f, after
7 seconds. (ii) Applying f> first to generate a sound wave, and then applying the time-reversed
f1 after T seconds. To compare these cases, we derive the condition Im{FP, — F,P} = 0,
focusing only on the imaginary part of the interaction quantity. Here, causality becomes
important.

When considering signals that satisfy causality, causal signals must satisfy the
Kramers—Kronig relations. Considering the Fourier components of causal signals, the real
and imaginary parts must satisfy the Hilbert transform relations. Therefore, satisfying
Im{F; P, — F,P1} = 0 simultaneously satisfies Re{F| P, — F,P;} = 0™ ! and as a result,
we find that the condition for the interaction quantity to be zero (F) P, — F,P; = 0) must be
considered.

note 15) Strictly speaking, the Fourier components of causal signals must also satisfy finiteness.
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In the chapter on Hooke’s law, we considered the symmetry of elastic constants, specifically
the symmetry that does not depend on the path of deformation (this symmetry itself is known
as reciprocity). When this symmetry is generalized to dynamic problems, it is shown that the
reciprocity of the Green’s function for sound waves can be derived.
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153.6 Representation theorem: as
a natural extension of Huygens’s

principle

The representation theorem is key for interpreting seismic wave propagation. In this section,
I show the theorem is a natural extension of Huygens’s principle, which does not predict the
wavefront but also the amplitudes. For simplicity, we start a case of an acoustic (scalar) wave
equation.

With an assumption that F; is O within a volume V (P = P) and F, = 6(x —x), we obtain
the equation,

P(x1,w) = /2 %(P(x,w)VG(x,xl,w) -G(x,x1,w)VP(x,w)) - AZ. (3.101)

For a better description of the boundary condition, we rewrite pressure gradient by displace-
ment S(x, w) as,

P(xl,w):‘/Z%{P(x,w)VG(x,xl,a))—psz(x,xl,cu)S(x,a))}-ﬁdZ. (3.102)

For a given region surrounded by a boundary ¥, the displacement and the pressure distribution
on the surface X give us a complete description of the acoustic wavefield within the surface.

To compare Huygens’s principle we replace a source at x| by receiver at x using the
reciprocity as,

P(xl,w):/%{P(x,w)VG(xl,x,cu)—pcuzG(xl,x,w)S(x,cu)}-ﬁdZ. (3.103)
z

<
0
<~

Fig. 3.5: Geometry of the fluid body.
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Problem 3.12

To understand the nature of the representation theorem, let us consider a one-
dimensional problem for simplicity. As described in the chapter on the Green function,
we consider a plate-like region 0 < x < L as the domain of %, corresponding to the
case where P is the function of only x.

1. Derive the following form of the representation theorem:

OP(x, a))} L
Ox x=0
(3.104)
2. In a case of a homogeneous medium (p(x) = pg, k = w/ag), the 1-D Green’s
function is given by

P(xi,w) = [ ™ {P(x a))( GID(xl,x w)) —GID(xl,x,a))

G'P (x1,x,w) = g—(]){le_iklxl_xl. (3.105)

Here we consider a propagation wave solution P(x, w) = Po(w)e X!, Show
that the representation theorem holds in this case.

The representation theorem shows that the wave field inside the boundary can be
completely reproduced by information on the boundaries describing the wave inward
and outward.
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For a better understanding of the equation, let us consider a simple situation the Green
function G (r) is a function of only r using a spherical coordinate at the origin x| . Because
VG =09,Gé,, VG = 9,Gé,, the equation can be rewritten by,

P(x1,w) = / {lPGG(r) (é,-A) — W G(r)(S - ﬁ)} dz, (3.106)
=P or

The first term of the right-hand side corresponds to a dipole source, whereas the second one

corresponds to a monopole. The combination of the radiation patterns gives us a prediction of

amplitudes of refracted and reflected wave fields. This formulation is known as the Fresnel-

Kirchhoff diffraction formula in optics.

If you interpret the representation theorem as an extension of Huygens’ principle, you have
understood the physical implications. However, a closer look at the formula raises many
questions. For example, if the boundary conditions do not satisfy the homogeneous boundary
condition in a supposed medium (e.g., if stress and displacement are given at the boundary, as
in a speaker), does the condition break the reciprocity of Green’s function? This is a typical
example. Actually, this problem can be avoided. That is, the wavefield combination we are
considering ((Fy, P1) and (F3, Py)): they are same within the region V, but not necessarily
outside it.

First, as a simple case, let us consider a spherical region as the region V. Suppose that at
the sphere surface, we have a free surface (satisfying the homogeneous boundary condition).
In this field, you would think of a Green’s function that naturally satisfies the homogeneous
boundary condition on the surface of V. However, it is not necessary to choose so, and there
is no problem choosing a Green’s function in full space (see section 3.3.3), considering the
situation where the medium continues infinitely outside the domain as well.

Next, consider the case where the homogeneous boundary condition is broken on the sphere
(for example, there is a source on the boundary, such as a speaker in part). In this case, we can
still choose an infinite Green’s function (also called the fundamental or principal solution),
and the reciprocity can be applied without any problem. In other words, the representation
theorem can be applied similarly.

J 3.6.1 Relation to Huygens’ principle

First, let us consider the boundary on a plane parallel to the wavefront in a situation where
a plane wave is propagating upwards (Figure 3.6). Similar to Huygens’ principle, this can be
interpreted as a situation where secondary wave sources are placed on the boundary surface.
The difference is that the radiation from the secondary wave sources is not uniform, but rather
directed upwards. This is due to the combination of dipoles and monopoles, resulting in the
radiation pattern shown in the figure.

Next, let us consider the case where the wavefront of the propagating plane wave is
perpendicular to the boundary (Figure 3.7). Although it is less intuitive compared to the
parallel case, let us examine it step by step. The radiation pattern of each secondary wave
source is identified as a dipole. The timing of wave excitation coincides with the passage of
the wavefront. Therefore, the wavefronts emitted from all secondary wave sources overlap,
forming a plane wave. Since the propagation speed of the wave in the medium matches the
timing of wave emission from the secondary sources, it can also be interpreted that the shock
front is advancing perpendicular to the boundary.

We can reconstruct all the seismic wavefields within the Earth’s interior from the surface
observations if we know Green’s function of the medium. Based on the reconstructed seismic
wavefield within the Earth, we can infer elastic constants at a given point from the ratio
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Plane wave

> Propagation direction

Fig. 3.7: A case in which the wavefront of a plane wave is perpendicular to the boundary.

between the spatial gradient of pressure and the time derivative at the point. This is the basic
principle of seismic imaging in seismic exploration. However, we must know the seismic
structure in advance to calculate Green’s function. At a glance, the logic seems to be a circular
argument. From a practical point of view, we start an initial model, then we update it with a
modification based on the surface observation and the initial Green’s function. Updating the
information based on the observed wavefield is essential for exploring Earth’s interior using

seismic exploration techniques.

Problem 3.13

Figure 3.6.

/4.

the circle with a radius of ox.

Let us consider the amplitude of the plane wave excited at the boundary surface in

1. Let us consider the conditions under which the wavefront of a cylindrical wave
is emphasized in Figure 3.6. For a spherical wave with radius r excited at
x = 0, approximate the wavefront near x = 0 to second-order accuracy.

2. Consider the interference with the wave excited by a secondary source located
at x = ox. When ox is sufficiently small compared to r, find 6x such that the
phase difference between the two spherical waves at x = 0 is approximately

3. Since we are considering the 3D Green’s function, the amplitude on the wave-
front is proportional to (kr)~!. Estimate the amplitude of the secondarily ex-
cited wavefront by considering the contributions of secondary sources within
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Problem 3.14

Let us consider the amplitude of the plane wave excited at the boundary surface in
Figure 3.7 in the same manner as Problem 3.13. Note that (i) the secondary excitation
source is moving with the wavefront and (ii) the radiation pattern must be considered
because the excitation sources are dipoles.

1§83.7 Reciprocity of elastic medium

The reciprocity of an acoustic medium can be extended to an elastic medium. First, we
extend equation 3.83to that for an elastic medium, known as Betti’s theorem. Here I show
only the results " 19) a5,

note 16) yead Aki and Rechards” for details.
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Betti’s theorem
As in the case of the acoustic wave, we consider two types of wave fields as follows. Let
us consider a pair of elastic wavefields: (i) elastic wavefield s; excited by forcing f; and

(ii) elastic wavefield s, excited by forcing f,. Then integrate the inner product between the
equation of motions for (i) and s’ for (ii), and vice versa.

/V [s10x,1) - (fo(x,7) = pd2s2) — $2(x,7) - (f1(x,1) — pdZs1)} dV (3.107)

Z/Z{[Sz(xﬁ)'Tl(Sl(x»t))'ﬁ]—[Sl(xyf)'T2(S2(x7‘1'))'ﬁ]}d2 (3.108)

The derivation requires the following relation,
Z E; T}, = Z E[;Ty;, (3.109)
ij ij

according to the symmetry of elastic tensor as C;jx; = Cryi ;™' 17,
By time integration of the above equation with the change of variables T = 7 — ¢, we get the
following relation:

/mdt/[sl(x,t)-fz(x,r—t) —-s2(x,7—1)- fi(x,1)]dV 3.110)
—0o0 1%

=/°°dr/z{[s2<x,r—r>-T1<s1<x,r)>-ﬁ] [s106.1) - Ta(sa(x. 7 = 1)) - ]} A,
(3.111)

Here we use the relation shown in problem 3.15.

Problem 3.15

Show the following relation:

/w {s1(x,2) - 02s2(t = 1) = s2(x,7) - 97s1(r = 1)} dt = 0, (3.112)

for given a finite time 7 by partial integration under the following condition s (c0) =
§1(—00) and s, (00) = §5(—00).

Reciprocity of Green’s function
When we consider homogeneous boundary conditions (on a boundary ¥ |-, s = s’ = 0 or
T,[s)] = T,[s")] = 0), the right-hand side vanishes. With the transnational symmetry of
Green’s function, we obtain reciprocity of elastic Green’s function as,

Gim(x2,7;%1,0) = Gy (%1, 73%2,0) (3.113)
Gim(x2,72;Xx1,71) = Gy (X1, —715X2, —T2). (3.114)

note I7) this relation is based on the independence of elastic energy on deformation paths, as explained in the previous
chapter.
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1§83.8 Representation theorem of an
elastic medium

Let us insert G, (x,;7,0), which represents the p component of displacement for an
external force toward mth direction at i into s, of Betti’s theorem (equation3.7). Now,
considering the translational symmetry with respect to time, Fourier transform with respect
to 7 leads to the following equation

S (@0,%) = /v Fo(@.1) - G (@, ,3)dV (1)

+ L{Gpm(w’ ﬂ,x)qu(u(w, n))ﬁq - Sq(w’ U)qu [(Gn(w,n,x)] ﬁq}dz(n),
(3.115)

In this equations To obtain displacement s at x, the above equation evaluates the convolution
between Green’s function for an impulsive force applied at the observed point x and the
distributed sources. The evaluation makes the equation difficult to understand. Assuming that
Green’s function satisfies a homogeneous boundary condition, reciprocity of Green’s function
can simplify the formulation "¢ '8 With the reciprocity, the representation theorem can be
simplified as

() = /V fp (@, )G (w0, x, 1)V ()
+‘/Z{Gmp(w’x’7])Tp(7]) _sp(”)cqulalek(w,x’n)ﬁq}dz(”)’ (3-116)

where 7 is normal vector ont the boundary.

N

n
>

Fig. 3.8: Geometry of the system we consider.

The Representation Theorem is very important when considering the excitation of seismic
waves. The Representation Theorem assures us that cutting out a part of an elastic body
has no effect on the motion of the elastic body outside it as long as the displacement and

note 18) The confusion originates that the boundary conditions for the Green function can be independent of the
boundary conditions for the displacement s. This means that the choice of Green’s function is arbitrary, which
causes confusion. For example, when considering a homogeneous medium but complex boundaries, using
the infinite medium Green’s function (the fundamental solution) improves the outlook.
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stress conditions at the boundary are known. Consider, for example, the phenomenon of
earthquakes, which are caused by brittle fractures in a part of the Earth. The area near
the fault cannot be represented by an elastic body. However, if we consider the operation
of hypothetically replacing the brittle region with an elastic body through it, with a closed
surface that surrounds it. Then, as long as the stresses and displacements on the boundary are
identical to each other, we can completely describe the motion in the elastic body. We will
see this in detail in the next chapter.
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|1 §3.A Delta function

l 3.A.1 Delta Function of a Composite Function

When f(x) has the i-th zero point x;,

o(x — x;)

-_—> 3.117
TReD] G117

S(f(x)) = Z

This indicates that the delta function takes values at f(x) = 0, and it becomes clearer when
considering the Taylor expansion of f(x).

l 3.A.2 Differentiation of the Delta Function

Since the delta function cannot be differentiated in the usual sense, it is defined by integration
of parts.

[ f(x)d(;—ix)dx = —£(0) (3.118)

§ 3.A.3 Polar Coordinate Representation

Consider the delta function in polar coordinates r. Since r > 0, it is defined on one side as

/6 5t (r)dr = 1. (3.119)
0

There is also a definition where it is set to 1/2.

In three dimensions, the polar coordinate representation of the delta function is
o™ (r)
drr?’

o(x) = (3.120)
Here, the delta function located at the origin is considered to be a function of r only due to
its symmetry about the origin. Additionally, since the delta function can be defined through
integration with a test function, integrating both sides over the entire space shows that they
are equivalent.

In this case, the differentiation of the delta function is

*(r)  do*(r)
r . dr

(3.121)

This can be easily derived by integrating with the test function g(r)/r.
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| §3.B Bessel function
1L (rf;—lj) +(k2_ ’f_j)R:o, (3.122)

is a differential equation of Bessel, and the solutions are known as Bessel function of the
first kind J,,,(kr), and Neumann function Y,,,(kr). Jo(0) = 1, J,,(0) = 0,m # 0, whereas
Neumann function diverges at » = 0. Both functions converge to 1/+/r for r — co. Read
Mathematical Methods for Physicists"” for details.

1.0 Ly
J
i 2
Jj‘

0.0

'1 O T T T T T T T

1.0

Y

. 0 Y7 Yj

'1 O T T T T T T T
0.0 5.0 10.0 15.0 20.0

Fig. 3.9: Plots of Bessel functions and Neumann functions.

] 3.B.1 Properties

Jom(¥) = (~1)" I () (3.123)
I (@) + I () = 22,00 (3.124)
Im-1(x) = Jm+1(x) = 2Jy,n(x) (3.125)

] 3.B.2 Asymptotic for x — 0
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T (x) i(f)m (3.126)
" m! \2 ’
2
Yo(x) ~ Z1n 2, (3.127)
T 2
2\
¥, () ~ - =D (—) m>0 (3.128)
Vs X

] 3.B.3 Asymptotic for kr > 1

2 2m+ 1

I (kr) ~ | —— cos [kr — 20 (3.129)
wkr 4
2 2m+1

Yo (kr) ~ r| —— sin [kr — 21 21 (3.130)
wkr 4

HOD (kr) ~ |2 gi (k=221 7) (3.131)
nkr

Here H? (kr) = HV* (kr).

| §3.C Hankel Functions

Here, we summarize the relations used in the main text regarding Hankel functions.

] 3.C.1 Recurrence Relations

LA\ Lo k ~v—k 7(2)
(;d—z) (7B () = D R HD) @)

Refer to DLMF (https://dlmf.nist.gov/10.6).

] 3.C.2 Relation to Spherical Hankel Functions

There is a relation between the spherical Hankel function hflz) and the Hankel function
2 .
H,

-l

Additionally,


https://dlmf.nist.gov/10.6
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o
1 §3.D Plane Wave Expansion
A plane wave can be expressed as a superposition of cylindrical waves.
elkreosd _ Z i"J, (kr)ei™® (3.132)

| §3.E Fourier transform

For time series u(t), the Fourier transform # and the inverse Fourier transform #~! are
defined as

e Definitions of Fourier transform ~N
U(f) = F(u) = / ) u(t)e 27/ 4z, (3.133)
u(t) = F ) = / ) U(f)e>™ /' df, (3.134)
(3.135)

N J

where U represents Fourier components of u.

Summary of Fourier transform

If u(z) is a real function, U(f) = U*(-f),

* Parseval’s theorem: f_o:o u(t)?dt = f_o; U(f)3df,
* Cross spectrum C(u,v; f) = F(¥) = U™V

* Wiener- Khinchin theorem: p(f) = F(¢) =| U |%.

| §3.F Hilbert transform

Hilbert transform of f(¢) H f(¢) is difined by

(o)

Hf(r) = %‘[ [—isign(w)]F(w)e " “ dw. (3.136)

o0

This can be interpreted as phase advance of 90° to the original signal in the frequency domain.
In the time domain, it can be written as,

[

T—1

Hf(t) = %so/m dr. (3.137)

Here f is Cauchy’s principle integral
Additionally, applying the Hilbert transform twice results in

HIH[f] =-f(2), (3.138)
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which inverts the sign.
For details. read textbooks of applied mathematics (e.g. Yomogida 2007,) Mathematical
Methods for Physicists‘”).

183.G Kramers—Kronig Relations

Now, let us consider a signal f(¢). Assuming this signal satisfies causality, we consider the
signal f(¢)h(z), where h(¢) is the Heaviside step function

0, t <0,
h(t)=41/2, t=0, (3.139)
1, t>0,

Let us consider the Fourier transform of f(#)4(¢). Denoting the Fourier transforms of f(¢)
and h(t) as F(w) and H(w) respectively, the Fourier transform of f(¢)h(z) can be expressed
as the convolution

Flfh] = 7 ["“ F(w)H(w - w")dw’ (3.140)

Here, H(w) is given by
1
H(w) = mé(w) + —. (3.141)
iw

The first term arises because the average value of the Heaviside function is not zero, thus it
has a value at zero frequency to account for the average shift. The second term represents the
integral in the frequency domain, as the Heaviside function can be roughly considered as the
time integral of the delta function, resulting in (iw)~! in the frequency domain.

Substituting this into the equation, we get

Flfh] = %F(a}) - %i?—([F] (3.142)

Denoting the real and imaginary parts of F as F, and i F; respectively, we have

Ffh= %(Fr(w)+?(Fi)+l% (Fi(w) = HF,) (3.143)

Therefore, the imaginary part is the Hilbert transform of the real part.

In summary, causal signals have their real and imaginary parts linked by the Hilbert
transform (known as the Kramers—Kronig relations). In the time domain, since the value is
zero for t < 0, considering the degrees of freedom, there is a unique relationship between the
real and imaginary parts, which is the Hilbert transform.



3.8. Bibliography

69

Problem 3.16

Let us consider the Fourier transform of the Heaviside function. Since it becomes 1 as
t — oo, it cannot be Fourier transformed in the usual sense. Therefore, for sufficiently
large T, we consider the function

0, t <0,
1/2, t=0,
') =31, 0<:t<T, (3.144)
1/2, t=T,
0, t>T,

Calculate the Fourier transform of this function and then consider the limitas 7 — oo,
showing that

H(w) = m6(w) + i (3.145)
iw
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Excitation of seismic
wave

Chapter 4

Various phenomena excite seismic waves. For example, fault slips and volcanic eruptions
excite them. This chapter explains that these phenomena can be described by "equivalent
body force" in a framework of linear elasticity. In other words, we can only guess the force
system of the excitation sources from seismological methods. source characteristics inferred
by seismology

Although seismological techniques are feasible for characterizing the source, we note
that they can provide only information about the "force system". In order to infer physical
properties (e.g. fault slip and volumetric change of an explosion source), we must interpret the
"equivalent body force" based on a physical model. An inferred physical parameter depends
on an assumed physical model. These two steps are essential for a seismic source study.

The following section introduces a concept of indigenous source for understanding equiv-
alent body force and then moment tensor.

| §4.1 Indigenous source

Without a seismic excitation source, the Earth does not oscillate. An external force at a time
excites seismic waves. For example, a meteorite is an external force. In this case, according
to the impulse, the momentum of the Earth changes. Mass injection by a volcanic eruption
is another example. When we consider such an external force, the total momentum changes
according to the impulse by the external force.

The solid Earth can be approximated by a closed system in most situations. A physical
process inside the Earth, of course, can also excite seismic waves. An earthquake is a typical
example of such a source. Volcanic processes inside the Earth, such as volcanic tremors, are
another example. Excitation sources inside the system of the solid Earth are called indigenous
sources. The physical processes are thermoelasticity, phase transition, fault slip, movement
of fluid, and so on. The total momentum and angular momentum are conserved.

For the seismic excitation by an "indigenous source" in the source region, Hooke’s law
should be broken because the Earth keeps the equilibrium otherwise. For example, in a
fault zone, the law is broken down. Let us consider a localized volume V. According to the
exchange of momentum between V and the other body, indigenous sources can be categorized
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into two.

The first case is that the exchange of the momentum and angular momentum between V and
the other can be negligible. A fault motion is such an example. In this case, the momentum
and angular momentum in the other region are conserved in all instances.

The second case is that the momentum and angular momentum exchange with each other.
Let us consider a landslide, which can be approximated by a sliding rigid block on a slope. In
this case, the momentum at the beginning and the end is zero, but nonzero in between. Because
the total momentum in the whole system (e.g. the whole Earth) conserves, the momentum of
the other region (¢ V) is nonzero. In other words, the block imposes the impulse ™ 1,

These features are crucial for characterizing "equivalent body force" in the following
sections.

| §4.2 Equivalent body force and
Stress glut

Let us consider an earthquake as a typical example of an indigenous source. An earthquake
can be described as a fault dislocation physically. Because the dislocation cannot be described
by a theory of elasticity (breakdown of Hooke’s law), here we consider a closed surface, which
includes the fault plain. Governing equations other than Hooke’s law should be satisfied

exactly"®?) . An elastic medium out of the surface ¥ can be described by a framework of
elasticity.
¥
100° .
- Ga\)%e
ey
“»\f ¥
V
\ /i
S

Fig. 4.1: Schematic figure of a right-lateral vertical strike-slip fault.

Representation theorem guarantees that stress and displacement on 2 without the informa-
tion inside the volume V describe the elastic deformation outside the V. Here we consider an
embedded transformation that a virtual elastic body is filled inside X. Below we show that
the breakdown of Hooke’s law can be represented by equivalent body force, which exerts the
virtual elastic body.

Let us consider the deformation associated with the earthquake inside the volume. An
earthquake can be described as a fault dislocation physically. Inside the volume V (gouge
layer), brittle failure occurs, and then Hooke’s law is broken down"°'® 3.

note 1) See Takei and Kumazawa [1994, 199510 - (') for details.
note 2) See Dahlen and Tromp 1998 for details.
note 3) gouge is Fault gouge is minerals formed by brittle failure with a very small grain size in a rock.
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The true stress is written by Tirye-

Sx Exy Txy

Fig. 4.2: Schematic figure of the displacement, strain and stress.

Then let us consider modeled stress Ty, de] assuming Hooke’s law for the deformation.
As shown in Figure 4.2, the modeled stress is larger than the true stress.

Stress glut I is defined by I' = Ty, 4e] — Ttrue- Note that I' = 0 on X.

Seismic waves excited by an earthquake can be described by excitation by stress glut"
in the elastic medium. In a framework of elasticity with stress glut, we can calculate the
seismic wave propagations. —d;I7; is equivalent body force. This result guarantees that we
can describe the excitation problem completely in a framework of linear elasticity.

Because this system is closed, the net force of the equivalent body force and the net
torque are 0. Based on mathematical consideration, the "equivalent body force" of the fault
dislocation in a small spatial dimension can be described by a point double couple source.

[y

Gouge zone

Fig. 4.3: Schematic figure of the stress glut.

When we want to know source characteristics by observations of seismic wave propagations,
we can know only the equivalent force system of the excitation sources. There are many
possible physical mechanisms for the force system. With the help of other independent
knowledge, we can infer the mechanism of the sources.

| §4.3 Multipole expansion
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Source region

Fig. 4.4: Schematic figure of the source-receiver geometry.

Equivalent body force can be defined by stress glut I as,
f=-V-T(x). 4.1)

Displacement S excited by equivalent body force can be given by convolution between the
corresponding Green’s functions and the equivalent body force as

S = [ 6rg0fE Ve @2)
v
Let us expand Green’s function around &, with respect to A¢. An amplitude of the nth spatial

derivative of the Green’s function G can be estimated to be k"G with a typical wavenumber k
of the Green’s function. Therefore the nth order term of the Tayler expansion can be estimated

by
1 1
—k"GAE" = —G(kAE)™. 4.3)
n! n!

When kA€ is enough small: a typical spatial scale of volume X is smaller than the wavelength
of the seismic wave (Figure 4.4), the expansion converges. Here we expand the Green’s
function up to degree 2 with respect to A€ as,

G(x,£,0) ~ G(x,£0, w) + VeG(x, £, 0)AE + %AfTﬂgG(x, £0, W)AE + O(AE%). (4.4)
The insertion into equation 4.2 leads to
Six,0) = Gyy(x£.0) [ f(6.)av(© 45)
+0Gij(x.60.0) [ 06V (E)

+ Gy (x, £0,0) /V FAEAEAV (£).

The first term represents the impulse, whereas the second term does the torque. When we
can neglect the exchange of momentum and angular momentum between the volume ¥ and
the other region, these two terms vanish exactly. The terms with an order higher than 3 have
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significant value. Because the field term of 3D Green’s function in an infinite homogeneous
medium is proportional to 7!, nth order term attenuates with distance as r~"~!. Therefore
higher-order term tends to attenuate more rapidly. As a result, 3rd order term known as
moment tensor becomes dominant.

For simplicity, let us consider an excitation of a 3D acoustic wave in an infinite homogeneous
medium. The excitation source is assumed to be localized at around x

© ’

1 1 r\! ,
T r;(r) Pi(cos8). (4.6)
Here we assume again that the source dimension is smaller than the wavelength of the acoustic
wave.

When we neglect the exchange of momentum and angular momentum between the volume
2 and the other region, these impulse and torque terms vanish exactly. The next section
explains the details of the third term: moment tensor.

| 4.4 Excitation by moment tensor

When the spatial scale of the source is enough smaller than the wavelength, the stress glut
can be written by
Fij(x,t) :M,-J-(t)é(x —XO). (47)

Here M is the moment tensor. The trace of M;; shows the volumetric change. When a normal
earthquake, two eigenvalues are much larger than the other (double coupled force)™© .
At low frequencies, the moment tensor of an earthquake can be simplified as,

Tij = V2MoM6(x — xo)m(1), (4.8)

where M) is seismic moment, and m(¢) is an increasing function with the normalization of
f m(t)dt = 1. Here we assume that the moment function is synchronous.

At a distant station from a seismic source, displacement of body wave (U) in an infinite the
homogeneous elastic medium can be written by

U~ %M()n"lo(l)(l - r/c), 4.9)

where r is the distance between the station and the source. This means that the displacement
of a teleseismic body wave gives us the shape of the moment rate function Myrny.

note 4) For example, an explosion source can be represented by a moment tensor. See Julian et al. [1998] for a
generalized case of non-double coupled components*)
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Fig. 4.5: Components of moment tensor
Problem 4.1

1. In subsection 3.4.2 we consider an explosion source. In this case, the source
mechanisms can be represented by a moment tensor. When Ar is enough small,
derive the corresponding moment tensor.

2. When moment tensor has only one non-zero value (M, = 1), show the P-wave
radiation pattern .

3. For double couple source (M, = 1,M,, = —1, and other components are
zero), derive the P-wave radiation pattern (Figure 4.6).
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T-axis

Compression

Compression

Seismic focal mechanism and Pression-Tension axis.

Fig. 4.6: P wave radiation pattern for a double couple source. Taken from Cyril Langlois
(2010)/ CC BY 2.5.

| §4.5 Work by Moment tensor

In this section, we will consider the work that moment tensors act on elastic bodies. First,
consider the stress glut I' and the corresponding equivalent volume force f.

f==-V -T(x,1). (4.10)

is applied to the elastic body. If the displacement of the elastic body is s, the work W done by
the equivalent volume force on the elastic body is written by

W:/f-st. @.11)
\%4

With partial integrals (Problem 4.2), the above equation can be rewritten by

W:/f-st:Z/Eijrijdv. (4.12)
v 7 IV

Here we assumed that the stress glut is 0 on the surface o of the elastic body. When stress glut
can be represented by a moment tensor as an equation (4.7), the equation can be simplified as

W=ZE,~J~M,-J~(t). 4.13)
ij

Thus, the work is given by the production between strain E;; caused by the earthquake and
moment tensor M;;. Based on the conservation of energy, work done by the stress glut I" is
transferred to kinematic energy and elastic energy.


https://texample.net/tikz/examples/seismic-focal-mechanism-in-3d-view/
https://texample.net/tikz/examples/seismic-focal-mechanism-in-3d-view/
https://creativecommons.org/licenses/by/2.5/
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Problem 4.2

Derive equation (4.12) assuming the following conditions:

* Consider an elastic body within a volume V/, stress glut I exists only inside X.

* On Z, stress glut I';; = 0.

* Assuming that the elastic body is an isolated system, imposed torque is O as
Fi j = Fji-

» Use partial integrals and Gaussian divergence theorem.

| 4.6 Effects of free surface on the
seismic excitations

In this section, let’s consider how free surfaces affect the excitations of seismic waves.('”
In conclusion, we obtain the strange result that M., My, does not excite seismic waves by
shallow earthquakes.

For simplicity, we consider a semi-infinite medium. If z = 0 is the ground surface now, the
free boundary surface condition is Ty, =Ty, =T,; =0atz =0. and T, =Ty, = T;; = 0.
Rewriting these first two conditions in terms of distortion, we get

T T
Exglyg= == =0 Ey| _,= = =0 (4.14)
/’l z=0 IJ z=0

We have shown that the work W done by the moment tensor can be written as »;; E;;7T;;.
Since Ex, = Ey,; = 0 at z = 0, the components M, and M, of the corresponding moment
tensor M,, and M,, do not contribute to the excitation. This means that M,, and M,
cannot excite seismic waves near the free surface (sufficiently shallow in depth compared to
the wavelength). What happens in relation to actual phenomena?

For example, in shallow earthquakes near the trench, if the subduction angle is gentle, a low-
angle reverse fault earthquake occurs. In such cases, M, and M, components do not excite
seismic waves very much, and it is known that it is difficult to determine these components
from seismic wave data. This is a serious problem, especially when estimating moment
tensors for long-period seismic waves. When determining the moment of an earthquake on a
shallow low-angle reverse fault, there is a trade-off with the tilt angle of the fault, which leads
to large uncertainties in the moment estimate.
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| §4.7 Single force source

When the source region ( non-elastic part) is enough large, we cannot neglect the exchange
of momentum between them. The single force term represents the impulse owing to the
exchange. This term becomes important when a landslide excites seismic waves (Figure 4.7).
Of course, the total momentum of the system is conservative.

Examples of source processes represented by a single force are (i) glacial earthquake and
(ii) microseisms excited by ocean swell. In both cases, we cannot neglect the source volume.

Momentum Mv(t)

[Mpolde == Fear

Landslide

Fig. 4.7: Schematic figure of the single force.)

l 4.7.1 Origin of ambient noise: ocean swell shakes the
Earth

Even on seismically quiet days, the PSDs of acceleration [m®s?]
Earth oscillates persistently. At fre-
quencies higher than 1 Hz, human ac-
tivities cause a background seismic
wavefield. Ata frequency lower than 1
Hz, the contribution becomes smaller.
The human activity is not energetic
enough to excite it because the wave-
length of the seismic wave becomes on
the order of km. At this frequency,
ocean swell activities are more en-
ergetic, and they excite seismic sur-
face waves (Rayleigh wave and Love Fig. 4.8: Probability density of power spectrum
wave) persistently. This phenomenon of horizontal acceleration at a Hi-net station in
is known as ambient noise or micro- J apan.(g) A reddish color means more probable.
seisms. The thick red line represents the power spectral

Figure 4.8 shows two peaks at densities of ambient noise.
around 0.1 Hz and 0.2 Hz. Ambient
noise at the lower peak is called pri-
mary microseisms, whereas the other one is called secondary microseisms. The frequency of
primary microseisms corresponds to that of ocean swells, whereas that of secondary micro-
seisms corresponds to double the frequency. Against our instinct, amplitudes of secondary

Aungeqoid

0.01 0.1
Frequency [Hz]
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microseisms are larger than primary microseisms because the nonlinear effect of the ocean,
known as the Longuet-Higgins mechanism (Longuet-Higgins), is dominant. The amplitudes
of secondary microseisms are several orders of magnitude larger than those of primary mi-
croseisms. Even at a continental station distant from a coastal area, these microseisms are
observed because of the large amplitudes.

A ripple pattern by raindrops is analogous to those of microseisms. Please run an application
at the website. An impulsive force at a point generates an outgoing concentric wave. On the
other hand, we can trace wavefront generated by many random sources at first. Gradually,
inside the circle, the wave field becomes quite random. We cannot identify any specific
direction.


http://www.eri.u-tokyo.ac.jp/people/knishida/eng/Seismology/wave2Drandom2.html

4.7. Single force source

Here, we pick up a
typical example of mi-
croseisms when a ty-
phoon occurs because
the high ocean swell ac-
tivities excite the larger
amplitudes of micro-
seisms in the area of the
center of the typhoon.
Figure 4.9 shows run-
ning spectrum™®©> at a
station (Minami Daito)
when typhoon Songda
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Fig. 4.9: Left: Running spectrum from Sept. 7th to Sept. 8th in
2004. The vertical axis shows frequency, and the horizontal one
shows time. Right: Track information about the typhoon. The
red line shows the track. The thick red line corresponds to the

in 2004 hit the Japan is- time period of the running spectrum.

land. The typhoon be-

came weaker with time

in this time. With time increasing, the peak frequency becomes higher. We can also identify
a vertical line at around 3:00 on 9/7, which corresponds to a teleseismic earthquake. In this
case, the teleseismic earthquake was masked by the microseisms in this frequency. Thus,

microseisms are major noise for earthquake observations, as noted before.

§ 4.7.2 The excitation mechanism of secondary microseisms:
Longuet-Higgins mechanism

In this section, I explain the excitation mechanism of secondary microseisms, also known
as Longuet-Higgins mechnism(’"°¢®  Because the math of the theory is complicated, I
introduce a simplified model by Longuet-Higgins"¢ 7.

Let us consider an analogy of a pendulum proposed by Longuet-Higgins [1953]) (Figure
4.10 right). The left panels show a standing wave with vertical motions, which does not
propagate toward a specific direction. Therefore, the center of mass of (a) and (c) is higher
than that of (b) and (d). To cause the periodic vertical oscillations of the center, a periodic
external force with frequency 2w is required. A pendulum depicted by the right panels
could be a good analogy. The location of the weight of the pendulum represents the center
of the mass, force at the pivot point represents pressure on the bottom, and displacement
of the pendulum represents the displacement of the center. Displacement of the pendulum
corresponds to the movement of water (see streamline of Figure 4.10 (e)). The period of
forcing at the pivot point is estimated to be 2w, which leads to pressure on the bottom with
frequency 2w. The amplitude of the forcing can be estimated by m(dw)?/R, where m is the
mass, d is the displacement, R is length of the leg, and w is angler frequency of the pendulum.
Thus, pressure fluctuations, which correspond to the forcing at the pivot point, should be
proportional to the power of the amplitudes of ocean swell (nonlinear).

Next, let us consider a propagating wave without dispersion. Because the wave keeps its
shape with the propagation, no vertical movement of the center of the mass occurs. This

note ) A running spectrum shows the time evolution of frequency spectra. We calculate the power spectra of sliding
windows and align the spectra with respect to time

note ) T onguet-Higgins is an applied mathematician and physical oceanographer. In particular, he is a pioneer in the
statistics of ocean waves. Unfortunately, he passed away in 2016.

note 7) Read Longuet-Higgins (1950),”) Hasselemann (1963),) Kedar er al. (2008)(® for details.
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Fig. 4.10: Upper: a schematic model and the analogy of a pendulum (a-d). Here we consider
a standing wave. Taken from Nishida (2017).('")

means that the ocean wave cannot excite pressure fluctuations on the bottom. Because the
Longeut-Higgins mechanism is not efficient for a propagating wave, this mechanism requires
two waves with an opposite direction pair at least. The extent of ocean swell activities and
the coastal reflection is crucial for realizing random propagations of the ocean swell. Now
we have a good stochastic wave action model, a theory that can predict observed secondary
microseisms well (e.g. Kedar et al. (2008),¢ )
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Elastic wave
propagation in a half
space

Chapter 5

The previous chapter explained Green’s function in an infinite medium. However, the struc-
ture of the real Earth is not so simple. The lateral heterogeneity causes the complexity of
seismic wave propagations. This figure shows SH wave propagations from an earthquake.
At frequencies lower than several Hz, a stratified Earth’s structure (a seismic wave velocity
structure depending only on depth) is a good approximation. Even the simple Earth’s structure
still shows complexities, but we can trace the wavefront. The figure shows the waves can be
approximated by plane waves.

In this figure, we can see reflections and conversions on the discontinuities (at the surface,
410 km, 660 km, and core-mantle boundary (CMB)). Because the free surface is the biggest
boundary, we introduce the free surface first in this chapter.

First, I introduce the concept of a plane wave, then I will show we can separate the
wavefield into P-SV and SH waves according to the wave type and the polarization direction.
This chapter describes the effects of a free surface: the reflection and the P-S conversion at a
free surface.

1 §5.1 Review of seismic wave prop-
agation: body waves and surface
and boundary waves

Nature is full of waves. For example, if we look at the water’s surface, we can see ripples
spreading as the wind blows. When some restoring force acts on the medium, they propagate
at a certain speed while maintaining their shape (f(x — ct) (x is position, ¢ is propagation
speed, ¢ is time)). Let us consider sound waves specifically.

85



5. Elastic wave propagation in a half space

86

1. Gas moves and density changes
2. Density change produces pressure change
3. pressure gradient moves gas

Sound waves propagate by repeating this cycle. Seismic waves propagate in solids in a similar
cycle (see the next chapter for details). If the wave’s amplitude is sufficiently small, it is linear,
and the principle of superposition holds. In other words, if the wave of interest can be taken
out and understood, the whole can simply be understood as a superposition of the waves.

| §5.2 Plane wave

To be revised Elastic wave propagation becomes more complex than a homogeneous infinite
medium when considering free surfaces. For example, when trying to evaluate the Green
function for half-space with a free surface, it can only be expressed analytically in limited
cases, such as when the source is located on the ground surface (e.g., chapter 5.7). Even in
the case of the Green function for a homogeneous infinite elastic medium, the analytical form
of the near-field term becomes complex. When considering Green’s function for the infinite
medium, the near-field term changes shape depending on the distance from the epicenter,
while the far-field term remains the shape. On the other hand, the far-field term propagates
with keeping its shape®® D). Therefore, this chapter will focus only on the far-field term.

Let us first consider the 3-dimensional scalar case for simplicity. Consider the case of an
external force §(x) acting at the epicenter. As we learned previously, the Green function, in
this case, is given "2 by

1 e—i kr
G?(r,w) = ——
Ak ¥
—ikr

G.D

We can define an isosurface where the phase of e is constant and is generally referred to as
a "wavefront." The trajectory orthogonal to the wavefront is called the ray (see Chapter ?? for
details). In regions where r is sufficiently distant, the wavefront curvature can be neglected.
note 3) The wave can be treated as a plane wave in the region e k", where e~**" is the radius
of curvature.
Let us go back to the wave equation for once: the Green function G¢ in the frequency
domain satisfies
— rhoow?G? = kV*G? = =5(x). (5.2)

The Fourier transform in the space, and Fourier inverse transform again gives

1 a/zei(kxx+kyy+kz z)
G?=—- /// —— dkydkydk, (5.3)
K a? (ks + k5 + kz) — w?

We can write that this equation shows that the Green function can be represented by a
superposition of plane waves.

note 1) Ag explained in the section of Ray Theory, the far-field term keeps its shape when the typical spatial scale of
the velocity structure is longer than the wavelength of interest.

note 2) T the 2-dimensional case as well as in the 3-dimensional case, the far-field of the Green function can be
approximated as e"'%" 3.129.

note 3) More exact conditions are required for the approximation of plane waves: (i) the curvature of the wavefront
can be neglected when focusing on wave propagation on spatial scales sufficiently short compared to the radius
of curvature of the wavefront. (ii) Near the epicenter, the radius of curvature becomes so small that a plane
wave cannot approximate it. From a simple estimation, it can be seen that the wave can be treated as a plane
wave in the region of approximately » > 1/k
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When considering the Green’s function of a semi-infinite medium, if we understand the
behavior of the "element" e “*K'* at the free boundary surface, we can understand the overall
behavior by superposition (inverse Fourier transform in the frequency domain). In other
words, understanding the behavior of the plane wave, e k¥ on the free surface is the key to
understanding elastic wave propagation in a semi-infinite medium.

Fig. 5.1: Wavefront and ray for Green’s function for a 3-D in an infinite medium.

e Summary of plane wave ~

When the source is enough far away from the source, the curvature of the wavefront
becomes small. In this case, the waveform can be approximated by a plane wave:

1. Plane wave is preserving its shape,
2. Plane wave has a plane wavefront,
3. Plane wave propagates perpendicular to the wavefront®.

In this case, the scalar variable ¢(f — p - x) can be represented as a function of r — k - x.
p is quantity called as slowness defined as p = k/a (acoustic wave).

¢ Exactly speaking, here we neglect the dispersion for simplicity.

- /

Here we consider a propagating wave into the x axis (py, = 0). When p, > 1/a, p, has
real value. Then it propagates into the z direction (plane wave). with P-wave speed « along
the slowness vector. On the ground (z = 0), at t = 0 the wavefront is at the point of x = z = 0.
At t = 7 itis at the point of (7/py,0,7/p;). When we observed the waveform on the ground
using seismometers, it propagates in the x direction with "apparent velocity" with 1/p,. Thus
we can estimate the horizontal apparent velocity from the surface seismic observations.
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| 5.2.1 Plane wave in an elastic medium

Next, Let us consider an elastic wave with a sinu-
soidal shape at angular frequency w™* ¥, and slow- Z,
ness vector p. Elastic potential ¢ and ¢ can be

written by "0t¢>) b(
¢ — Aaei(k(,'x—a)t) — Aaeiw(p(,~x—t) (54)

¢ — Aﬁei(k'g-x—a)t) — Aﬁeiw(p/;-x—t). (55) \

The corresponding displacement is given by,

N

g

sa(x’ t) = Aak(yei(k"'x_wt) = wA(zP<zei‘“(1’"'x“)
(5.6)

Sﬁ(x,[) = k,B X A'Bei(kﬁ-x—wt) =pg x Algwei‘“u’ﬁ'x"),
(5.7)

The polarization vector of the P wave is parallel to the propagation direction p ,, whereas that
of the S wave is perpendicular with an ambiguity of the direction. Although, here, we use the
form of e’ ¥~¢! to represent a wave propagation, we note that only the real part of a physical
quantity has the meaning.

p is called as Slowness defined by p = k/w. The dimension is inverse of the speed and is
parallel to the propagation direction. For example, the squared norm can be written by

1
Px+Py+Pr= 5 (5.8)

Inverse Fourier transform of ¢! (P**~") gives us formula of general waveform. A waveform
of P wave propagates with keeping the shape as s, (x,1) = pof(t — po - X), whereas that of
S wave propagate as sg(x,1) = pg X Agf(t — pp - X).

] 5.2.2 Body wave and inhomogeneous wave

When p? > 1/a?, p, becomes imaginary. Using an definition of p, = &i, the corresponding
potential is given by
¢ = Age' P b, (5.9)

This equation shows that it decreases exponentially in the z direction. The wave is called an
inhomogeneous wave"*'® © In an infinite medium, it diverges at infinity, it is a trivial solution

note 4) When we consider seismic wave propagation, the sign of the Fourier convention is different from other physical
cases, including the appendix of the previous chapter. To keep consistency a propagation in positive x direction
as ' (Fx=®1) Read the box of Aki and Richards for details. Please take care of the Fourier convention when
you read a paper of a textbook.

note 3) Tn seismology, when considering wave propagation, the sign on w is often taken to be negative. The definition
of the Fourier transform is also often changed. This is to treat traveling waves as positive, and this is the sign
taken by Aki and Richards (2002) and Saito (2009). In seismology, too, Dahlen and Tromp (1998) use the
opposite sign, so it is important to be careful about which definition you are following.

note 6) This wave is also known as an evanescent wave or external wave in physics or meteorology.
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physically. However, when boundaries exist, it is possible to learn the boundary. Section 5.6
explains Rayleigh wave as a kind of inhomogeneous wave in a semi-infinite medium with a
free boundary.

Let us review the global propagation of seismic waves. We can categorize it into body
wave, which propagates in the Earth’s interior, and boundary/surface wave, which propagates
along a boundary including the Earth’s surface (Figure 5.2left). Figure 5.2 shows such an
example of Green’s functions using seismic interferometry. The Horizontal axis shows the
epicentral distance, whereas the vertical one shows the travel time" 7). The figures show
global propagations of seismic surface waves and body waves. This section describes a brief
summary of seismic wave types.

In general, we can categorize seismic waves into body waves and boundary waves. Body
waves propagate in an internal body, whereas boundary waves travel along a boundary. A
surface wave is a kind of boundary wave trapped close to the free surface.

note 7) travel time is defined as the time from the origin time to the arrival time
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Fig. 5.2: Global propagation of body and surface waves. The waveforms are virtual Green’s
functions retrieved by cross-correlating ambient seismic wave field, also known as micro-
seisms‘” (see chapter 10 for details of seismic interferometry.)
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We can categorize body waves into
P and S waves; the polarization of the
P wave is parallel to the propagation
direction, whereas that of the S wave
is perpendicular to the propagation di-
rection (Figure 5.3). "P" originated
from the Primary wave, and "S" orig-
inated from the Secondary wave. The
deformation of the P wave is volu-
metric, whereas that of the S wave is
shear. "°®_ In general, with the de-
creasing temperature of the material,
the stiffness increases, which causes
an increase in the P wave and S wave
velocities.

We all know well that P-waves prop-
agate faster than S-waves, and the
Omori formula for determining the

distance to the epicenter from the difference in the arrival times of P-waves and S-waves

note 9)

You may have also heard of the Earthquake Early Warning, which estimates the

hypocenter from the fast-moving P-waves and predicts the arrival of large tremors (S-waves).

Inhomogeneous waves: surface waves and boundary wave

Surface waves in an elastic medium can be categorized into Rayleigh waves, associated
with volumetric changes, and Lave waves associated with multiple reflections of SH waves in

a surface low-velocity layer.

Propagation diregiion

O
WO
&\7’02\
3O

N
LA /} Propagation direction

[\

Fig. 5.4: Rayleigh wave propagation. The red ree
color shows particle motions in retrograde, and

the blue color shows those in prograde.
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Fig. 5.5: Love wave propagation.

note 8) A Web site of demonstration of body wave propagation.http: //www.eri.u-tokyo.ac.jp/knishida/

Seismology/body_wave.html

note 9) () ig available at http: //hdl.handle.net/2261/32677


http://www.eri.u-tokyo.ac.jp/knishida/Seismology/body_wave.html
http://www.eri.u-tokyo.ac.jp/knishida/Seismology/body_wave.html
http://hdl.handle.net/2261/32677
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] 5.2.3 Energy flux

The total energy of an elastic medium per unit volume U can be written as the sum of the
kinetic energy U and the strain energy UP as

U=U+UP. (5.10)
Energy flux K perpendicular to a unit area is given by("
K=-T-0s. (5.11)

By equipartition between the kinetic energy and the strain energy, the total energy U can
be written by,

os
U=p|— 5.12
Sy (.12)
where A is the displacement.
In particular, the energy flux of the P wave and that of the S wave are given by
K- m?(l/{ P wave 5.13)
BAU S wave,

where 7 is a unit vector of the propagation direction. Conservation of energy is represented
by

0

a—(iI+V-K:O. (5.14)

Problem 5.1

1. For a plane P wave, show that the kinetic energy is equal to the strain energy

as,
1 1 2
ETijEij =3P

as

7 (5.15)

2. Here we consider a wave form of P wave s = pf(t — p - x) . Calculate the
energy flux from equation 5.11.

3. For the inhomogeneous P wave with propagation in z < O given by P wave
potential ¢ = sin(wt — kx) exp(£z). Then the displacement is written by

sx = —k cos(wt — kx) exp(£z2) (5.16)
s, = Esin(wt — kx) exp(£z). (5.17)

Calculate the energy flux.
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I §5.3 SH wave and P-SV wave

Free surface condition on the ground is crucial for seismic wave propagations. For simplic-
ity, let us consider semi-infinite homogeneous medium in z < 0 with free surface condition
on z = 0 (7;,=0) (Figure 5.7). By introducing the free surface, we can categorize S wave
into two. Figure 5.6 shows (1) vertically polarized S wave in xz plane (SV wave) and (2)
horizontally polarized S wave (SH wave). This category is also crucial for stratified Earth,
which is a good approximation at frequencies lower than several Hz.

In this chapter, the first section explains reflections and refraction of SH wave, and then we
will explain reflection, refraction, and conversion of SV waves.

| 5.3.1 Equations of motion and Hooke’s law

As shown in Figure 5.6, we take the y axis
along the wave front,

0

— =0. 5.18
9y (5.18)

Then, the equations of motion are given by

9%sx _ 0T , 0T
Por = Tox "oz
pazsy _ OTyx .\ OTy,
or? ox 0z
2
0752 — 0T + 0T , (5.21) Fig. 5.6: Propagations of SH wave and SV
or? ox 0z waves and the polarization.

(5.19)

(5.20)

and Hooke’s law is given by

0s ds
Tyx = 2u) — —= 22
=(1+ ,U) +% 1 7z (5.22)
Y asx asz) (523)
iy (5.24)

y

P
S e %SZ) (5.25)
y
P
.= 2255 225 L (142 )asZ (5.26)
ox 0y

Let us drop the stress term and rearrange the equations as,

i
(asy L0
i

p6,2sx = (A + w)0x(0xSx + 0;5;) +,u((9§sx + (922sx) 5.27)
pdtsy = +1(02sy + D 258y) (5.28)
p(?,zsz = (A +w)0,(Oxsx + 9;5;) +u(é?§sZ + 612sz) (5.29)
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sy and s, are coupled with each other, whereas, s, is decoupled with the others. Because s,
is polarized in a horizontal plane, the wave is called an SH wave. On the other hand, because
sx and s, are composed of the P wave and vertical polarized S wave. the wave is called as
P-SV wave. As described in later sections, the separation of the SH wave field and P-SV wave
field is possible for a stratified Earth mode. Therefore, when we analyze seismic waveforms,
rotations of horizontal components from north-south component and east-west component
to transverse component (perpendicular to the great circle path between the source and the
receiver) and radial component (parallel to the path). The transverse component represents
the SH wave, and the radial component represents P-SV wave"®® 10,

l 5.3.2 Plane waves in the case of P-SV and SH waves: how
to take the vector potential

When considering seismic wavefields, in particular, plane waves in the P-SV case (see next
section for details), it is useful to introduce a potential as explained in the 3.4.1section. As
already mentioned, there is one degree of freedom in the vector potential. When considering
wave propagation in a horizontal multilayer structure in Cartesian coordinates

0 0

A=]0 +Vx|0 (5.30)
X 4
SH N

SV and SH can be separated,”) and the outlook improves if we use the following formula.
Because of the arbitrary property of the vector potential, we can choose a convenient way
to take the vector potential for our problem. For future calculations, we will write down the
case of propagation along a two-dimensional xz plane. Assuming that the potential does not
depend on y, the partial derivative with respect to y disappears, and we have a simple form.
Below unexplained components are set to zero.

P wave
¢ ¢
Sy = T sy =0, S, = 7 (5.31)
0%¢ 0%¢ d%¢
Evx = —, E., = ——, E,,=— 5.32
Ox? 7 9xdz L Hz2 (5-32)
2 2 2 2
. _E(I_V)ZT?'H/% _E 8% . _E(I_V)ZT?'H}??T? 5.33)
T A+v)(1=2v) T T M+voxdz T (1+v)(1-2v) ‘

note 10) Exactly speaking, this separation valid for the far field.
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SV wave
621ﬂ aZw
SX = 6X8Z’ sy = 0’ SZ - W (534)
Oy 1 &y 0y
Eyvx = ——, Ei, == -1 E,.=-E.\ 5.35
0x?9z ©T2 (8x022 dx3 ) “ (5-35)
3
(2v - 1) 2% £ 1/( 8 3
=B 2o g B L0 OV g (536)
(1+v)(1-2v) 1+v2\oxdz2 0x3
SH wave
0
s¢ =0, sy = —%, 5,=0 (5.37)
10%y 1 0%y
Exxzo’ Ex =TT 5> ==, 5.38
Y 2 0x2 ye 2 0x0z (5.38)
E 13% E 106%*%
Tyx =0, Ty =—7—z75, = - = 5.39
¢ 1+v?2 dx? ye 1+v2dxdz ( )

In the following, the plane wave amplitudes are variables (e.g. A, B, C). In the next section,

we will use

A
¢ — _.el(k-x—wt) l//

wl

B

Pxw?

C
-X — wt)

i(k-x—wt

(5.40)

e

and we will discuss the corresponding amplitudes by considering the potential that
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| 5.4 Reflection of SH-wave at a
free surface

Z axis

Let us consider the reflection and refraction X axis
of SH wave in a semi-infinite elastic medium A 4
z <= 0 with a free surface on z = 0. An / \
incident SH wave enters with incident angle / \
¢ can be represented by a general solution of /
equation 5.28 as

N \
Sy = Ae*iw(l*PxX*I’zZ) + Befiw(tfpxx"'pzz), / \
(54D Fig. 5.7

where A and B are integral constants. The
first term shows incident waves, and the second term shows the reflected wave. The free
surface condition is written by

Jsy

— =0. 5.42
M PR (5.42)

T, = -

Then the result of A = B exhibits the phase of the reflected wave is the same as that of the
incident wave. Displacement on the free surface is given by,

sy = 2Ae71@I=PY) (5.43)

which is double as large as the incident wave.

S ScS sScS ScS2 sScS2

500 =T S A — Surface

=)

Distance [km]

> e
==

v
A
1500 M
A
" \

2000 Lttt
0

Travel time [min] CMB (Core mantle boundary)

Fig. 5.8: Left: An example of seismograms of ScS reverberations when a deep earthquake of
Ogasawara on 2015/5/30. They are vertical components of broadband seismometers of F-net
band-pass-filtered from 30 s to 200 s. , Right: Ray paths of ScS, sScS, ScS2, sScS2.

This reflected wave can be interpreted as the "mirror" of the incident wave to meet the
boundary condition. When we consider an incident wave Ae™'®(!~PxX~Pz2) guperposition
between a mirror described by Ae™ @ (!~PxX*+P=2) and the incident wave satisfy the boundary
condition.
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Governing equation of SH wave is the same as the acoustic wave equation. However, the
boundary conditions are different. For the SH wave, stress T, and T, are vectors, whereas
the pressure for the acoustic wave is scalar. To meet the free surface condition of acoustic
wave at z = 0, a mirror of —Ae 1@(~PxX+P:2) ig needed. The sign is different from the SH
wave.

Figure 5.8 shows an example of reverberations of SH waves between the surface and the
core-mantle boundary (CMB). Because the outer core is liquid, CMB is also a free surface.
The figure shows many wave packets with fast apparent velocities, which correspond to
multiple reflections of vertically propagating SH waves between the surface and CMB"°t¢ 1D
The figure also shows the phase of ScS (reflected at CMB once) is the same as that of ScS2
(reflected at CMB twice).

note 1) The amplitudes attenuate with distance due to intrinsic attenuation of the material.
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| §5.5 Reflection and conversion of
P-SV wave at a free surface

For a given angular frequency w, let us consider an incident P wave (pi"), and an incident
SV wave ( pg"). The reflected P wave ( pfff l), and the reflected SV wave ( p;;f l) can be
related by,

P ; in . refl . : in, y._ . refl .
s =Al(?elw(pf’ x—t) +A:,eﬂ€”u(P" x—t) +A;3nezw(p5 x—t) +A;eflelw(p3 x t)’ (5.44)
where s is displacement, and A represents polarization vector with the amplitudes. For

simplicity, we solve a problem in the xz plane for propagating wave into y direction. The
slowness vectors and the polarization vectors are given by,

in _ [P refl _ | P in _ P refl _ | P
p"_(f)’ Pa _(—ff)’ pﬁ_(ﬂ)’ P _(—n)’ (549
in _ 14 refl _ P in _ n refl _ n
Aa—A(f), Ay _B(—f)’ AB_C(_p)’ Aﬁ —D(p), (5.46)

Then we can simplify the equations as,
55 (x,2)e'U7PY) = p(A! @87 4 BeTI94%) 4 (Cel“M% 4 De ' 9N7) (5.47)
52(x.2)e'UTPY) = £(Ae' ST — BeTIVE%) 4 p(=Ce' % 4 DeTTWN7), (5.48)

Later, this chapter explains the reflection and transmission coefficients of two cases: (1)
incident SV wave (A = 0), (2) incident P wave (C = 0) with boundary conditions of 7%, (0) = 0,
and T,,(0) =0 as

2pE(A—B) + (> + p>)(C+ D) =0, (5.49)
(n* - p*)(A+B) —2pn(C + D) = 0. (5.50)

Here we define polarization vectors as

Al = (‘;) @, Al = (_pg) a, (5.51)
i — (_ﬂp) B, ﬁ;efl _ (Z)IB (5.52)

In order to estimate the coefficients, we calculate the inner product between the polarization
vectors and displacement s.

l 5.5.1 P-wave incidence

The reflection coefficient from P wave to P wave Rpp = (B/a)/(A/«) is given by,

(> = p*)* —4p*én
T - R Apien (459

Rpp
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Fig. 5.9: P-wave incidence
The reflection coefficient from P wave to S wave Rps = (D/B)/(A/«) is given by
4 2 2
Rps = pé(n”-p7) « (5.54)

T (P - p2)2+apien B
Snell’s Law

As already explained, both incident and reflected waves must have a dependence of e~ in
order to satisfy the boundary conditions p. "2 In order for p to be a conserved quantity,
the incident and reflected angles must satisfy the following relation: i.e., Snell’s law,

sintpzsin()‘ (5.55)
B a

Conservation of energy

Consider the energy balance in a region on a thin region that includes the ground surface.
The vertical energy flux must be balanced between the incident and reflected waves. The
energy conservation law is given by

acosf = Bcos ¢|Rps|® + acosO|Rpp|*. (5.56)

Problem 5.2

1. Derive equation 5.53.
2. Derive equation 5.54.

note 12) a5 explained in the ray theory in chapter 2, where p is a quantity that can be related to momentum. Therefore
we use p associated with momentum
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l 5.5.2 SV-wave incidence

Le

X axis
\

A\
A\
A\
>
A\
.

Fig. 5.10: SV-wave incidence

Consider the case of an SV wave with unit amplitude (C = 1) incident at an angle of 25° (¢
in figure5.10). Figure5.10 shows that each of them takes a non-zero value. In order to satisfy
the boundary condition, the stress must be zero when the superposition. In fact, the resultant
wavefield in the figure shows that the stress 7, is zero at the surface. We search the values of
B and D to meet the boundary condition: 7,, = Ty, = 0. Since the sum of the unknowns and
the number of boundary conditions are equal, we can find B and D.

Reflection coeflicient from S wave to S wave Rgs = (D/B)/(C/B) is written by

2 _ 232 2
Rss = (" —p)” —4p7én (5.57)
(n* = p*)> +4p*én

Here slowness and the incidental angles are related as, p = $08 = S22 & = <088 ) — %

Reflection coefficient from S wave to P wave Rsp = (B/a)/(C/p) is given by,

d4pn(n* - p*) B

Rsp = -. 5.58
TP - p)2+ap2na -9
Corresponding conservation of energy is represented by
Bcos g = Bcos ¢|R55|2+acose|RSp|2. (5.59)

s gout pout 100
D
_ |
g 7 0
—aq L
50 25 0 25 &g 25 0 35 50 25 0 % 50 25 0 2% -100
km km km km

Fig. 5.11: The stresses T, for reflected SV and reflected P waves when the SV wave is incident
at an angle of incidence (¢) of 25°. This figure shows that the stress for the superposed wave
field is zero at the ground surface.
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Figure 5.12 shows the reflection coefficients.
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Fig. 5.12: Ry, has the finite value at its critical angle.

Snell’s law

Similarly, the continuity of displacement and stress at the boundary leads to Snell’s law.
The conservation of p and Snell’s law hold as well as P-wave:

sint,ozsine. (5.60)

B a
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Critical angle

After the critical angle ¢,
-1

R I™

@c = sin ) (5.61)
total reflection occurs. In this case, the z component of the slowness of the converted P
wave becomes imaginary and cannot carry net energy in the vertical direction (known as an
inhomogeneous wave). The S-wave will be out of phase due to the inhomogeneous P-wave
sticking near the ground surface. "¢ 13

Inhomogeneous P wave

Let us consider the stress 7T, for the case where the SV wave is incident at an angle of 75°
(¢) beyond the critical angle. Figure 5.13 shows the incident SV wave and the reflected SV
wave. The figure also shows that the phase of the reflected SV wave is out of phase by about
90 degrees (the incident SV wave is shaped like a half period of the sin function, while the
reflected SV wave is shaped like one period of the cos function). The figure also shows that
there are inhomogeneous P waves to meet the boundary conditions because of the phase shift
of the reflected SV. The inhomogeneous P-wave is localized at the reflection point, and we
can see that it is consistent with 7zz = 0.

0 s 5+ pot Al
MR Y/ N\
£ \\ .y / '\
.\ I/ / A | | N/ A\
=50 -25 0 5 =50 -25 0 5 =50 -25 o 5 =50 -25 0 5
km km km km

Fig. 5.13: Stress T, for SV wave incident with angle ¢ of 75°, the reflected SV wave and the
reflected P wave. wave. The superimposed stress field satisfies the boundary condition of the
free surface.

Conservation of energy

Let us consider the energy balance in a thin region along the Earth’s surface. surface. The
vertical energy flux must be balanced between the incident and reflected energy flux. Before
the critical angle, the energy conservation law is given by

ﬁcosgo:,Bcosgo|R55|2+ac0s6|RSp|2. (5.62)

Since the reflected wave becomes evanescent after the critical angle, the net energy flux
becomes 0, which leads to the following relation,

1 = |Rss|?. (5.63)

note 13) A5 calculated in Problem 5.1, the inhomogeneous waves carry energy up and down at a local scale but zero
on a larger scale. When the wave incidents after the critical angle, the inhomogeneous P-wave accompanies
the S-wave at the surface. The inhomogeneous P wave receives energy vertically from the S-wave and returns
the energy with a slight time delay. The S wave is out of phase because of the temporary energy transfer by
the inhomogeneous P wave
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Problem 5.3

1. Derive equation 5.57.
2. Derive equation 5.58.
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Similarities and differences between SH and P waves

Both SH and P waves can be described by a single variable and behave very similarly
because they satisfy the scalar wave equation. However, the reflection coefficient changes
because the boundary conditions appear differently. Let us focus on this point here.

Here we consider an acoustic and an SH wave propagated in a xz plane. The governing
equations are given by

62p (9219 (?zp
— =k|—=+— 5.64
or? K(6x2 " 8y2) (564)
62sy (92sy azsy
= . 5.65
P ~H (ax2 T oy (5.65)

The equations show that both can be described by a two-dimensional scalar wave equation.
For example, if the speed of sound and SH wave velocity is the same, p and s, have the same
solution.

One point should be noted, however. The acoustic wave takes pressure as a variable, while
the SH wave takes displacement as a variable. There is a big difference when considering
free surface. When considering acoustic waves, p = 0 is the boundary condition at the free
surface. On the other hand, when we consider a free surface at z = 0, the boundary condition
at the free surface for SH waves is given by

Jsy

—p—2==0. 5.66
paz (5.66)

This corresponds to the boundary condition of a rigid wall for acoustic waves. The reflection
coefficient at the surface with respect to pressure for P waves is -1, while for SH waves, the
reflection coefficient at the surface is 1. The difference is whether stress or displacement is
taken as the variable; in both cases, the stress at the surface is zero. The analogy with acoustic
waves is valid, but be careful how you choose the variables.

Problem 5.4

Let us consider P wave propagation in a 3-D half space of fluid.

1. Asin the case of SH wave, estimate reflection coefficients for an incident plane
wave (P-wave) as a function of incident angle.

2. Compare the above result with P-wave reflection coefficients for the P-SV
problem. In particular, discuss it for the incidental angles of about 0° and 90°.

3. Asinthe case of full space (see subsection 3.4.2), estimate the Green’s function
for an explosion source in a half-space of fluid. Discuss the behavior as the
source depth approach the free surface.
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| 5.5.3 Apparent incidental angle of P-SVwave

When we analyze seismic waveform, the particle motion is informative. For example,
Figure ?? shows the particle motion of P wave against radial and vertical components when
the deep earthquake at Ogasawara was recorded by the F-net station at Fukue. The figure
shows an inclined linear polarization. The inclination shows the approximate incidental angle.
This subsection describes this relation.

First, let us consider that the P wave enters
the free surface. The ratio between the vertical UD ]
displacement s, and the horizontal one s, is P
given by i

sx p(A+B)+nD 2pn -
°X = = tan 2. i
s; EA-B)+pD np*-p?

(5.67) or
The inclination of P wave polarization (or ap- i
parent incidental) 8’ is twice as large as the B
S-wave reflected angle as (Figure 5.12,

0 = 2. (5.68)

_60;
When the incident angle is enough small for a F T

Poisson medium (a = \/5,8) relation between Feciallume]

the apparent incidental angle and the P-wave Fig. 5.14: An example of particle motion

incidental angle can be simplified as of P-wave against radial and vertical com-
ponents of F-net station at Fukue.

2
0" =2¢ ~ —BQ ~ 1.156. (5.69)
a

This result shows that the P-wave incidental angle can be approximated by the apparent
incidental angle.
In the same manner, the incidental angle of the S wave can be related to apparent incidental
angle as.
sx _ _pB+n(C+D) _ n*-p’
s; —éB+p(-C+D)  2pé

(5.70)

When the incidental angle is small (this assumption is valid for teleseismic events), the
apparent incident angle can be related to the incident angle by

2
go'=2ﬁ—2<p=2/—390. (5.71)
o a
Here we assumed that the incidental angle is smaller than the critical angle.

It may seem somewhat intuitive that the direction of oscillation of the P wave coincides
with the direction of incidence, but it is by no means obvious. For example, consider the limit
B — 0, assuming a medium similar to a fluid. In this case, the direction of oscillation is 0
degrees. Let us consider the case of a fluid. In Fig 5.15, we consider a pressure source in
the ground. To satisfy the boundary conditions at the water surface, we consider a pressure
source with the opposite sign at the mirror-symmetric location. In this case, considering the
particle trajectory at the ground surface, it will move up and down. Since this relationship
holds at any time, the particle trajectory at the water surface is always vertical, regardless of
the angle of incidence.
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A virtual mirror

A pressure source

Fig. 5.15: Particle motion near the surface in fluid.

Problem 5.5

1. Derive equation 5.67.
2. Derive equation 5.70.
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I §5.6 Rayleigh wave

Before this section, this chapter explains body waves that can propagate freely in the
vertical direction. Inhomogeneous waves accompany incoming SV after the critical angle.
Can inhomogeneous waves exist on their own? Rayleigh waves have energy near the surface
and are known to propagate horizontally. Figure 5.16 shows the observation record during
the 2014 Chilean earthquake. The waves labeled R1 and R2 are Rayleigh waves, which
propagate at an approximately constant speed. The Chilean earthquake excited Rayleigh
waves efficiently because the depth of the epicenter is 35 km, which is much shorter than the
wavelength of the waves. First, let us consider qualitatively the nature of Rayleigh waves.

Rayleigh wave

IRIS broadband station (BHZ)
2014/4/1 23:46

R2
Bandpass filter from 0.005 to 0.01 Hz
T JAAAAA T T T J T T T T L T v"‘ T T I T
B 1m0 x SOV e foeewe—
5 =it _
(0] = = S ]
S,k . | R SR aS A Iy SR
C 100 —
S = al v 200es i
3 - i |
5 " :
o HE i |
C e
< AVAYA
vl\l\vn AN :
0 5000 10000 15000 20000
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Fig. 5.16: Waveforms in vertical components recorded by broadband seismometers when the
2014 Chilean earthquake.
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When considering acoustic or SH wave propagation in a half-space, inhomogeneous waves
cannot exist alone because they cannot satisfy the boundary conditions at the free surface. On
the other hand, they can exist for P-SV propagations: known as Rayleigh waves.*) Rayleigh
waves satisfy the free surface condition because P-wave-like and S-wave-like deformations
can exist simultaneously, which lean against each other at the surface. Rayleigh waves have
energy concentrated near the surface so that we can observe global propagation (Fig. 5.17).

We will first consider its properties qualitatively. First, let us consider the Rayleigh wave
note 14)

Let us consider a situation where an S- Propagation direcfion

wave enters the right direction while oscil- | (.D. .

lating vertically through an infinite medium. YO PR AT . P ologse vt-ote
We then cut out an infinite medium in the mid- -ta B eI h P
dle. Then, to satisfy the boundary conditionof =% E LR :.:': TS :“': ! o defed
zero stress at the free surface, the large stress 1etes . :: 3 - 42 — Ll
part will bulge out (the part with large volu- lelsferetidedsass lededed
metric strain). The free surface causes a large lelofedetngediis SPPPPPt

deformation, and the effective elastic constant Fig. 5.17: Schematic figure of Rayleigh

decreases. As a result, the Rayleigh wave propagation. Red circles show particle mo-
propagates slower than the S-wave (about90%  tions in retrograde, whereas blue ones show
of the S-wave velocity). The particle motion those of prograde.

becomes elliptical because the phase of the

volume deformation is shifted by 90 degrees compared to that of the S-wave. Because the
horizontal propagation velocity is slower than the S-wave and P-wave velocities, they can only
exist as inhomogeneous wave. The amplitude decreases exponentially in the depth direction.
At the surface, the particle motion is in the opposite direction of the rotation of a bicycle
wheel (retrograde). On the other hand, in deeper regions (blue in the figure), the direction is
the same as the rotation of a bicycle wheel (prograde).

J 5.6.1 Can elastic waves along a free surface exist?

To consider this a little more quantitatively, let us now clarify the problem. Let us consider
the propagation in the xz plane and assume that it does not change in the y direction, just as
we would consider the reflection and transformation of a P-SV wave at the free plane. The
boundary condition is given by T,, = T, = 0 at the surface. To begin with, let us simply
consider if acoustic waves and SH waves can propagate horizontally in half space.

As you may recall from Figure 5.15, the reflection coefficient of an acoustic wave at a free
surface is —1. Because the incident and reflected waves cancel each other out, the acoustic
wave is not excited when an excitation source is near the free surface. Since the sign of the
mirror image is reversed in Figure 5.15, it can be interpreted that in the case of a very shallow
pressure source, the waves are not excited because they cancel each other out with the pressure
of the mirror image, which has the opposite sign. The fact that acoustic waves cannot be
excited by an explosive source near the water surface may, at first glance, seem inconsistent
with physical intuition. However, it makes physical sense when one considers that the elastic
energy is zero due to the free boundary surface (see also the section 4.6).

On the other hand, in the case of SH waves, the amplitude doubles at the surface and
is amplified since the reflection coefficient is 1 in the case of SH waves. In other words,
horizontally propagating waves do exist in the case of SH waves. This difference is due to the

note 14) gee demo http://www.eri.u-tokyo.ac. jp/knishida/Seismology/Rayleigh_wave.html
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difference in boundary conditions. As mentioned before, the difference between displacement
and stress comes into play because the pressure satisfies the scalar wave equation for acoustic
waves, while sy, satisfies it in the SH case. If so, is this possible for SV waves? It is impossible
because SV waves do not satisfy the boundary conditions when horizontally propagating.

B 5.6.2 A case of the reflection coefficient of zero

Let us now reconsider the number of boundary conditions. For the P — SV problem, we
need two boundary conditions, 7,, = 0,7, = 0. If we now consider arbitrary incident waves,
we will need to add together two independent solutions to eliminate these two. This situation
corresponds exactly to the reflection/transformation wave for the incident wave at the free
surface in the previous section. The similarity means that a combination of the three waves is
required. So let us look at the SV incidence in Figure 5.12. Rgg in the figure shows two points
where the amplitude of the S reflection is zero. Rgp in the figure shows one point where the
P reflection is zero. The zeros show the possibility of combining the two waves to satisfy the
boundary condition if one looks for the appropriate frequency. Let us consider the possibility
of this kind of solution.

In the following, let us consider T/, TY. caused by an inhomogeneous P wave and TZSX, TZSZ
caused by an inhomogeneous SV wave. If we can find a phase velocity p as the same stress
ratio T, /T, for two waves, the difference between the two normalizing solutions satisfies
the boundary condition. Now, let us look at the stress ratio for each wave.

Inhomogeneous P wave
Here, the scalar potential for an inhomogeneous P wave is defined by
¢ = ' WPXeTWEZ IV (5.72)

P-wave velocity a satisfies the relation @=> = p? — £2. The result in section ?? leads to the

ration betwenn 7,, and T, :
Tox _ . (1=2v)ép

T..- _l—(l Yo R (5.73)

In a case of Poisson material (v = 1/4), we can simplifies the relations by elimination of &:

T.x  2Vp*-a?p

=—f—\ 5.74
T, : 2p? —3a? (5.74)

Inhomogeneous SV wave

Here, the component of vector potential for an inhomogeneous SV wave is defined by

a_'vb — eiwpxe—wnze—iwt‘ (5‘75)

0x
The S-wave velocity 3 satisfies the relation 872 = p? — *. The result in section ?? leads to
the stress ration between 7, and 75 as:

)
v _ 00 =P7) (5.76)
I, 2pn
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Fig. 5.18: Stress ratio T, /T, at the surface for slowness p. Here we consider a Poisson
material, and the slowness is normalized by the S-wave velocity. We plot them for pg > 1
because the vertical wavenumber becomes pure imaginary (which can propagate in the vertical
direction as body waves) forpf < 1

In a case of Poisson material & = V38 Elimination of 7 leads to

2 _ p-2
& — _,'ZP—'B (5.77)

T,, 2p+/p? _/3—2'

Let us compare the two stress ratios. Figure 5.18 shows that the two curves intersect when p
is slightly greater than 8!, which would represent the condition under which inhomogeneous
waves can exist alone. This corresponds to Rayleigh waves. Let us consider in more detail
the conditions under which the stress ratio at the surface is constant. The condition of equal
stress ratio leads to the following relation;

(n* — pH)* +4p*én = 0. (5.78)

For the better understandings of the equation, we define X = p?8? and y*> = a2/872. With
the squared stress ratios of the inhomogeneous P wave and the inhomogeneous SV wave, we
can rearrange the equation is as follows:

16(1 -y X3 — (24— 16y*)X>+8X -1 =0. (5.79)
In the case of Poisson material, the equation can be simplified as,
32X —56X%-24X -3 =0, (5.80)

and the analytic solutions are given by

X = +

(5.81)

Bl W
oI

1

4’
Only the last one satisfies the condition p > 87!, and the solution corresponds to the solution
shown by Figure 5.18. What are the physical meanings of the other two solutions? The

incident angles estimated from p are 30° and 34.3° for Poisson material. These two angles
correspond exactly to the zero crossing of the Rgg in Figure 5.12: i.e., the case where all
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incident S waves are converted to reflected P waves. Thus, the three solutions make physical
sense. In other words, the problem of finding a condition where the incident S-wave reflected
at the free surface is extended to the problem of finding a condition where the inhomogeneous
P-wave converted only the inhomogeneous SV-wave wave. We summarize the displacement
of the Rayleigh wave

1-2 .
sy(x,z,t) =ipB [e“’gz + —p'Be‘“”Z} el wt=pX) (5.82)
2pB
2 ‘
s.(x,2,1) =EB |e®%% + ie“”ﬂ el t=px), (5.83)
1-2pg

whereé = \/p2 — a2, & = \/p? — B2 and B is an integral constant. Also, in order to choose a
physically meaningful solution (no divergence at z = —o0), the sign is chosen so that Imn < 0,
Imé& < 0 The sign is chosen so that Imn < 0, Im¢ < 0.

Figure 5.19(a) shows the depth profile of Rayleigh wave amplitudes (s, and s;). It can be
seen that the amplitude decreases exponentially with depth. The major difference from the
entity wave is the phase shift between horizontal and vertical motion. The motion of particles
at the surface is plotted in Fig 5.19(b). Taking the real parts of sx and s,, we see that they
rotate in the direction of the arrows in the figure since s, — sinwt, s; = coswt. Since the
Rayleigh wave is now traveling from left to right in the figure, we call it retrograde. "0 1>
Also, the sign of s, reverses around z = —0.25, so the direction of rotation is reversed at
deeper points. This direction is called the forward direction (prograde).

It’s hard to explain, so I created a demo page for Rayleigh waves on the web." 19 Please
refer to them as needed.

Rayleigh waves are two-dimensional because they have energy only near the surface. The
behavior is, therefore, similar to that of a two-dimensional Green’s function. Especially since
the amplitude is proportional to /2. ™17 When the epicentral distance is far, the surface
waves are larger than the body waves. " !8) Also, surface waves are not efficiently excited
when the hypocenter is deeper than the wavelength (because they decay exponentially in the
depth direction).

l 5.6.3 As a problem of inhomogeneous S-wave incidence

Let us now interpret the Rayleigh wave as a reflection/transmission problem for P-SV
inhomogeneous waves. Let us take the horizontal slowness on the horizontal axis and calculate
the reflection and conversion coefficients even for values larger than the S-wave slowness
(Figure 5.20). Here we consider the same formulation as in the section 5.5.2. In this case, let
us assume that the incident SV waves are inhomogeneous waves and choose a solution that
decays exponentially in a vertically downward direction. Then we would have to choose a
solution where the reflected inhomogeneous SV waves diverge in amplitude with depth. At

note I3) 1t is easy to understand if you think of the direction of rotation of a bicycle wheel.
note 16) https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Rayleigh_wave.html
note 17) Roughly speaking, if the epicentral distance r, amplitude A, and propagation velocity cg, the energy flux can

be written as ¢, pwA? and

V~K=13(Kr):0, (5.84)
r or

which leads to A ~ /2.
note 18) Recalling the far-field term of Green’s function, we can see that the body waves are proportional to 7~!. This
can be derived from considering the conservation of energy as well as surface waves.
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Fig. 5.19: (a) Depth profile of Rayleigh wave amplitudes. (b) Particle motion at the surface.

first glance, this seems physically impossible, but let us recall the representation theorem.
By placing a boundary surface at a depth where the amplitude of the incident SV wave
is sufficiently small and by imposing stress and displacement boundary conditions at the
boundary surface, we can treat inhomogeneous SV waves with increasing amplitude in the
depth direction. In other words, it can be realized by considering a bottom to the medium
instead of a semi-infinite medium "t 1),

Figure5.20 is identical to Figure 5.12 when the incident angle of 90°, which corresponds
to p8 = 1. When pg is larger than 1, the incident SV wave also becomes an inhomogeneous
wave. There is a point where R, is zero at which pf = 1 is slightly larger than 1. This is
precisely the point where there are no reflected S waves. The corresponding inhomogeneous
P wave and inhomogeneous SV wave can take a downward decaying solution. Thus, the
problem can also be viewed as a generalization of the SV wave reflection and transformation
problem.

note 19) representation theorem is powerful because it makes it easy to consider virtual operations like this
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Fig. 5.20: We can see that Ry is zero at the point where Slowness is slightly larger than
1/pB. Also, the conversion coefficient Ry, corresponding to Rayleigh waves is defined as
(D/a)/(C/B) (see section 5.5.2), which can be related to the particle motions on the ground
surface.

l 5.6.4 Eigen value problem

We have considered the conditions for the existence of Rayleigh waves, but the governing
equation is somewhat complicated, and it is difficult to understand the mathematical setup.
Therefore, for the plane wave case of the P-SV problem, we rearrange the equation of motion
(equation 5.19) and Hooke’s law (3X 5.22). We choose s, s, Tx;, T; as variables to consider
the boundary conditions. Since the governing equations are partial derivatives of z only, the
equation can be represented by the first-order ordinary differential equations for z,

. 1
Sx 0 N —twp u (1) Sx
i Sz — —twp A+2u 0 0 A+2u Sz (585)
dz [Tx; —pw? + wzpzw 0 0 —ia)pﬁ Ty |’
Tez 0 —pw?  —iwp 0 Tz
where . Ty, s, and T, are given by
d
Tix =iwp(A+2u)sy +/l%. (5.86)
z

In other words, it is a problem of integrating an ordinary differential equation from one
boundary to find p such that the boundary condition is satisfied on the other. This is nothing
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but an eigenvalue problem. The setup of the problem in section 5.6.2 corresponds to starting
the integration from the bottom to meet the boundary conditions at the other side. The result
in section 5.6.3 corresponds to matching the boundary condition at infinity depth-integrated
from the ground surface. This treatment as an eigenvalue problem will be discussed in detail
in the chapter on normal mode theory.

ToDO: Excitation of Rayleigh wave
Polar phase shift

Problem 5.6

1. Show that the equation 5.79 has a solution with slowness greater than p = 1/
for any elastic constant.

2. Illustrate the Rayleigh wave velocity versus Poisson’s ratio when S = 1. Also,
discuss the physical meanings.

3. Calculate the ellipticity of the particle motion at the earth’s surface in the same
way and discuss it physically.
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| §5.7 Lamb’s solution

We show a solution for Lamb’s solution for a half-space of 3-D elastic medium given by
Kausel 2014.¢ 7 is distance, 6 is azimuth, u is shear modulus, p is density, v is Poisson’s
ratio, Cr is Rayleigh wave velocity, Cs is S-wave velocity, Cp is P-wave velocity, ¢ is time, a is
Cs/Cp, k; is three dimensionless solution to the Rayleigh characteristic equation (= Cs/C}),
v = k1 = Cs/CRg is true Rayleigh root, and 7 is dimensionless time tCs /7.

The Rayleigh characteristic equation is given by

16(1 —a®)k® —8(3 - 2a*)k* +8«k* -1 =0. (5.87)

D, - Gi= D, (5.88)

_ J
DJ:(Ki—KLZ)(Ki—Ki), itj+k
3
1 A
3 I—Z J , a<t<l1
(1-v) JEEN e
uzz (r,7) = - 4 J (5.89)
e l—ﬁ, 1ST<’y
==Y
1, T>Yy
3
1 C;:
i(l—v)TZZ—j, a<t<l1
- 2_ 2
cos J=1JT7 — K
Upy = (2 ) C, I (5.90)
TTHr 1+ (1 —y)r?——, I1<t<vy
2 _ 2
1, T>y
NN
1 2_ 2
511 - Ci\ 1% — K= a<t<l1
1 -v)(-sing) | 2 I i’
tg, = U= V)(=sin6) = (5.91)

2mpr 1 - Ci\12 =92, l<t<y

1, T>Yy
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SH-wave propagation
from a point source in
a medium with two
layers

Chapter 6

On 8 October 1909, at Kulpa Valley, a huge earthquake occurred, then it caused severe
damage. A Croatian meteorologist/seismologist Andrija Mohorovici¢ collected seismograms
in Europe, and plot the travel time curve as shown in Figure 6.1. He discovered a discontinuity
at depth of 54 km. The P-wave velocity of the crust is 5.68 km/s, whereas that of the mantle
is 7.75 km/s. Now it is known as Mohorovici¢ discontinuity (Moho discontinuity).””) In this
chapter, we learn how to infer discontinuity based on behaviors of reflected and refracted
waves from a point source. For simplicity, we focus on SH wave propagations.

In the previous chapter, we learned the reflection and refraction of plane waves. They are
fundamental to interpreting seismic wave propagation because a seismic wave field can be
represented by a superposition of plane waves as,

i

o o kxx+kyy+(“—§—k§—k§,)l/zz—wt]
o(x,1) = dw dkdkyA(ky, ky,w)e N (6.1)
—00 —00
Based on the results, we consider seismic wave propagations in a two-layer medium together
with features of Green’s function in an infinite medium. For simplicity, we will consider SH
wave (or acoustic wave equivalently) in this chapter.

117
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Fig. 6.1: Observed travel-time curves for the 1909 earthquake, taken from a paper translated
into English (4) from Croatian) by Mohorovi¢i¢ (1910).

| 6.1 Reflection and refraction on
an internal boundary




6.1. Reflection and refraction on an internal boundary
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] 6.1.1 SH wave

S
7

Next, we consider reflection and refraction on a
boundary inside an infinite elastic medium (Fig-
ure 6.2). A semi-infinite medium 2 z < 0 is %m 1: B;
welded to the medium 1 z > 0. The incident SH
wave enters downward in medium 1, then it is

reflected in medium 1 and refracted to medium 2.
Corresponding plane wave solutions are given by

A

mediu
72> 0:5y = Ale_iw(t_Plxx_PlzZ) + Ble_iw(t_Plxx+PlzZ)
(6.2)
7 <015y = Age  @UmP2x—P23) (6.3)

The first term of s; shows incident wave, the sec-
ond term shows reflected wave, and s, shows re-
fracted wave in medium 2. To meet the boundary condition of the continuity of displacement,
the horizontal slowness should be the same as p;, = p2x. The condition is identical to Snell’s
law as

Fig. 6.2

sinf; _ sin6;

Bi B2
To meet the condition of continuity of displacement on z = 0, A| + B; = A3 is required.
Moreover, to meet the boundary condition of continuity of stress, u;p1,(A1 — B1) = uap2; Az

is alsorequired. Then corresponding the reflection coefficient R, and the transition coefficient
Ty, are given by

(6.4)

By _ pipiz —paprz _ p1B1cos b1 — prfSacos by
Al pipiz +papaz 1B cos B + pafs cos by
_ Ay 2uipi; 2p1B1 cos 0,

Al pupiz+Hap2: p1Bicos B + pafrcosy’

(6.5)

(6.6)

The continuity of displacement at the boundary leads to 1 + Rj = T12. You can find
the playful Web application for the reflection and transmission demonstration. https:
//www.eri.u-tokyo.ac.jp/people/knishida/eng/Seismology/wave_coe.html.

Conservation of energy

Sum Energy flux which enters a unit area on z = 0 is K;,, cos 6 should be same as the sum
of the reflected wave (K, y; cos 01), and refracted wave (K;,qns c0s 62). In the case of SH
wave, the conservation of energy is given by

p1B1cos 1 = p1B1 cos 61| Ri2|? + pa B2 cos 62 |Tia | 6.7)

Total reflection

When 6, > 61, total reflection occurs for incident angle 6 is larger than the critical angle
6. defined by

(6.8)


https://www.eri.u-tokyo.ac.jp/people/knishida/eng/Seismology/wave_coe.html
https://www.eri.u-tokyo.ac.jp/people/knishida/eng/Seismology/wave_coe.html
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Fig. 6.3: (Upper) Reflection coefficient Rj5 of SH wave on the internal boundary. The
coefficient is real before the critical angle, and it becomes complex after the angle. The
solid line shows the reflection coefficient, and the broken line shows the phase. (Lower)
Reflection and Reflection coefficients Ry, and 7;. This plot shows the real and imaginary
parts. p; = 2.2 x 103 [kg/m?], pp = 2.5 x 103 [kg/m?], 81 = 3 [km/s], B2 = 5 [km/s].

In this case, since p,, becomes imaginary, the refracted wave in medium 2 decreases expo-
nentially with z. The refracted wave cannot transfer energy downward in medium 2.

On the other hand, although the reflection coefficient R, is imaginary, the absolute value is
1 (the numerator is complex conjugate to the denominator). When we consider conservation
of energy of equation 6.7, |R2|* is 1 and |Tj2|?> = 0. This also means the phase of the reflected
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wave is advanced when the total reflection is. The phase of R, is given by
: t2AP? = By’
argRy; = -2 tan™! HatP2z _ —2tan ! ———— (6.9)
HiP1z w /ﬁl—Z _ p2
When p5 goes infinity, the reflection coefficient Ry, = —1 represents reflection at a rigid wall.

Acoustic impedance

For simplicity, here we consider equation ?? for vertically propagating wave (6 = 0). The
reflection and transmission coeflicients are give by

)= p1B1 — P22 (6.10)
p1P1 + P22
2p151
T = ———. 6.11
2 p1P1 + P22 ©11)

ppB is called acoustic impedance, which shows resistance of entering wave. The equation
shows the impedance contrast determines the reflection and transmission coefficients. The
acoustic impedance is defined as the ratio between stress and particle velocity as an analogy
of resistance of the electric circuit.

With increasing p;(,, the transmitted wave is harder to enter. When the two acoustic
impedances match with each other as p;8; = p»f82, no reflection occurs. Even if seismic
velocities of two media are the same, a reflected wave occurs owing to the density contrast. In
summary, the reflection and transmission coefficients do not contain information on seismic
velocity contrast but also on density contrast. The coefficients are crucial for exploring density
contrast at discontinuities of the Earth.

l 6.1.2 Reflection, refraction, and conversion of P-SV at an

internal boundary

Because the calculation is complex, here I show only the results "¢ 1)

a=py—2(u —p1)p* K = aé) + b&) N = any + b (6.12)
b =pi+2(u2 — p1)p? L=d-2(us—p)émy M=d—2(uy—u)éxm (6.13)
d=py—p1—2(u2—1)p* D =KN+p’LM (6.14)

SV wave incidence

note 1) Read ki and Richards (2002) or Z# (2009) in detail.
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1 . Medium 2: as, 81
Rgs = K{—(am — b)K + p?d +2(uz — p1)éam | L}
6.15) 3
2
Rsp = —%%[ad +2(u2 — pu1)béama] Medium 1: ay, B
(6.16)
B12p0mK
Toq = P1L20mK 6.17
5S 5 A (6.17)
Bi 2p1pmiL Fig. 6.4
S et s St 6.18
P B2 A (©-18)

e sin 6, _ sin 0, _ sin ¢ _ sin ¢; (6.19)
a) 0% Bi B

1 1
2 _ 2 2 _
fi—a—?—Pvm—B—%

- pioyl =2pip* (6.20)

P wave incidence

Medium 2: a3, 52
1
Rpp = {(ag1 = bE)N = p*[d +2(p2 = p)é112] M}
(6.21) g(
2
Rps = —%prl[ad +2(p2 — p1)b&omz] - Medium 1: ay)
(6.22)
2 N
@ 2p1aN (6.23)
(0%) A
2 M ig. 6.
Tpg = 2120170 M (6.24) Fig. 05
s A
1
Rpp = Z{(afl — b&)N — p?[d +2(p2 — py)éma ] M} (6.25)
ay 2
Rps = _,B_IPT& [ad +2(us — 1) bérno] (6.26)
2
Tpp = 2L 2016N (6.27)
a A
2 M
Tpg = 21 201PEM (6.28)

(0%) A
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| 6.1.3 Asymptotics for near vertical incident

This section describes the asymptotics of the coefficients for the near-vertical incident (p
is enough small). Here we neglect higher-order terms of p than 2.

P wave incident

P22 — p1ay

Rpp = 202~ P101 (6.29)
P2a2 + p1ay
2 - 2 -
Rps = aiplp2(p2 — pr)aafa +2p1 (12 — p1)] (6.30)
(P22 + pra1) (p282 + p151)
2
Tpp = — P14 6.31)
P02 + p1a]

Toe = 2p1a1p[(p2 — p1)aafi — 2(uz — p1)]
ps =

6.32
(p2a2 + pra1)(p2B2 + p151) (0:32)
S wave incident
_ P22 — p1Pi 6.33)
P22+ p1B1
2B1plp2(p2 — p1)a2fr +2p1 (2 — p1)]
Rop = — 6.34
P (p2a2 + p1a1) (p2B2 + p151) 639
2p1B1
=7 6.35
S P22 + p1B1 (635)
Tep = 2p181p[(p2 — pr)aaffr — 2(u2 — p1)] _ (6.36)

(p2a2 + prai1)(p2B2 + p151)

Rpp and Rgs can be represented by impedance as in SH wave. Surprisingly, the conversion

coefficients (e.g. Tps, Rps) is sensitive to density contrast and S-wave contrast explicitly.
Figure 6.6 shows that this first-order approximation is valid for a large extent of slowness p.

| §6.2 Radiation of seismic wave
from a point source: wavefront and

ray path

Here we consider propagations of a wave packet f(f). Amplitude in y component s, is
given by
sy(x.1) = A@) £ (1 - T(x)), (6.37)

where T'(x) is the arrival time at a location x, and A(x) is the amplitude. The isocontour for
the same arrival time of T'(x) is known as the "wavefront". The ray is perpendicular to the
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0 km —

wave /3

Direct

30 km [

gokml__i

wavefront. The direction of the ray is represented by 72 = BVT, where ( is the S-wave velocity.
The comparison with a plane wave shows that VT corresponds to the slowness vector.
Figure 6.7 shows a typical example of wavefronts for two-layer medium. The wavefronts
are associated with ripples spread out when a single pebble is dropped into water.
For understanding ray paths, the physical interpretation is feasible. Here we consider that
the spatial variation of A is enough loner than the wavelength. Because the spatial derivative
of A is negligible, the displacement is written as,

d
Vs, =—-AVf = —Ad—J:VT (6.38)
The energy flux K is given by

K = Biip f?A°. (6.39)

Conservation of energy along the ray path gives us the information of the amplitude. Figure
6.8 shows a typical example of ray paths.

A comparison of ray paths for reflection before the critical angle with the corresponding
wavefronts in Figure 6.7 is easy to interpret. On the other hand, the behavior after the critical
angle is complex. Total reflection after the critical angle causes the split between the transited
and reflected wave packets. The following section explains the behavior.
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| §6.3 Behaviors at a discontinuity
of seismic wave

In the previous chapter, we learned about reflection and transmission at a discontinuity for
a plane wave. Based on the results, let us consider behaviors of seismic waves excited by a
point source (Green’s function) on the discontinuity. They are categorized into 4 types: direct
wave, reflection wave, transmitted wave, and head wave.

S

Travel Time 0 Te
Bi | -
L A
| (pC/ 3 ’
—h 1, )
B2
l r
Te ’
The mirror
Fig. 6.8

§ 6.3.1 Direct wave

First, let us consider the direct wave. For simplicity, we neglect free surfaces on the
ground. The green line in Figure 6.8 shows the direct wave. The SH-wave propagation can be
represented by a Green’s function in an infinite homogeneous medium. Of course, the travel
time T is proportional to the epicentral distance between the source and the station as

T(r)=r/p1, (6.40)

where r is the epicentral distance for the station and source in the xy plane. For a point source
in the 3-D medium, the amplitude decreases with 1/r, which is given by the conservation of
energy along the path as,

1 .
Ag ~ mel"ﬁl i (6.41)

l 6.3.2 Reflected wave

Next, let us consider the reflection wave. The orange line shows the reflection wave. The
mirror symmetric source for the discontinuity (z = —#) help us to understand the ray path.
The travel time is given by

T =2vh2 + (r/2)%/B1, (6.42)
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and the amplitude is given by
Rip(p)en™®, (6.43)

Ao — —
" 4rRoup

where R, is the reflection coefficient again. Because Ry, is real before the critical angle,
the reflection does not cause the phase shift. However, total reflection after the critical angle
causes the phase shift, and the amplitude equals to 1. They are also known as post-critical
reflections or wide-angle reflections.

After a critical angle, the behaviors become complex such as the splits of wavefronts and the
phase shift. Behaviors of a head wave are key to understanding the complexity, as explained
in the next subsection.

A
A

*
20ka 1 =5 km/s, py =2 x 10° kg/m®

Ray theoretical arrival time

A[km]

[\

_

T B
—
[EO1)1ID-1SOd [BONIIO-B1d

60

80

100

120

I

60 40 20 0 20 40 60
[s]

Fig. 6.9: Example of wide-angle reflection. After the critical angle, we can see the re-
flected wave arrives before the ray theoretical value because of the phase shift due to the
inhomogeneous wave.
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} 6.3.3 Transmitted wave

Last, let us consider the transmitted wave. Because this

wave does not return to the surface, of course, we cannot 0
measure the travel time at a surface station. 0
5o |
-1/2 Bi
1 B2 cos? ¢ : i
A ~ T ri+rn——7m—— ,el(k‘ll ritkay ) !
- 12(p) ( IE ¢
(6.44) L\
where r; is the length of line OA, r, is length of line AB, B>

and r is length of line OB. A wavefront enters the discon-
tinuity with incident angle ¢, and it is transmitted with
the emergency angle ¢,. Let us estimate the amplitude at
point B based on energy conservation. Figure 6.10 shows Fig. 6.10
a cross-section of the 3-D medium along line OB. ¢/ shows

interception length at point B perpendicular to the ray path.

A simple geometrical estimation leads to

ol

ik & (rl CTC ) ) 5 (6.45)

~ cos g Bicos? ¢,

v

0 /
| 2)
—ro0

Fig. 6.11: Enter of a ray path toward the discontinuity. The ray path is refracted to the radial
direction, whereas it is not toward the tangential direction.

Figure 6.11 shows a bird’s view of the ray path. The ray path is refracted to the radial
direction (on rz plane), whereas it is not toward the tangential direction (¢). Therefore, a
cross-section area at point ro away from the origin is given by (5r36964p, and a cross-section
area at point B is given by r§66[. Here we define amplitude A; on a unit sphere in medium 1.
The conservation of energy along the ray leads to

(Pzﬁz COS 2 |

T12|2) p1ATW 1691360 = prATw*Brdlrsd. (6.46)
P1B1¢os ¢

P22 cos ¢

Note that the transmission coefficient is multiplied by o1 cos @1 -

Energy normalization of reflection and transmission coefficients

In the previous chapter, I explained the reflection and transmission coefficients. They are
defined by the amplitude ratio between the incident wave and the transmitted or reflected
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Fig. 6.12: Spatial distribution of the Fourier amplitudes of the transmitted wave. The direct
wave with the critical angle enters at the point of 2.25 km. p; = 2 [kg/m?], p, = 2.2 [kg/m?],
B1 = 3.0 [km/s], B2 =5 [km/s].

wave. When we consider energy conservation, energy normalization of the coefficients gives
us the physical meaning explicitly.
Conservation of energy (eq. 6.47) for the reflection and transmission is given by

P11 cos @1 = p1B1 cos @1|Rial” + pafa cos ¢a|Tia [ (6.47)
Both sides divided by p15; cos ¢; leads to

2, 0232 COS ¢ 712
P1B1€os ¢y

Here we define a energy normalized transmission coefficient 7/’ ™as,

Tnorm _ annote 2), (6.49)
12 p1B1cos ¢

The behavior near the critical angle

1 =|Ry2| (6.48)

Let us consider the behavior of the transmission wave near the critical angle.

note 2) See a textbook by Shearer!’) for details. Sections of ray theory are easy-to-grasp.
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First, let us consider the amplitudes of the transmitted wave. Figure 6.12 shows the
amplitudes as a function of horizontal position and depth from the boundary. The critical
angle corresponds to the 22.5 km point. Behind the critical angle, the amplitude is muted. It
can be understood that a so-called diffraction phenomenon is occurring in the region where
the amplitude suddenly decreases.

Next, we consider the behavior of the transmission wave amplitude near the critical angle.
Before the critical angle, because r, = 0 at the surface, the amplitude of the transmitted wave
is given by

At ~ ;le(p)r‘”? (6.50)

An\rin B !
After the critical angle, the finite length of r, and cos ¢, = 0 lead to A; ~ 0 (Figure6.13).
Without considering Tj,, A; is proportional to 1/r approximately. The amplitude changes

—— Geometrical spreading
Direct+reflection
----- Trans

.

e
_____

Amplitude imes10~2° [s/N]
N

10.0 12.5 15.0 17.5 20.0 225 25.0 275 30.0
Horizontal distance [km]

Fig. 6.13: Amplitudes of transmitted wave (black) and the direct + reflection (red). The
blue line shows the transmitted wave amplitude without the transmission coefficient. p; = 2
[kg/m?], po = 2.2 [kg/m?], B; = 3.0 [km/s], B, = 5 [km/s].

with distance gently (Figure 6.13). However, the transmission coefficient changes drastically
near the critical angle. Accordingly, A; has a peak near the critical angle (r./2 = 22.5 km ).

R, ZOEBHDBEEZFHILTAEL £ 5, r./2 026 DKFHliZ | LERLET,
A DS BN AL 5@p NEWEEZEZ LT, HITH ¢ =7/2-6¢ LB
e, ZAXVOERIH S

tan @263
an ¢z Y5 N (5()01’ (651)
2
EWSERMAEONE T, RRMENLEED,S
I~ s, (6.52)

cos? ¢,
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EWHEBRMPELNE T, 2o DR R - T,
T 2 (6.53)
12 ~ .
pBr [21 cos e
1+ ﬁ%ﬁ? ' sin Pc
Y — 7 ORI 14 1%
2 . 223
|, B singe b PiBL h 6.54)

(p2B2)2cos e 2 p2p3cos g, 2’
LB ET, Iy ORSICHHIL T, BRMAKE <55 PRENET,

] 6.3.4 Head wave

The third type is a head wave (also
known as a refracted wave). The wave
enters the second layer with a critical an-
gle, and it propagates in the horizontal di-
rection along the uppermost part of the
second layer (Figure 6.8). The travel time
Ty is given by

rc Ie

.o
Tu(r) = 7 +COS% 5 (6.55)

The amplitude A is written by Fig. 6.14: A schematic figure of head wave

A i o1 ﬁ% 1 l?istfd on Huygens’ principle.
head ™~
47 2nwm B pafa(1 — B2/ B2) D

(6.56)

Although the frequency- and distance- de-
pendencies are difficult to understand, I try to explain in an intuitive manner.

Figure 6.7 shows wavefronts of the direct and the reflected and refracted wave share a point
on the boundary. After the critical reflection, they are split into two groups: one is a direct
and reflected wave, and the other is a head wave and transmitted wave. Exactly speaking,
inhomogeneous waves along the boundary also exists.

Let us consider the details of the split. A major difference between the two groups originated
from the fact that the direct wave cannot enter the second layer into the second medium. When
the transition from the transmitted wave to the inhomogeneous wave in the second layer, let
us consider a secondary point source with a spatial scale of about the wavelength at r. (finite
frequency effect) based on the representation theorem, which is a natural extension of Huygens
principle. As in the case of diffraction at a narrow slit, an SH wave is radiated in the right
direction. Although the ray path of the head wave seems to be parallel to the boundary in
layer 2, the path is slightly inclined to owe the source depth of an about wavelength. Thus SH
wave is transmitted toward layer 1, as predicted by the Huygens principle. The incident angle
can be estimated to be 90°¢; ~ D/A The corresponding transmission coefficient 77, can be
approximated by

20232 cos ¢2 _ 2p0Bd/D Anpaf3 1

Iy = =
p1B1cos 1 + p2frcospr  P1f1COS Qe p1B1 Dwcos ¢,

(6.57)
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The amplitude decreases as r~'/2D~1 D~1/2 where (1) r~!/? represents geometrical spreading
of the wavefront in xy plane, (2) D~'/2 represents geometrical spreading of the wavefront in
xz plane, and (3) D~ represents contribution by the transmission coefficient. The frequency
dependence of w can be explained by the frequency dependence of the incident angle ¢, which
is proportional to the inverse of the wavelength. This is why the low-frequency component of
the head wave is emphasized. This equation exhibits that the head wave can be represented by
the integration of the direct wave in time domain™®©3. An example of observation in Figure
6.19 shows the dominance of low-frequency components in the head wave.

Because a realistic Earth structure is more complex, the ray path is not so simple. For
example, the Pn wave (head wave for Moho discontinuity) is refracted in the uppermost
mantle: the behavior may be easy to understand. The next section explains such a case. "%,

Thus, this section explains the behaviors of Green’s function for a two-layer medium. In
the next section, [ will introduce ray theory for discussions of seismic wave propagations in a
multi-layer structure.

note 3) The phase delay of i is explained by caustic introduced in the next section. A more exact discussion
mathematically is given by Aki and Richards'" for example. In the textbook, the complex integral is used for
the evaluation. On the other hand, I try to explain these features in a physically intuitive manner in this lecture.
note 4) See Stein and Wysession® §3.2.3 for details.
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Problem 6.1
[Derive eq. 6.45. This is a simple geometrical problem.
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Bi

B2

The mirror

Fig. 6.15

l 6.3.5 Evaluation of integral: stationary phase approxi-
mation

The previous sub-section physically interpreted direct, reflected, transmitted, and head
waves. Now let us consider them more quantitatively.

As mentioned at the beginning of this chapter, wave propagation in a two-layer medium
can be exactly evaluated by decomposing it into plane waves and multiplying each plane wave
by the reflection-transmission coefficient and integrating it in the wavenumber domain. This
expression can be naturally extended to cylindrical waves (Hankel function) and is expressed
as The potential y4 representing a direct wave is given by the integration of slowness as

w 00 iwé|z]
=— H " (wpr dp. 6.58
Xd 47”11[00 0 (p)—2i§1pp (6.58)

Here, let us consider a case of £; becomes imaginary. As yg is physically meaningful (not
diverging) for p — oo, we define the sign as

-2 _ 52 1
£ = Bi-—p* Ipl <1/B, 6.59)

p? =By Ipl > 1/p.

Potentials y, and y; for reflected and transmitted waves are also given by

w 00 M eiw§1|z+2h|
= Rix(p)H,  pdp, 6.60
0= o | R wpr 5y (6.60
w © (1) eiw(§|h_§2(2+h))
Xt = / T2(p)H, "’ (wpr) ———=——pdp. (6.61)
drpr J-oo —2i§,

It is important to note that the reflection potential y, represents both reflected and head waves.
This integral is numerically evaluated in Figure 6.16. "3 The direct wave is impulsive,
showing that it propagates without changing its shape. The head wave is clearly visible from

note ) & has a singularity. In order to avoid the singularity in the numerical integration, we gave a very small
imaginary part to the elastic constants. This physically corresponds to giving a weak damping
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around 60 km, and it is also evident that it is predominantly long-period. The reflected waves
are pulse-like at stations close to the epicenter (up to about 20 km), but when it exceeds the
critical angle (wide-angle reflection), the reflected waves gradually shift in phase.

The numerical integration results show that, indeed, this integral (Weyl’s table expression)
seems to be correct. To grasp this integral roughly, let us consider its approximate behavior.
Here we will consider direct-directed wave as the simplest case.

First, assuming that the propagation distance is sufficiently large compared to the wave-
length, the Hankel function is approximated by

2 .
HO (2) ~ | 2 jie=nja). (6.62)
Z

Then, y4 can be approximated by

/ J-in/A elw(pr+éilz)) y 663
X 4”#1 / —2i&, B (€69

Here we consider a case for z=20 km, » = 30 km, f = 275 [Hz], and 8 = 3 km/s, Figure 6.17
plot the integrand

elw(pr+&ilz))
—2i&,

The figure shows the oscillatory shape in most locations, but the oscillation stops near p3; =
0.8. When integrated, the contribution near this point becomes large.

Let us now evaluate the integral using stationary phase method. Because the part of the
gentle oscillation shows a location where the phase change is small,

Vp. (6.64)

dw(pr —&lz])

=0. 6.65
b (6.65)

Then,
d(pr-&lz|) &1 lzlp
— =y —|7lZ=—=r—-—=0.

=r-|z
dp dp &l

Therefore, the contribution of the integral near p (called the stationary point) which satisfy

(6.66)

72

[

Po = (6.67)

becomes large, where d is the distance Vr2 + z2.

Although the calculations are a little complicated "' ©, the integrand can be evaluated by
Tayler expansion up to the second order. Because the first-order term disappears from the
condition to be the stationary point, we can evaluate the correpsonding phase up to the second
order as

d _ &Bi (p—po)?

6.68
Br z|? 2 (0.68)

w(pr-&ilz]) =w (

note 6) This subsection plant to explain stationary phase method. The following is a simple calculation policy, but
since the calculations are complicated. You can skip over the evaluations below.
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With an assumption that €| and p are small enough near the stationary point, the inegrand y 4
can be evaluated up to the second order terms of the Tayler expansion as

d _dSﬁl (p-p)*

1 j2w —m/4/oo eiw(ﬂ . Vpod (6.69)
~ —¢ ) .
Xd~ g\ oy N Podp

: 1z
—2i d_ﬁl
where
_ 7]

Elp=p, = 9B (6.70)

This integral can be calculated by using the Fresnel integral

© 1 .

/ emia’x gy = mx/%e-”f/“. 6.71)

Although the calculation is complicated, the potential y can be calculated as

R . o _; a3p 2)
d ~ — ‘/i_‘:e’(“'z?ﬁﬂ)d'g“/p_o e ‘“(W” dp (6.72)

4 2zl Jow
. x co . 3B 5
_ 1 /2_“’6’(“’1%1) dBi1vpo ¢ lw(2|z|2 p )dp (6.73)
Ay N nr 2zl Jowo
_ L 20 leg) Vi (6.74)
Ay N mr 2d\w
1 iwd
= b, 6.75
47r,ulde 1 (6.75)
For an external force
H(1)V x (0,0,56(x)), (6.76)

we can evaluate displacement A, from the potential y4 as

1 A
lwﬁ

Aj= ——e¢ 1, (6.77)
7 dmpprd

which is identical to the exact solution by chance.

Next, let’s consider reflected and head waves (y, and y;). The reflected wave is similar to
the direct wave, with a larger contribution from the stationary phase. Next, let’s consider the
envelope. You can see that the shape of the envelope changes dramatically at around pS; = 1.
This is because the reflection coefficient changes significantly at around the critical angle.
At the point, the condition of stationary phase approximation, which is required to apply the
stationary phase method, does not hold. Therefore, even when oscillating rapidly outside
the stationary point, the integral contribution near pB; does not cancel each other out. This
contribution corresponds to the head wave.
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Fig. 6.16: An example of numerical evaluation of the integrated for 8, = 3 [km/s], 8, = 5
km/s and p; = py. The hypocenter is located at z = 10 km and the observed station is located
at z =15 km.
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Fig. 6.17: The integrated of the direct wave for z=20 km, » = 30 km, f = 275 [Hz], 8 =
km/s. This figure shows rapid  oscillations.
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Fig. 6.18: The integrated of the reflection wave and the head wave for z

3 km/s. This figure shows rapid oscillations.
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l 6.3.6 An example of actual records

Figure 6.19 shows a record section when an earthquake with Mw 6.2 at Tottori prefecture
on Oct. 21st 2016. The figure shows the first arrivals of Pg (direct wave, which propagates
in the crust) up to an epicentral distance of about 170 km. Farther than the distance, the first
arrivals are Pn wave arrivals (head wave for Moho discontinuity). The dominant frequency
of the Pn wave is longer than the direct wave (Pg wave). In contrast, reflection phases (PmP)
exhibit complex wave propagations. The complexity originated from scattering owing to
lateral heterogeneities in the crust. At higher frequencies, the travel times of the first arrivals
give us robust information because they are not disturbed by the scattering.

The slopes of Pg and Pn show that 81 ~ 6 km/s, and 8> ~ 8 km/s. A cross-over point
between Pg- and Pn-arrivals at distance x4 is given by x4 = 2h+/(81 + B2)/(B2 — B2). Based
on the observed x4 of about 170 km, the crust thickness is estimated to be 30 km. Although,
of course, this estimation is oversimplified, a similar simple estimation is feasible for grasping
the propagation properties. For a more realistic situation, the ray theory introduced in the
next chapter is feasible.

2016 Tottori earthquake 2016-10-21 14:07:22
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Fig. 6.19: Seismograms recorded by Hi-net station against the epicentral distances when an
earthquake with Mw 6.2 at Tottori prefecture on Oct. 21 s t in 2016. Although the first
arrivals are easy to pick, the later phases show complex propagation properties. The complex
features originated from lateral heterogeneities in the crust, although the lateral heterogeneities
in the Chugoku region are weakest in Japan islands
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Problem 6.2

The website demonstrates SH-wave propagation in a two-layer medium (2-D). Based
on the seismograms, we can estimate (1) the S-wave ratio between the 1st layer and
the 2nd layers and (2) the density ratio between the 1st layer and the 2nd layers.

1. Using the whole wave field (depth section in the upper panel), estimate the
S-wave ratio between the layer and the density ratio.

2. Using only surface records (seismograms shown in the lower panel) estimate
the S-wave ratio between the layer and the density ratio.

Here we assume that the source depth is known. You do not need to consider
measurement errors.
http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.
html

RNE
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Fig. 6.20: Example of the demonstration

Problem 6.3

The website demonstrates SH-wave propagation in a two-layer medium (2-D) without
the ground (free surface).

1. Run this demo and compare the amplitude of the reflected wave with the results
of the reflection coefficient. Pay particular attention to the sign.

2. Discuss the relationship between the head wave and the wide angle reflected
wave, which leads near the critical angle.



http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.html
http://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/wave2D2.html
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| 564 Inhomogeneous wave: Love
wave and Scholte wave

In the case of a semi-infinite medium, only a Rayleigh wave can exist as an inhomogeneous
wave; what about the two-layer case? Let us consider the case where there is a layer of
thickness / below the surface welded with a semi-infinite medium below it (Figure6.21). An
inhomogeneous wave can exist because the wave is trapped in the above low-velocity layer.
First, for the SH wave case, we will consider a wave known as Love wave.(") Next, for the
case where the first layer is fluid and the second layer is solid, it is known as Scholte wave.()

We will consider each wave in this section.

A~

2
0

X(p)

Bi

B2

Fig. 6.21

l 6.4.1 Love wave

First, let us consider how the Love wave
propagates (Figure6.22). o in the figure shows
a marker for the ground displacement. You
can see in the figure how the ground is de-
formed horizontally. Move the cursor over
the figure and press the s key on the keyboard;
the Love wave starts to propagate to the right.
The circle moving  in the font of the page
is shown in red and the circle moving in the
back of the page is shown in light blue.

Love waves occur when a soft layer over-
lies a hard layer. For example, a soft crust
overlying a stiff mantle. In this figure, cir-
cles are placed every 10 km along the vertical
axis (depth) and every 6.25 km along the hor-
izontal axis (horizontal). The fourth o in the
depth direction is at the boundary between the

crust and the mantle (the Moho discontinuity).

Propagation direc&)n

Fig. 6.22: A snapshot of a demonstra-
tion of Love wave propagation. Sea
the following web application: https:
//www.eri.u-tokyo.ac.jp/people/
knishida/Seismology/Love_wave.html.
Play the application for the understandings.

You can see how the waves are efficiently
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https://www.eri.u-tokyo.ac.jp/people/knishida/Seismology/Love_wave.html
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Fig. 6.23: Left panel: Example of waveform recorded during the Mj 6.2 earthquake that
occurred at a depth of 10 km on October 21, 2016 in Tottori, Japan. The transverse components
of Hi-net data are plotted after correcting for the instrumental responses and applying a
bandpass filter of 0.02-0.1 Hz. It shows the propagation of Love waves with dispersion. Right
panel: The mechanism of the earthquake and the station distribution used in the analysis.
Roughly speaking, we chose the stations where the polarities of the Love wave are expected
to be the same.

propagating horizontally through the crust.

You can see how the shape of the wave has changed compared to the beginning of the wave
and its propagation. The red areas extend both horizontally and vertically. On the other hand,
the green part is concentrated near the surface. You can see the delayed propagation of the
green part. The speed of wave propagation changes depending on the wavelength and the
shape of the wave changes. This phenomenon is called dispersion. In this case, waves with
longer wavelengths travel faster, and waves with shorter wavelengths travel slower. This is
because long waves are strongly affected by the stiff layer (deep layer: mantle).

Next, let us look at the observed waveforms. Figure6.23 shows the waveforms recorded dur-
ing the 2016 Tottori earthquake. The wave propagates with dispersion (Love wave propagates
with a shape change; see Figure6.26 for details).

Standing wave

This sub-section has described the properties of the Love wave qualitatively, but physically
it can be thought of as a standing wave with the energy trapped in the first layer. Let us
consider the case where 3, is infinite (bottom is a rigid wall) as an extreme limit. This is the
problem of the so-called oscillation of an air column. Assuming that the wave propagates in
the vertical direction, the stress is zero at the surface, so s, « cos(kz — wt). At depth £, the
phase is & shifted due to the fixed edge. At the ground surface, the phase is not shifted by
reflections because of the open edge. Therefore, considering that the phase difference with
the wave reflected there is 27,

k-0—wt=k(2h)—wt+n+2nn. (6.78)
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Because A = 27/k, we obtain the following relation:
2h
A=- T (6.79)
n+ 3

Let us make a similar estimate for the Love wave below.

Since we are now considering a situation where energy is trapped in the first layer, we
assume that the incident wave is totally reflected beyond the critical angle (see section 6.1.1).
The phase of the reflection at the boundary between the first and second layers is shifted by

' H2+lP? — B>
e U PO B S
H1P1z w //31*2—1)2

The difference from the air column case is that once the wave is reflected, it returns to the
surface point X (Figure6.21). This means that the phase of the incident SH wave at (X, 0)
must be the same as that of the reflected wave. The two-way travel time T can be written by

T=—~—""7 6.81
B (6.81)

During the propagation, the incident wave advances in phase by Xp. The condition requires
the following relation:

argRi» = —2tan (6.80)

wT +argRi» = wpX +2nnm. (6.82)

Because 5ok
x=__ Pt (6.83)

in summary, we obtain the following relation:

tan

_n-2
hoo B2 - pz] _ Z?\/—Lz;_ﬁ;- (6.84)

This equation is known as the characteristic equation for Love waves. To improve the
perspective of the equation, we can rewrite the relation as

tan (Z—Mﬁlﬂl) _H V1= (B1/B2)? - (51771)2’ (6.85)
!

Bim

where we define iy = / /5’1‘2 — p2, and we choose 31777 as a variable. Figure 6.24 shows t

he left and right sides of the equation are plotted as functions of 517, respectively. ~ When
the two lines cross each other, the condition is satisfied and a Love wave can exist.
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Fig. 6.24: Root of the characteristic equation of a Love wave for 2 = 30 km, 0.2 Hz,
Bi =3 km/s, B =4 km/s, p; = 2.5 glem? and p, = 2.8 glem?.
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The right side can exist if 87, is smaller than

1 — (B1/B2)%. Since the left side is tan, we know
that at least one solution can exist. This solution is
called the fundamental mode. In the current situa-
tion (0.2~ Hz), we can see that three solutions exist.
They are called the fundamental mode (zeroth-order
mode), first higher mode, and second higher mode,
respectively, starting from the one with smaller 817,
(i.e., longer wavelength).

Consider the conditions for the existence of a first
higher mode. As the frequency decreases, the dashed
line moves to the left. It cannot exist when the phase
of tan is left of 37/2. This requires

NS 6.86)

The cut-off frequency of an nth higher mode f* is
given by

cut _ npi 1

SN S

Let us consider the displacement distribution as a
function of depth for each mode. Figure 6.25 shows
the depth distribution of displacement for each mode.
You can see that the energy is confined in the low-
velocity layer (layer 1), and in layer 2, it decays ex-

(6.87)
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Fig. 6.25: Depth distribution of
Love wave amplitudes. Amplitudes
of each mode are normalized at the
surface.

ponentially with increasing depth. The oscillation of the air column corresponds to the
fundamental mode, first-order mode, and second-order mode, starting from the one with the

smaller number of nodes.
Jeans relation

Phase velocity and group velocity

The phase velocity (p~!') of the Love wave for each frequency is plotted in Figure6.26.
For each mode, the phase speed (solid line) is 8, on the long-period side and monotonically
decreases as the frequency increases, approaching 8. The fundamental mode exists from
frequency 0, while a higher-order mode has a cutoff frequency on the low-frequency side.
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Fig. 6.26: Dispersion curves for the Love wave. Phase velocity is shown as a solid line and
group velocity as a dashed line. Here we assumed that # = 30 km, 0.2 Hz, 5; = 3 km/s,
B2 =4km/s, p; = 2.5 g/em? and p; = 2.8 g/em?.
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Fig. 6.27: Dispersion curves of Love waves propagating through the Japanese Islands observed
by Hi-net tiltmeters. See” for details of the analysis.

Here is an example of an observed dispersion of Love waves. Figure 6.27 is the dispersion
curve of the Love wave recorded by the Hi-net tiltmeters, which shows the fundamental
mode, the first, second, and third higher modes. It represents the average features of the
Japanese Islands. There is a cutoff at 4.5 km/s, indicating that the mantle S-wave velocity is
approximately 4.5 km/s. In addition, the phase velocity of the fundamental mode is slower
for shorter periods. This is because the crust cannot be represented as a single layer, and the
shallow and slower layer reduces the phase velocity.

Surface waves have different propagation speeds at different frequencies. This phenomenon
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is called dispersion. Here, for simplicity, we consider the following wave propagation:
wo+Aw
/ eltkl@lx=wt gy, (6.88)
wo—-Aw
where w is angular frequency, k(w) is wavenumber and x represents the location.
The Taylor expansion  of k(w) around the center frequency wy leads to
dk
k(w) = ko + —(w —wp) +O0(2). (6.89)
dw
If Aw is enough small, we can simplify the equation as
wotAw Aw 2 sin (i - l)
/ ei(k(w)x—wt)dw ~ ei(kox—wot) / eiw’ %x—t)dw/ _ ei(kox—wot) Cg
wo—Aw -Aw Ci -1
(6.90)

where group velocity ¢, is defined by dw/dk. The phase propagates with wq/ko, and the
envelope (sinc function sinx/x) propagates with the group velocity c.

The results of the actual numerical integra-
tion are shown in Figure 6.28. Unlike the sim- Travel time [s]
ple case with no dispersion, you can see that 100
the waveform is propagating while changing
its shape. Lines with the same amplitude (in-
phase) propagate with a phase speed of w/k.
On the other hand, the entire wave group prop-
agates with a group velocity of dw/dk. Ap-
proximating the above integral by the sum of
the two frequencies, we can derive the group
velocity equation from the sum-product for-
mula for trigonometric functions.

Let up take another look at the figure6.26.

The group velocity is represented by the dot-
ted line. The phase velocities decrease with
frequency, but group velocities have minima. -20 -10 0 10 20
What happens when there is a minimum? Distance [km]
Near the minima, the group velocity does not
change much. Suppose we divide such an in-
terval into a narrow frequency range (e.g., frequency width Zieop Ringl @aghiigrrives at the
same group velocity, each wave packet arrives at the same time and has a larger amplitude.
Thus, the amplitude of the wave packet near the group velocity minimum becomes large,
which is known as the airy phase. In figure 6.29, we have shown an example of a first-order
higher-order mode of the Love wave. Indeed, it can be seen that wave packets with group
velocities of 2.7 km/s, which is the minimum value of group velocity, are dominant.

Propagation direction

Superposition of Love modes

Finally, let us superimpose all the Love modes. As we first discussed in this section, we
can see the wave with wide-angle multiple reflections (at a time shortly before the blue dotted
line). The blue dotted line corresponds to the travel time T'(x) = xf82/ (,8%) and represents
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Fig. 6.29: First-order higher mode of the Love wave plotted against distance and time. The
white dashed lines correspond to phase speeds of 3 km/s and 4 km/s, and the orange dashed
line corresponds to 2.7 km/s (the minimum value of group velocity). You can see the dominant
wave packet where the group velocity takes a minimum value.

the travel time of the wide-angle multiple reflections. The fact that the wave is not visible at
times later than this line indicates that it cannot represent a wave incident at a steep angle that
would transmit to the layer below. It should be noted that the superposition of modes also
reproduces head wave (red dashed line in the figure). While the reflected wave is impulsive,
the head wave is bordered. This is because the head wave can be estimated by an integral of
the direct waveform (see chapter 6.3.4). This is due to the contribution of higher-order modes
near the cutoff frequency. The wave that is parallel to the head wave and visible 20 seconds
later is the wave propagating as a head wave after once being reflected wide angle.

One point to note is that we can see wave groups that are clearly physically incorrect
(not satisfying the causality) before the head wave. These waves have a phase velocity of
approximately 4 km/s (S-wave velocity in the second layer). This is because Love waves cannot
represent waves propagating in the second layer. "°7). What waves cannot be represented
as a sum of modes can be interpreted physically. More strict treatment will be given in the
chapter on normal mode theory.

note 7) Strictly speaking, it is the term expressed by the branch integral contribution. See Saito (2009) chapter 9.4
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Fig. 6.30: The figure shows the superposition of Love modes up to the 14th higher-order
modes. The highest frequency is 1 Hz and the structure is the same as in the previous
example. The blue dotted line corresponds to the travel time 7'(x) = x83,/ (,8%) and represents
the wide-angle multiple reflection travel time. The red line represents the travel time of the
head wave.

Problem 6.4

Let us evaluate the dispersive wave using the stationary phase approximation.

1 ©
—Re /0 F @) g, (6.91)

Here we define the phase ¥ = k(w)x/t — w, we can rewrite the equation

1 <
—Re / (@) doy, (6.92)
T 0
Because '’ oscillates rapidly, the contribution near
d¥y
Ol I (6.93)
do |- wo

became dominant. In this case,

1. Evaluate the integral by expanding w to the second order term of wy.
2. Consider the group velocity.
3. Also, consider the case where the group velocity takes the minimum.
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Ray theory

Chapter 7

The previous chapter explained SH wave propagation in a two-layer medium. Although it
gives us insight into the seismic wave propagation of a realistic Earth, the real Earth’s structure
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Fig. 7.1: Observed records of the 2015 earthquake off the western coast of the Ogasawara
Islands. The P-wave and S-wave are clear, but the waveforms are not so simple. The figure
shows the shadow zone of the P-wave by the outer core, where the P-wave does not reach the
surface (around the arc distance of 110 degrees).
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is more complex. To address seismic wave propagation for a more realistic Earth model, the
next is the multi-layer approximation of the Earth’s structure.

A typical dominant frequency of teleseismic events recorded by seismometers is an or-
der of 1 Hz. In this case, the spatial scale of the Earth’s structure is approximated to be
enough shorter than the wavelength of the seismic wave "1, Figure 7.1 shows observed
seismograms when the 2015 earthquake off the western coast of the Ogasawara Islands (the
focal depth is deeper than 660 km) on the global scale. This figure exhibits many phases,
which are classified in terms of the ray path and wave type. To interpret the seismic wave
propagations, an approximation of geometrical optics is feasible. Exactly speaking, although
this approximation is valid only for high-frequency limits, this approach is feasible for seismic
exploration of Earth’s structure in many cases practically.

Figure 7.2 shows the arrival times of the waves, which are visually picked by the onset time
of observed seismograms, and plots them against the epicenter distance. Black represents the
P-wave type, and red represents the S-wave type. The figure shows numerous phases (classified
according to the ray path and the combination of wave types). Even if observed waveforms
are so complicated (see figure 5.2, for example), it is easier to grasp the characteristics by
the travel time plot. The pick of the arrival times is the operation of abstraction of observed
data. This figure also shows that the Earth’s internal structure can be approximated as a
one-dimensional structure since the travel time is a function of only the epicentral distance. In
addition, for P waves (angular distance of 100 degrees and a travel time of about 13 minutes),
the travel times are highly scattered, which can be interpreted as large velocity heterogeneities
at the core-mantle boundary.

This figure shows the arrival times of the seismic phase waves visually and plots them
against the epicenter distance. Black represents the P-wave, and red represents the S-wave.
Numerous phases (classified according to the path taken and the combination of wave types)
can be seen. Since the whole waveforms are too complicated to model, it is easier to grasp the
dominant features by simplified information: arrival times. This figure also shows that the
Earth’s internal structure can be approximated as one-dimensional because the measured travel
time is a simple function of the epicentral distance. In addition, for P waves (angular distance
of 100 degrees and travel time of about 13 minutes), the travel times are highly scattered,
which can be interpreted as a large velocity inhomogeneity at the core-mantle boundary.

A theory of wave propagation based on geometrical optics is known as Ray theory. This
theory has played an important role in seismology for a long time. In particular, the ray theory
for a stratified medium (multi-layer medium) is a basic theory for seismic wave propagations.
This chapter gives the outline of ray theory in a stratified medium for interpreting seismic
wave propagations in a realistic Earth.

1§71 High frequency approxima-
tion

note 1) A wavenumber spectrum of Earth’s heterogeneities shows that the long wavelength components are dominant
(called as "red structure").
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Fig. 7.2: Travel-time plots of various seismic phases. Black represents P-waves, and red
represents S-waves. Events shallower than 20 km that occurred in 2018 were selected. Data

are from International Seismological Centre (2021), On-line Bulletin, https://doi.org/
10.31905/D808B830.
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First, let us consider P-wave potential. With an assumption that typical spatial scales of
physical properties (density and elastic constants) are enough longer than the wavelength of
the P wave, the wave equation of P-wave can be simplified as

é = a*V?¢. (7.1)

Here we assume that a wave packet ¢ propagates with the shape as ¢(x,1) = A(x)f (¢t —
T(x)). Because the potential is a function of a single variable, the spatial derivative is given
by Vf = VT f. Insertion of the equation into the wave equation gives the following equation:

iz(;s‘ =V2Af(t=T)=2VA-VTf(t -T)+ Af(t =T)(VT)* + Af(t - T)V’T.  (7.2)
a

Fourier transform of both sides is written by,

2
- “’—2 = V2AF(w) - 2iwVA - VTF (w) — A’w?F(VT)? — AwiFV*T. (7.3)
a

With an assumption that angular frequency w is enough large, the real part of the equation
leads to the Eikonal equation as
1
VT = —. (7.4)
a
Here we define slowness vector p by VT.
On the other hand, the imaginary part in the high-frequency limit leads to the transport
equation.
2VA - VT + AVT = 0. (7.5)

This equation can be rewritten as V - (A2 p) = 0, which represents the conservation of energy.
By solving the Eikonal equation, we get travel time 7. Then we can estimate A from the
transport equation with the estimated 7.

1§7.2 Ray tracing: Hamiltonian
formalism

Based on ray theory, integration of the Eikonal equation gives travel time 7. Ray tracing
is one of the solving methods. Ray can be defined by successions of slowness vectors as
already introduced. The wavefront expands with a speed of the seismic velocity in a direction
of slowness vector. Below, I will explain the physical meanings of ray tracing: ray tracing
can be interpreted as tracing of a particle motion under a potential. This physical system
can be described in a simple manner by generating parameter o instead of time, as explained
later. Although the discussion is based on analytical mechanics, the formulation is helpful for
interpretation.

Here we consider the problem of tracing a particle motion under a potential —1/a. Instead
of time, we define generating parameter o " ? for describing the location as

do = ads. (7.6)

note 2) Although, for determining the locations in a mechanical system, we can use s or travel time 7', we use
generating parameter o. This is simply because we can simplify the governing equation.
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Here ds represents an infinitesimal path. The Hamiltonian H of this system is given by"*'¢ 3

H(x,p) = % [p-p-a?(x)]. (7.7)

The eikonal equation can be interpreted as a condition of the constraint of this system. The
eikonal equation can be rewritten as H(x, p) = 0 using Hamiltonian. Hamilton equations are
written by

dx OH

ax _ o9 _ 7.8
dr~ 9p P (7.8)
dp 0H 1_ _,

—_— —_— = —V . 7.
dr ox 29 (7.9)

These equations can be interpreted as

1. Let us consider a problem of tracing a particle motion under a potential —a .

2. The initial condition is given by p. Note that p is constrained by the equation
H(p,x) = 0. (This condition is equivalent that the absolute value of p at the initial
injection point is 1/a).

3. According to Hamilton equations, dH = dyHdx + 8, Hdp = 0. This means that at any
point along the ray path, H = 0 if the initial value H = 0 at the injection point.

4. The particle motion can be traced by integrating the Hamilton equations. Physically,
o represents time.

The two first-order differential equations can be simplified as a single equation:

— - =-Va " =0. (7.10)

This equation represents the equation of motion. The corresponding Lagrangian can be
defined as,

L:%[x-x+a‘2(x)], (7.11)

which satisfy the relation of p = d; L (definition of generalized momentum)"°¢ %,
Here we consider a stratified medium. In this case, because a depends only on depth 7,
P becomes a conserved quantity. p, is also known as the ray parameter.

| 7.2.1 For spherical Earth

When we consider global seismic wave propagation, a spherical coordinate system is more
convenient. With an assumption that P-wave velocity «(r) depend only on radius r (spherical
symmetry), the Lagrangian L is written by,

L= %(r‘z +(r6) + (rsin04)* — a(r)7?). (7.12)

note 3) For details, read chapter 15 of Dahlen and Tromp [1998])

note 4) We often use symbol p for slowness vector, because the slowness vector can be interpreted as generalized
momentum based on ray theory. When we use time as a variable for determining the location, the generalized
momentum is not proportional to the particle velocity. On the other hand, generalized momentum using
generating parameter is proportional to the particle velocity. Generating parameter gives us a more simple
physical analogy.

note 5) T the context of analytical mechanics, such x is called a cyclic coordinate.
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By the appropriate choice of the spherical coordinate, we can drop ¢. Angular distance Delta
along 6 direction can describe the propagations. For a spherical structure, the ray parameter
p ray parameter p = (p,, pg, p¢) in the spherical coordinate is given by

_ 0L dr
pr= or  do
oL ,db
= — =7 —
Po=%6 =" 4o
oL d
Pe = i (r sin 9)2£. (7.13)
Similarly, the Hamiltonian H is
1
H= 5(p% + r_zp%) + (rsin 9)_2]92 —a(r)™?) (7.14)

and the Hamilton equation can be written as

dr  0H _
do  0p, - b
49 _ OH _ po
do  0pg r?’
d¢ OH
a _oH __ P (7.15)
do dpy  (rsinf)?
dp, __0H _1da 1|, Ps
do or 2 or " p3|Pe (sin6)2 |’
dpg _ _0H 150 1 cotd
do 90 2 00 T2 (smepl®
d H 1da7?
dpy _ _OH _10a (7.16)

do~ 8¢ 2 8¢’
The result is as follows. In the case of a horizontally stratified structure, placing the emergence
point at the pole does not lose generality. Also, since a does not depend on 6 and ¢, its partial

derivative is 0. Therefore ps = 0 and pg = 0. Therefore, as in the Cartesian coordinate case,
po is conserved along the wavy line, and it is also called the ray parameter.

Problem 7.1 (Tentative)

Compare the behavior on a discontinuous surface with the behavior when the velocity
gradient is sufficiently steep.

] 7.2.2 Earth flattening transform

When considering ray theory, there is a simple correspondence between horizontally strat-
ified structures (a(z) is a z-only function) and spherically symmetric structures. Once one
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problem is solved, the other can be solved by variable transformation (Earth flattening trans-
form). Let us consider this variable transformation below.

Let us consider the problem in the 6 direction for isotropic seismic wave radiation from a
point. The Eikonal equation in spherical coordinates leads to the following equation.

aT\*> 1 (oT\* 1
— | +5 =] =—= 7.17
( or ) r2 (00) a(r)? (7.17)
Using the Earth radius R., we can rewrite the equation as

A (ory (T 7.18)
R2\06) "R2\or) " RZa(r)? '

We can transform the equitation in spherical coordinates to an equation in Cartesian coordi-
nates with the change of variable by x = R.6, r = R.e /e a(z) = Roa(r)/r. The earth
flattening transform is strictly valid within ray theory. It also holds for SH wave propagation,
but only approximately for SV wave. Footnotesee Aki and Richards Box 9.9 for details‘".

Problem 7.2

Consider a sphere with uniform velocity and find the corresponding horizontal strati-

fication structure using the Earth flattening transform. Also, consider a wavy line in
the Cartesian coordinate system and consider its correspondence with the case of a
uniform sphere.
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| 7.2.3 Fermat’s principle (principle of least action)

Ray path is the path which minimizes the integration of Lagrangian among the possible
paths. This leads to the following relation:

6-/02 L(x,x)da'=6/Cr2 [p-Xx—H(x,p)ldo. (7.19)

1 (o]

This relation is equivalent to minimizing the corresponding travel time.

X2 T
6/ p-dx:(S/ dT =0 (7.20)
X1 T1

leads to equivalence.

l 7.2.4 Direct solver of Eikonal equation

1§7.3 7 - p (Radon) transform

Travel time curves against epicentral distance become complex due to the multi-valued
function. There exists a transform known as 7 — p (Radon) transform into the single-valued
function. Here we define intersection time 7 by 7(p) = T — p, X (this type of transform is
known as Legendre transforms in physics). After the transformation from a pair of 7 and p
to pair of 7 and p,, T becomes the single-valued function even in a case with the positive
jump as shown in 7.7.

Once we obtain 7 against the ray parameter p,, we can calculate the travel time T against
the epicentral distance X by a relation of dr/dp = —X"©9),

7 is also a useful observable for array analysis of seismic data (A slant stack method of
array analysis is a technique of data processing that utilizes the information from densely
distributed seismometers at around X). 7 — p transform is a theoretical background of the
array analysis"® )

We can extend 7 — p into two dimensions. To define a new variable pair that has the same
information to travel time 7 against the dependent variable X, we must consider Legendre
transform™©¢®)

r=T-p-X (7.22)

note ) Erom the definition, the derivative of 7 with respect to the ray parameter py is given by

dr _dT _  dX _dT _  dT dX _ a21)
dpx _ dpx P~ ape = dpx dX dpy '

note 7) For details on practical data analysis, read a textbook by Zhou (Practical Seismic Data Analysis(").
note 8) Exactly speaking, Legendre requires the convexity to the dependent variable. Therefore we need to divide T
into retrograde and prograde areas before the transform
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For the transform from p to X,
dr
=-X, (7.23)
dpx
v _ (7.24)
dpy
(7.25)

is useful™e ),

| §74 Amplitude: geometrical
spreading

As in a two-layer medium, the conser-
vation of energy along a ray path leads to
a theory for amplitudes of a ray theoretical
Green’s function for phases (e.g. P wave
and S wave).

Here we consider seismic wave propa-
gations in a stratified Earth model. When
a seismic wave is radiated with the emer- di A
gency angle of iy from the source, the in-
finitesimal solid angle d€2y = sinipdiodgg Fig. 7.3
gives the conservation of energy. Here r; is the radius of the Earth, and ¢ is azimuth. When a
radiated seismic wave with a solid angle reaches a surface point with angular distance A from
the source,

The cross-section area on the surface S is given by

dSy = r¥sin AldAld¢g cos iy . (7.26)
From the conservation of energy along the ray path, we obtain
EodQoy = EdS;. (7.27)

The energy at the surface point (the observed station) E is represented by

dQ.() Sil’liodio
E\=E =E . 7.28
P, Orlzcosil sin A|dA| (7.28)
Here
ro . . dT
=Y = 7.29
P o0 sinip = —+ (7.29)
dp ro d sin i() dzT
= _ 2 = 7.30
dA  ay dA dA? ( )
d siniy _ @ 1 d_p (7.31)

dA ro cosio dA’

note 9) Thjs relation can be proven as in a one-dimensional case.
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where r( is the distance between the source and the center of the Earth. Then we obtain
geometrical spreading R, which gives information on the amplitudes as,

1 . E _ 1 a9 tanigp d*T (7.32)
R Ey r2 ro cosiisinA [dA? '
1 g p dp
= —— —. 7.33
rf r(% cosigcosiy sinA |dA ( )

dp/dA becomes larger with increasing ray density (see Figures in the previous section. This
can be interpreted as (1) energy particles are radiated at the source toward every direction, (2)
ray represents the trace of the particle (3) how many particles reach the observed station (4)
by counting the energy particle, we can infer the amplitude of the phase.

If the heterogeneities of the medium near the source are weak, we can approximate Green’s
function by a Green’s function in an infinite homogeneous medium. By connecting Green’s
function in an infinite homogeneous medium to ray theoretical Green’s function, we can obtain
a complete ray theoretical Green’s function, including the absolute amplitude. When a station
exists on the free surface, which doubles the amplitudes, the ray theoretical Green’s function
of a direct P wave is given by

1| fifhpe 27 Tr
4R 3 ’
p1p2a;az

where 7§ and 7, are polarization vectors at the source and the station, respectively, and 7}, is
P-wave travel time.

| Q7.5 Caustic

G(x,Xs, f) = (7.34)

‘When
d*T

W = 00, (735)

ray density diverges. This causes divergence of the amplitude in a framework of ray the-
ory. For example, Figure 7.4 shows the concentration of ray paths at the center. This
situation can be described by fire made by sunlight using glass. In this case, rays focus
at the point known as "focus". In the case of caustic, the rays focus on a line (e.g. in
the case of Figure 7.4, perpendicular to the page, patterns of the ray are homogeneous).

In a region where the spatial scale of am-
plitude variations is comparable to the wave-
length, geometrical ray theory is not appro-
priate. At such singular points, we need to
connect the analytic solution of the original
wave equation. When a ray path passes a
caustic, it causes a phase jump of 90°. For
example, the phase of the PP wave (reflected
P wave at the surface) actually is shifted 90°,
because it passes caustic one. The wave packet of the PP wave can be represented by the
Hilbert transform of the direct P wave mathematically. Fig. 7.4
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Since the ray approximation is broken near caustic, let us consider the 2-D wave equation
about a scalar quantity f in polar coordinate with the origin at the caustic:

Lof (dY 13f_

With the ray approximation, we can assume that typical spatial scales are sufficiently larger
than the wavelength, but there exist regions where r is shorter than the wavelength in realistic
situations. For simplicity, let us consider the Fourier component f o ¢ with respect to ¢.

Then we have ) )
o°f 10f , N
—S+-———=|-ki+=]|f. 7.37

or?2 ror ( 07 2 f (7.37)
This is exactly the equation satisfied by the Bessel function. The Bessel function in far-field

can be approximated as

1
(kr)

We can see that /4 is shifted by 2 times once it passes through the origin (caustic). This
is because the change in curvature works better than the derivative with respect to » when
viewed in polar coordinates. Here is a rough estimate. For example, in Cartesian coordinates

cos(\/i/ 2kox) cos(\/i/ 2k0y) satisfies the wave equation. If the wavelength corresponding

Ju(kr) Z-7)

cos (kr—n— - —

2712 (7.38)

to ko is A, the area of this positively inflated region can be written as (V21/2)? = 12/2.
Considering that this is the same as the area of the circle centered at the origin, its radius is
A/(¥V27x). In other words, the first zero crossing point from the origin in polar coordinates is
around 0.39 wavelengths away, which is more extended than 1p/4 when considered in plane
waves. This summation can be interpreted as giving the phase difference /4 " 10,
This phase shift can be interpreted from the conservation of energy with a natural extension
of the negative cross section dS,.
EdS| = E2dS, (7.39)

leads to Ay = Ayi. This originated from the flip of the ray coordinates before and after a
passage at a caustic. In a case of a passage at a focus, the amplitude reverses because the
phase flips twice (i = —1) according to the two directions.

An example of the caustic is PP waves, whose phase is shifted to the direct P waves. This
typical example is intuitively confusing, so I will explain it below. Since the ground reflection
complicates the behavior, let us consider a mirror image of the hypocenter with respect to the
surface (Figure 7.5). If we fold back the ray path of the PP wave radiated downward from
the hypocenter at the surface, we can see that it intersects before the observed station. On
the other hand, the pP wave radiated from the hypocenter does not intersect. Therefore, the
waveforms of the pP and direct-directed waves have the same shape, but the PP wave has a
distorted shape to the direct P wave (they are related by the Hilbert transform to each other).

Translated with www.DeepL.com/Translator (free version)

note 10) For an accurate evaluation, we need to approximate the singularity by the Airy function using the WKBJ
approximation (see Yomogida’s textbook!” for details). A more physical explanation (corresponding to
diffraction) is given in Landau-Lifshitz’s classical field theory §59
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Fig. 7.5: Schematic diagram of PP waves passing through caustic. In this figure, we can see

that the PP waves intersect, while the pP waves do not.
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I §7.6 Travel time analysis

Although generating parameter o gives us an insight into this system, it is not related to
observables directly. In this section, relations among observables: epicentral distance X (p),
travel time T(p), and ray parameter p, are presented for a stratified medium"®¢ ',

Atthe origin p = (py, Va(0)=2 — p2). The deepest point of the ray z is given by z = Z(p,).
In this case, the corresponding seismic velocity is represented by

a(Z) = py. (7.40)

z component of equation 7.8 leads to the following relation:
dz
— =p;. 7.41
Let o be the X it takes to reach the deepest point. Since the distance to the deepest point is
half of X(p,), the x component of the equation 7.8 becomes

@ _ /Oszda- _ ‘/OZ(px) Id)—j (7.42)
note 12) To summarise this,
Z(px) 1
X(px) = 2ps /0 @@ - -

Next, consider the travel time T(p,). Since we are now thinking in o, let dt relate to
generating parameter with the equation ??,

_ds_do (7.44)

a a?

dt

As in the case of X, by transforming do into the integral of dz as well as X, T can be
represented by
Sd ds Z(px) (}'_2
T(p )=/ — =2/ dz, (7.45)
Yod e 0 (a72(2) = p3)1/?

where s is the distance of the ray path from the source to the deepest point.
Finally, let us evaluate 7. Recall the definition:

T(Px) = T(px) - pxX(px)‘ (7.46)

Substituting the equation derived above, we obtain

Z(px)
T(px) = 2/ a(z)72 - pidz, (7.47)
0

note 1) Bor details, read the textbook by Shearer*)

note 12) Since p, is a conserved quantity, it is often confusing to write 7'(px) = f PxdX = pxX(px). In this case.
T(px) = f p - ds must be evaluated. This is an example of how inconsistency can arise when considering
the physical image of a moving particle if we do not take the generating parameter o as the parameter instead
of the time 7'.
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7 has the advantage that the divergence to infinite disappears from the integral, making the
actual evaluation easier.

For typical structures below, let us review the relationship between ray paths and travel
time note 13)3

§ 7.6.1 Ina case of monotonically increasing seismic velocity
with depth

In the simplest case, let us consider travel time for monotonically increasing seismic velocity
with depth. Figure 7.6 shows such an example. The ray parameter p, conserves along the
ray path. For this reason, the seismic velocity at the turning depth matches the corresponding
apparent horizontal velocity (1/py). The ray path dives to the turning depth, then it returns
to the surface.

This figure shows that with decreasing parameter p, = sinf/a(z) (decreasing the emer-
gency angle equivalently), the ray reaches farther (the epicentral distance X (p) becomes
longer). In this case, dX/dp, < 0, as shown in the figure, is referred to as prograde. With
increasing epicentral distance, the ray density decreases. (This means that ray density can be
estimated by dp,/dX as shown in this figure.) Therefore, the amplitude decreases with the
epicentral distance.

note 13) ¢ you are interested in travel time calculations for real one-dimensional structures, please refer to [?, ?, Crotwell
et al. 1999, Buland and Chapman, 1983]
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Problem 7.3

1. Letus consider wave propagations in upper xz plane (z > 0). When the seismic
velocity « is a linear function given by a + bz, show that the ray path becomes
a circle given by

(7.48)

1 - pla? ’ a\? 1
S (72 T2) T
bpx p§b2
Hint: The equation can be derived from Equation 7.8 and the Eikonal equation.

2. Derive equation 7.45.
3. Show that T'(p) is given by

T(py) = %cosh_l ( ) . (7.49)

Pxa
4. We can calculate a ray path by numerically integrating the Hamilton equation
with respect to o-. For example, ray paths in Figure 7.6 are calculated from the
integration. Calculate the ray paths numerically in the same manner. Compare
the analytic solution of the ray path and the numerical calculation.
* Note: The first parameter of the Hamilton equation describes the change
of the location, whereas the second one determines the slowness vector as
conserved the total energy along the ray path (in other words, to satisfy the
Eikonal equation).
Hint:
decosh™'(z) 1

dz V2 -1

(7.50)
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Fig. 7.6: Ray paths for linearly increasing seismic structure with depth. We can see a relation
of py =dT/dx.



7.6. Travel time analysis

— NVAV“'A VWA

l 7.6.2 In a case of a positive seismic jump at a depth

Next, let us consider a positive jump of seismic velocity at a depth.

When a ray path exists in the upper layer, it reaches further with the decreasing emergency
angle (prograde dX /dp<0). When the ray enters the layer of steeply increasing seismic veloc-
ity, the ray path backs to the source side according to Snell’s law. This feature characterized
by dX/dp > 0 is referred to as a retrograde ray. When the emergency angle decreases further-
more, it dives into the deeper lower layer, and the ray path becomes prograde again. At the
point for dX /dp = 0, known as caustic, because the ray path density diverges, the amplitudes
diverge. Due to the singularity, ray theory cannot handle the wave field at around the point
for dX /dp = Q"¢ 19,

Retrograde X decreasing

\ 4

e

&
Q0+

Fig. 7.7: Schematic figure of a retrograde path.

Basic features, in this case, are common with those in a two-layer medium discussed in the
previous chapter.

If you only look at the wavefront, you may find it difficult to see the triplication area because
they overlap each other. Therefore, let’s zoom in on the ray near the triplication area with the
wavefront at the same time (Figure 7.9). The retrograde ray corresponds roughly to the green
color. The caustic surface is formed at the point where the retrograde starts. When triplication
occurs, the rays are folded. The wedge-shaped base of the folded wavefront corresponds to
the wavefront that passes through the caustic surface, resulting in a 90-degree phase shift.
You can also see that the positive velocity gradient just below the discontinuity bends the
rays toward the surface, which increase the amplitude of the retrograde branch. Thus, when
considering seismic waves, it is important to consider both the rays and the wavefront together.
You can also see that in the 7 — p region, triplication is unfolded and becomes a single-valued
function.

Consider another example. It is known that a 410 km discontinuity and a 660 km discon-
tinuity exist globally in the Earth’s interior. These two discontinuities correspond to phase
changes in minerals (corresponding to olivine —spinel and spinel—perovskite, respec-
tively). Let’s take a look at Figure 7.10. Here is a seismic waveform record in Alaska of
an earthquake that occurred in the Aleutians at a depth of about 100 km. The waveforms
are complicated, but we can see multiple P-wave packets arriving in 13° ~ 30°. This is

note 14) Because the high-frequency approximation is broken down at the point close to the caustic, we must consider
an appropriate solution of the wave equation which connects to the ray theoretical solution. Such a solution
leads to jumping off the phase of 90° after the passage through the caustic. The phase jump is also discussed
in the later section about amplitudes of a ray theoretical solution.
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Fig. 7.8: Ray paths in a case of positive seismic jump at a depth.

the result of triplication at the 410 km and 660 km discontinuities. The lower figure shows
the theoretical travel time. You can see that it roughly represents the characteristics of the
observed waveforms.

Let us imagine that there is no information on the Earth’s interior. From Figure 7.10, we
can see that it is difficult to interpret the waveforms of the P wave except at the first arrival
time when there are multiple arrivals. In the figure, this corresponds to the blue rising edge.
The rise of the first arriving wave packet is easy to read (because the ground is quiet before
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Fig. 7.9: Wavefront with positive seismic velocity jump. The emergence angle is shown in
color, and the wavefront (isochrones of travel time) is also shown

the arrival) and can be measured with good accuracy. If we only have information on the
first arrivals, it is difficult to distinguish it from the travel time curve for a structure without
the discontinuities (e.g, 7.6). In other words, when inferring the internal structure of the
earth from the travel time, without information on triplication, the information on the internal
discontinuity cannot be correctly estimated, and an over smooth structure will be inferred
(since the simple model can also explain the measured first arrivals).

Problem 7.4

Let us consider wave propagation in xz plane (z > 0) for seismic speed a given by

=
200°

By numerical integration of Hamilton equations with respect to o, calculate the ray
paths. And as in Figure 7.7, plot the relations between Travel time and distance, that
between distance and slowness, and that between 7 and slowness. Then compare the
results with two-layered mediums.

a(z) =5+ (1 +tanh(z —40)) 2 + (7.51)
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Fig. 7.10: A typical example with a positive seismic velocity jump. Velocity waveform
(0.05-4 Hz) observed by USArray (Alaska) for an earthquake that occurred in the Aleutians.
For a better display, the travel time of the waveform was reduced (specifically, 7(10 km/s)X is
plotted against X). Positive amplitudes are shown in red and negative amplitudes are shown
in blue. It can be seen that there are multiple arrivals of P-wave wave packets in this distance
range. The lower figure also shows the corresponding theoretical travel times, where we can
see the triplication corresponding to the positive jumps in the two seismic velocity jumps
(410 km discontinuity and 660 km discontinuity).
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l 7.6.3 Ina case of a negative seismic jump at a depth

When a negative jump of seismic velocity with depth exists, rays cannot reach a certain area
on the surface known as a shadow zone. Because rays tend to avoid the low-velocity zone,

as shown in Figure 7.11, the seismic exploration of the seismic structure becomes difficult in
general.
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Fig. 7.11: Ray paths in a case of negative seismic jump at a depth.



7. Ray theory

172

| Q7.7 1-D inversion

l 7.7.1 Herglotz-Wiechert inversion

z(px) a—Z(Z)

0 Va2(z) - p3

z(px) dz

0 Va=2(z) - p%

T(p)=2

X(p)=2p

Herglotz-Wiechert formulas

dz

1 X((l'_l)
z(@™) = —/ cosh™ (apy)dX
T Jo

§ 7.7.2 7-p inversion

(7.52)

(7.53)

(7.54)

Let us now consider the problem of inferring the structure of the Earth’s interior from the
travel time of seismic waves measured at the Earth’s surface. Suppose we now have a perfectly
measured travel time 7'(X). In this case, the slowness p at location X is

dT

PEIX

(7.55)

and can be obtained from its direction. The 7 can be measured as the interception time
(y-intercept) at which the tangent line is extended and intersects at X = 0.
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Fig. 7.12: Schematic figure of a segmented line approximation of the travel time curve.

Let us assume that the Earth’s internal structure consists of n homogeneous layers. Let
the thickness of the n layer be AZ,, and the seismic wave velocity be a;, (equation7.12).

Vv



7.7. 1-D inversion

Discretising the equation for 7 (equation7.47), we obtain

T(px) =2 ) N’ ~ pAAZ. (7.56)
1

We can find here that if «,, is known, it is a linear equation. In fact, a;,, can be measured from
the graph. If each line is a direct wave (red), a head wave in the second layer, and a head
wave in the third layer, each slowness corresponds to @;,'. The we can obtain the following
relation:

i 2 2 2 2 AZI
. asc— a5 \/af‘ —a; o --- .

=2 ‘/ o 72 b2 C (7.57)
n) el -a? Jo?-a? 2, - a2 \az,

The linear form of the equation means that it is possible to solve the equation from the top
layer.

Problem 7.5

Suppose that the travel time 7" [s] at a point X [km] can be measured at three locations.
An earthquake occurred at X = 0 on the surface at time 7 = 0. Assume that
each observation is (Xo,Tp) = (15,3.00), (X;,T1) = (80,13.40) and (X,,T3) =
(120, 18.20), approximate the travel time T by a line connecting these points. Estimate
the Earth’s internal structure by calculating the 7 — p plot.
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I §7.8 Tools for travel time analysis

When we calculate the travel time for a stratified Earth, taup (http://www.seis.sc.
edu/taup/) is a common toolkit among seismologists. A direct Eikonal solver using fast
marching algorithm is also common. This algorithm is applicable to a complex 3-D medium.
Some different programs using fast marching algorithms are available at a website by Nick
Rawlinson (http://rses.anu.edu.au/~nick/),


http://www.seis.sc.edu/taup/
http://www.seis.sc.edu/taup/
http://rses.anu.edu.au/~nick/
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1§7.A TASPEI standard phase list

For details, see http://www.isc.ac.uk/standards/phases/.

] 7.A.1 CRUSTAL PHASES

Pg

Pb

Pn
PnPn
PgPg
PmP
PmPN
PmS
Sg

Sb
Sn
SnSn
SgSg
SmS
SmSN
SmP
Lg

Rg

At short distances, either an upgoing P wave from a source in the upper crust or a P wave bottoming in the upper
crust. At larger distances also, arrivals are caused by multiple P-wave reverberations inside the whole crust with
a group velocity of around 5.8 km/s.

(alt:P*) Either an upgoing P wave from a source in the lower crust or a P wave bottoming in, the lower crust
Any P wave bottoming in the uppermost mantle or an upgoing P wave from a source in the uppermost mantle
Pn free-surface reflection

Pg free-surface reflection

P reflection from the outer side of the Moho

PmP multiple free surface reflection; N is a positive integer. For example, PmP2 is PmPPmP

P to S reflection/conversion from the outer side of the Moho

At short distances, either an upgoing S wave from a source in the upper crust or an S wave bottoming in the
upper crust. At larger distances also arrivals caused by the superposition of multiple S-wave reverberations and
SV to P and/or P to SV conversions inside the whole crust.

(alt:S*) Either an upgoing S wave from a source in the lower crust or an S wave bottoming in, the lower crust
Any S wave bottoming in the uppermost mantle or an upgoing S wave from a source in the uppermost mantle
Sn free-surface reflection

Sg free-surface reflection

S reflection from the outer side of the Moho

SmS multiple free-surface reflections; N is a positive integer. For example, SmS2 is SmSSmS

S to P reflection/conversion from the outer side of the Moho

A wave group observed at larger regional distances and caused by the superposition of multiple S-wave rever-
berations and SV to P and/or P to SV conversions inside the whole crust. The maximum energy travels with a
group velocity of approximately 3.5 km/s

Short-period crustal Rayleigh wave


http://www.isc.ac.uk/standards/phases/
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] 7.A.2 MANTLE PHASES

PP
PS

PPP
PPS
PSS
PcP
PcS
PcPN
Pz+P

Pz-P

Pz+S
Pz-S
PScS
Pdif

SS
Sp

SSS
SSP
SPP
ScS
ScP
ScSN
Sz+S

Sz-S

Sz+P
Sz-P
ScSP
Sdif

A longitudinal wave, bottoming below the uppermost mantle; also an upgoing longitudinal wave from a sou
below the uppermost mantle

Free-surface reflection of P wave leaving a source downward

P, leaving a source downward, reflected as an S at the free surface. At shorter distances, the first leg is represen
by a crustal P wave.

analogous to PP

PP, which is converted to S at the second reflection point on the free surface; travel time matches that of PS]
PS reflected at the free surface

P reflection from the core-mantle boundary (CMB)

P converted to S when reflected from the CMB

PcP are reflected from the free surface N-1 times; N is a positive integer. For example PcP2 is PcPPcP
(alt:PzP) P reflection from the outer side of a discontinuity at depth z; z may be a positive numerical valuc
km. For example, P660+P is a P reflection from the top of the 660 km discontinuity.

P reflection from the inner side of a discontinuity at depth z. For example, P660 — P is a P reflection fr
below the 660 km discontinuity, which means it is precursory to PP.

(alt:PzS) P converted to S when reflected from the outer side of discontinuity at depth z

P converted to S when reflected from the inner side of discontinuity at depth z

P (leaving a source downward) to ScS reflection at the free surface

(old:Pdiff) P diffracted along the CMB in the mantle

Shear wave, bottoming below the uppermost mantle; also an upgoing shear wave from a source below
uppermost mantle

Free surface-reflection of an S wave leaving a source downward

S, leaving a source downward, reflected as P at the free surface. Atshorter distances, the second leg is represen
by a crustal P wave.

analogous to SS

SS converted to P when reflected from the free surface; travel time matches that of SPS.

SP reflected at the free surface

S reflection from the CMB

S converted to P when reflected from the CMB

ScS multiple free-surface reflections; N is a positive integer. For example ScS2 is ScSScS

(alt:SzS) S reflection from the outer side of a discontinuity at depth z; z may be a positive numerical valuc
km. For example, S660+S is an S reflection from the top of the 660 km discontinuity.

S reflection from the inner side of discontinuity at depth z. For example, S660 — S is an S reflection from bel
the 660 km discontinuity, which means it is precursory to SS.

(alt:SzP) S converted to P when reflected from the outer side of discontinuity at depth z

S converted to P when reflected from the inner side of discontinuity at depth z

ScS to P reflection at the free surface

(old:Sdiff) S diffracted along the CMB in the mantle

I §7.B Stratified Earth models

You can find a reference stratified Earth model.
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Chapter 8
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1§8.1 Standing wave of the Earth:
Earth’s free oscillations
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Fig. 8.1: Vertical components of broadband seismometers when the 2014 Chilean earthquake
on April 1st.
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When a huge earthquake occurs, a seismic wave with a period longer than 200 s propagates
around the Earth, as shown in Figure 8.1. This figure shows global long-period surface
wave propagations when the 2010 Chilean earthquake. They lasted for one day because the
amplitudes attenuated with propagation distance. In this case, a modal approach is more
feasible for interpreting them.

On December 26th, 2004, a huge earthquake in the Indian Ocean off Sumatra occurred.
The moment magnitude is greater than 9, which is the largest one last 50 years. When the
earthquake, a global network of seismometers recorded multi-orbit surface waves (more than
8). Although most of the modes (long-period surface wave equivalently) attenuated several
days after the origin time, oscillations of the gravest modes lasted for several months. Only
huge earthquakes (> 8.5) can excite the gravest mode on observable levels.

Figure 8.2 shows the vertical seismograms at Matsushiro, Japan. Although at a glance, this
figure is similar to Figure 8.1, I note the difference of the horizontal scales. Figure 8.2 shows
two-month records. The second panel shows seismogram bandpass filtered from 0.1 to 1mHz,
which shows that the Earth was oscillating for more than one month. The standing wave is
also known as Earth’s free oscillation. Lower panels of Figure 8.2 show the spatial pattern of
standing wave revealed by observed records (vertical components) at stations in Germany, the
US, Australia, and Japan 1 month after the origin time. As already shown in previous figures,
seismograms usually show seismic wave propagations. On the other hand Figure 8.2 shows a
synchronized motion. This means that the Earth is expanding and shrinking alternatively (also
known as breathing mode) with 1112 seconds. The amplitudes are about 0.03 mm. Although
the amplitudes seem to be small, only a huge earthquake can excite the mode. Once the mode
is excited, the mode oscillates for a long time. In the case of the Sumatra earthquake, the
oscillation was lasting for 3 months on the observable level. There are many modes, such as
football mode (see a box below) and pear mode, other than breathing mode.

A seismic wave field excited by an earthquake can be likened to playing the piano. Each
key of a piano corresponds to a mode. The seismic wave field (sound of a piano) can be
represented by a superposition of modes (striking keys of a piano). Seismologists imagine
Earth’s interior from Earth’s sound.
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Fig. 8.2: Seismic records (vertical components) when the great Sumatra earthquake in 2004.
This figure shows that the oscillation lasted for more than one month. Lowe panels is enlarged
seismograms one month after the earthquake. They show synchronized vertical motions,
which represent the breathing mode.
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| §8.2 Eigenfrequencies and eigen-
functions

(2)-(©)

1 §8.3 Oscillation of a string

R I OROREZEZET, 3. KENHEX
0u(x, 1) a A%u(x, 1)
o T o

Zimiz FEARBICOVWTEZTE RS, HREMFL LTHHCEEmeE A XY, EH
JABEE L OIS 2 EAEREZ. TR ZRRD LSBT,

Jo (8.1)

?co, uy(x) = A, sin # (8.2)

R (poui, u;) = 6;; &7z s & 5 ITHREL A, ZRDIUT IV, WHZEITES S &,

Wy =

l

1 . .
" " . Ilnx . jnx [
(pui. uj) = / poit} (X)u (x)dx = poAj A, f sin <= sin £2=dx = polA;[* 3517 (8:3)
0 0

LRBDT, FEE.
/ 2 / 2
A, = _l i.e. u,(x) = /ﬂ sin # (8.4)

HIERE X 7= [E45 B4 (normalized eigenfunction) u,, (x) T30 D,
RICEINIXN T2 I0EEEZET,

0u(x, 1) 3 A%u(x, 1)

0Tz T
ZORE T, Wiz FEE I NI L 1 [Ns] DNWEE S8 =212, ¥ XS RES)

BT3B RLTONE IO, WU LTy — ) 2&8e 5L

0 +6(x — x0)6(¢) (8.5)

9% (x, w)
Ox?
TRINET, ZITW@RI7-VIHPERT, e, KENR u(x, w) OEABEEERR

- wzpoﬁ(x, w) = Ko +6(x — x9), (8.6)

[

(X, w) = ) an(@)iy(x) (8.7)

n=1

note 1) [ ABIM OB S w2 BEXORTED DI LMD EF, T DfEIE Modal mass & IEENE T,

note2) —BYRITEM A D DBV, f(x) = —f8(x — x0) 6(2) 1E [N/m] DRITR D=0, fy 1& [Ns] DRITLE
bHEET, EEDN f(x, 1) T 2IRENE. LT TRDZEIEE (Green B MEIEN %) ¥ DB AIA
AR TRFAHKE T, WREMDEE. Green BIEII??BIE,
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Fig. 8.3: f/ %%
2R (2) AL T, Wl EHREE u,(x) ONFEZ L % &
. uy(x
P00 (0) ~ pohn() = —poun(0) i an(@)= 2 g
w? — wy
%fﬁaﬁi?‘o
BRI 7 — ) T2 ORI RIS R 3o Y,
L re ciwt , _ Un(x0) e 't
a,(t) = o '[00 a,(w)e dow = L By dw (8.9

ZZT, HEAMEERDZ720, w EEBBZEMOER S A2 LT, X 83 D& 5 %iEH
THDZHEITL, R—> o OMfRE 2 D FTF, 72770, EORE EICHDH 5 L EnEHE
TTERWID, MEEM, S —ie (e > 0) 7213 5 L7

_ e twt 1 1 ) ~ e it
gl 1,€) = 2w, (a) —wptie  w+wy +i6) (llg})g(a),t, €) = w? _w%)S.IO)
DR EFITLTHhL e 5 0DMREZEDE T, ZIT. 2200MZIEICTSITHEICT
L3N TA4BEDEZZZENTEZTTIN, WINDEELMRIIMO HEREHZL 5,
L LS, AN%EZIF S t =0 LENIEZEMNI W WS BN &2 - 5729
W&, 2 ODMIXEDHANTT 5 X R L TUIWIT EH A,
t > 0 DEGEIIMOPFETHERE D 5 DT,

/g(w,t,e)dw+/ g(w,t,€)dw (8.11)
Cl1 Cc2

2 s t —€t
= 27i{ReSey—icrar, 8 (W, 1, €) + ReSee_ic—w, g (@, 1, €)} = — 201 (g12)
w

n

note 3) Y f# MBI LCEEL < 1. Mathematical Methods for Physicists, Fifth Edition, Arfken, Weber, and Frank
Harris') B HR TN B - MOLHAM, 0B O hresoct,
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;@f?bi\t — oo THEMLARWDIZH, MIZEIRTOTHRENRDHILEZET, LITT
5LGE. e DL >TLEW, + - oo THEMLET, FATR - 0o BXY
e > 0DMRZ X 2., #EiE C2 DFETD 012725 DT,

[+S) —iwt 2 . "

‘/ O =TSmOl ), (8.13)

oo W — W3 Wn

—Ji. t <0 DA, RPN L WD T,
/ glw,t,e)dw +/ glw,t,e)dw = 0. (8.14)

c1 c3
ERIZBNVT, R —> 0o OfR%E & 2 &, K2 C3 DFEDDI 012725 DT,
o e—l(,t)t
/ ———dw=0 (1<0). (8.15)
—eo W — w3

PLEXD, KDZ ulx,t) 13t >0 DGFE. LORBDJHED

> Up (X0)tn () sinw,t t>0
, — Wn 816
ulx1) {0 t<0 ( )
ZORITHLEINEEEBERATE . KDB u(x,1)ldt>0DHA,
= > [2sinw,t . .
u(x,t) = Z an(Huy(x) = Z [ ol sin k;xq sin k,,x (8.17)

n=1 n=1

rhbhgged, 22Tk, =nn/l LERLET,
HEBLERELT52012, FEHORZEAMOARZHWT ERZEZE L 3009,

1 «— 1
u@J)Z—E—ES—— sin(wpt — kn(x +x0)) = sin(wnt + kn (x +x0))
n=1 w

—sin(wnt — k,, (x — x0)) +sin(wut — k,(x —x9))]  (8.18)
T Yoy SOl 255 LICHATAZ LM LTHD L § IO TH 2 Z L2550 h

Wp

D %9, D% D Heviside OFSEXEIEL H(r) "0 LEIRLTWB Z Db 9,
KTEDWTTA, 0<x<IDREMTHX)—x/l LW REZEZ 7— ) oFREHET 2 &

(9

2 1
H(x)—x/l=—= ) —sinkyx, 8.19
(x) —x/ ﬂznsm X (8.19)

n=1
EDET, ZOBFRKEMo TRERHET L.

u(x,r) = Z H, (cot+(x—x0))+H , (cot—(x—x0))—Hp (cot—(x+x0))—H , (cot+(x+x0)),

4poco “
(8.20)

noted) e EZREMD TAZ L, RIBLARLARD T, 1 [Ns] DHHEEEZ 56 0EHRZELY %K
%, Modal mass TH|-> THEZHHELE T, ZL T, AERTE > TEMICELTWS ERTEZT
moted) L iE, F—F—JOHEE T
note 6) Heviside DRSELRIS H (1) LT D kS IcEF SN 3,
1 t>0
H(t) =405 =0
0 t<0
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BEhgd, x=0fBETIE. Hp(cot — (x —x0)) LARIEEFTHIHL 5 DTENMIX 01Tk
DET,

S . X0ty
- s - H (¢,-(x-x,) =

1 H (et-(x-x,))

i 0,

VL L [ N I !

=0 o p a0 = | EEoRsT

R b L hES RER
*@;Ma@ ! *émmﬂ =y +§h8b3'

i |
1 x=0 X=X, ! " x=0 X=X,

Fig. 8.4: #iX,

EEIZn=1,2,-- , 40 F TR L TALHEREZX 85 ALK 86 ITRLET, %7
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7o, sin(wat)/wn & exp(-wity) cos(wat) TEEMZ 19 =0.01 [s] & LIHADRR
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RAMETFDMHERTEET, £, BHEFEEIX I M) THD, GRALRIXA—ZPEKE
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TRETT, RICKOEHMBELZEEZEZTAZL LI, INsODOEEGZZEWVS
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du(x,t)  6(cot + (x = x0)) + 6(cot — (x — xp))
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CETET, HETHAERLZEBOIM S HEX 8.6 DY T 7IXHEIRE & MIET %72
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du(x,t)  —6(cot + (I —xp)) +6(cot — (x —xp))
dt 2 ’

(8.22)

note D EAEK ST AW & D H), (cot + (x — x0)) & Hp (cot — (x — x0) ZEZTVSRHICER, X5 XN—LD
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| §8.4 Spheroidal and toroidal
modes

Earth’s seismic mode of a stratified Earth can be categorized into (i) spheroidal modes and
(ii) toroidal modes. seismic wave field can be represented by the superposition completely.

The reason why we can count up the number of modes is that the Earth has a finite spatial
size. The scale of the Earth is closely related to the frequency spacing of the modes. From a
mathematical point of view, this is an eigenvalue problem of ordinary differential equations.

* spheroidal modes ,S;, where n represents the radial order, and / shows number of
nodes in the horizontal direction. The superposition of spheroidal modes represents

note 9) R R T L D, 1 =0 TOMOE 2 EZNTTREMEL 2L bk 3,
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the P-SV wave. In particular, spheroidal modes with n = 0 are called fundamental
spheroidal modes, which correspond to the Rayleigh wave.
nS() nS2

¢ Toroidal modes ,7;, where n is the radial order, and / shows number of nodes in the
horizontal direction. The superposition of toroidal modes represents the SH wave. In
particular, toroidal modes with n = 0 are called fundamental toroidal modes, which
correspond to Love wave.

nT2 nT3
&
@ NS
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| §8.5 Normal mode of a homoge-
neous sphere

V2P = -=P (8.23)
1 ({9 ,0
2 _ 2 2
-l (Er e ) (8.24)
1 0 0 1 92
2 .
- — 2 gingZ . 8.25
sn6 a0 " 90 " sne? d¢? (823)
Assuming that P = R(r)®(0)®(¢).
1 {(0,726,R\ V?(OD 2
L |(orioR) ViOP) | o (8.26)
r? R (L) c?

] 8.5.1 Horizontal direction

2
Vl(fgb) should be constant. Such a solution of ®® can be represented by a spherical

harmonics ¥;" with the angular oder / and azimuthal order m, because

VY = -1+ )Y, (8.27)

§ 8.5.2 Radial direction

Search eigenvalues of the following ODE

1 (d ,d I(l+1) w?
— | =—r"—R]| = - —. 8.28
2R (a'rr dr ) r2 c? (8:28)
with the boundary condition: R = 0 at r = rg. The first term of the right-hand side
represents the squared horizontal wavenumber, and the second one represents the squared

total wavenumber.

1 §8.6 Vector spherical harmonics
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Rim =Y/ (8.29)
Sim = V1 Y/" (8.30)
Tim = -t x VY (8.31)

Vector spherical harmonics are more complicated than spherical harmonics, but they are also
eigenfunctions for V% ase.g. V%Tlm = —I(l + 1)Tim. See Dahlen and Tromp 1998 p. 872 for
details (please be aware of the different normalization of spherical harmonics).
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| §8.7 Rayleigh wave and Love wave

|1 §8.8 An example of an observed
spectrum

Figure 8.7 shows an example of the Fourier spectrum of vertical ground motion at a
Japanese station when the Chilean earthquake in 2010. We can identify many modal peaks
of fundamental spheroidal modes. The dominance exhibits that the source depth is shallow.
When a huge deep earthquake occurs, the Fourier spectrum shows large amplitudes of the
overtones.
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Fig. 8.7: Fourier spectrum of vertical ground motion at a Japanese station when the Chilean
earthquake in 2010.

X 8.1 1% Rayleigh i DIEEEAHIBRE 7L 7N 2o TV B EEFAR T E 3, B
DN 2 FIRRIZ R E IR Z —F T 2 REICE L TVWET, K87 DAY hLE—
7O E .. REEDHIR—E T 2 DICET 2RHEZ B LAE L & 5, Jeans DR
MO E A THIEREREZ Rp 235 L

_ 27TRE
A= I+1/2 (8.32)
EELIEHTELY, LTINS 2 EHRFERE fi 3UHEREZ ¢, £ T5 L
fe cp _ (I+1/2)cp (8.33)

A 27Rg

ERDET, RMHEIC cp =45km/s T2, fi— fi ~0.1mHz &2 D, BB X Z8IH
IN-e— FoEe —H L E3,

V— 7 OiERRIIER T 2 L AL H 2 KSR A F T, 2N OWTEEL
TAEL kD, AUEFHI(m =0 ZRE) DE— FOIRMEOMHMEIX, B BHED
faliEtr @ x5k

[ 2
|P)(cos ®)] ~ lﬂshl®|cosﬁl+l/2)®-—ﬂ/4ﬂ (8.34)
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Waves 1n a density
stratified fluid

Chapter 9

| §9.1 Atmospheric wave

When propagations of an atmospheric wave, buoyancy force plays a more important role
than seismic wave propagations. There are two major effects of gravity "¢ 1),

First, gravity force causes stratification of the atmospheric structure. Under hydrostatic
equilibrium, pressure gradient equals gravity force. As a result, the density and the pressure
decay exponentially with the height. With an increasing height of atmospheric scale height
H; km, the density decrease to 1/e. The scale height is a characteristic parameter of the
atmospheric structure.

Next, gravity is important as a restoring force. As already explained, gravity case strat-
ification of the atmosphere. The change in height causes significant buoyancy force. The
buoyancy force is not only the dominant restoring force for internal gravity waves but also
significant for low frequency infrasound. When characterizing the buoyancy force, buoyancy
frequency (or Brunt-Viiséld frequency) N and acoustic cut-off frequency N, are defined as,

N2o_8dpo 8

po dz 2

Cs
N , 9.1
“= 30 ©.1)

where g is gravity acceleration, pg is density, z is height, and ¢, is sound speed.

First, to understand buoyancy frequency N, let us consider a volume element. The strat-
ification causes buoyancy force. The stratification is enough strong when the temperature
profile is steeper than the adiabatic temperature gradient. In this case, the buoyancy force
causes oscillation of the element with frequency N.

Acoustic cut-off frequency N, represents the lowest frequency of an acoustic wave. Lower
than this frequency, acoustic waves cannot exist. The definition shows that the wavelength
of acoustic wave at the frequency N, is 4mH;. This means that the acoustic restoring force

note 1) See details in §6.14 (Adjustment to Equilibrium in a Stratified Compressible Fluid) of Gill’s textbook.(") You
can find more details about infrasounds in the textbook by Gossared.”)

193



9. Waves in a density stratified fluid

e~ ANMAA AN

'vvvvvv ‘vvvA

194

Angular frequency

Acoustic wave
A'<0
e
Na """'"""""'"""""""'"""g@“’e' """"""""""""""""""""
© Evanescent wave
A*>0
>
y [Buovance frequency | B Z
Ll_
Internal gravity wave
A’<0
l Wavenumber

Fig. 9.1: Dispersion relation of atmospheric waves. The blue area shows a regime of an
acoustic wave, and the red one shows a regime of an internal gravity wave. The white area
shows an evanescent wave, which cannot propagate toward the vertical direction.

cannot sustain the acoustic wave below the frequency. N, is higher than N. Although these
frequencies depend on the height and the locations, typically N is about 2 mHz, and N, is
about 3 mHz.

Figure 9.1 shows a diagram of the acoustic wave and internal gravity wave in frequency—
wavenumber domain. The blue area shows a regime of an acoustic wave, and the red one
shows a regime of an internal gravity wave. The white area shows an evanescent wave, which
cannot propagate toward the vertical direction. A Lamb wave is a typical evanescent wave,
which propagates horizontally with sound speed and equilibrates hydrostatically toward the
vertical direction. The energy of Lamb wave is concentrated around the surface, and the
energy decay exponentially with height as exp(—z/H,)"®?

~ Wavenumber-frequency spectrum ~

As depicted by Figure 9.1, the wavenumber-frequency spectrum plays a crucial role
in understanding seismic wave propagations. Because, in particular, strong dispersion
causes complexity in time domain, the wavenumber-frequency spectrum is effective
for dispersive waves. Although from a mathematical point of view, treatments in the
wavenumber-frequency domain are equivalent to those in spatial-time domain, they are
complemental to each other.

note 2) T amb waves were observed when solar eclipses, nuclear bomb tests in the atmosphere, and volcanic eruptions.
Because of the less attenuation, multi-orbit Lamb waves were reported.
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Seismic
Interferometry

Chapter 10

| §10.1 Introduction

HERNERORGE 2 H 21213, WEBEOEO Y FPEBRLRFERLDERDET, I E
T, B ER L-HIE OB 2HH T 2H Ik > T, HBRHEEMENA X —D
TEINTEZF L7z, 2000 ERICAD, HEDANOBHRD 5 ER I T 7 > X 2k IO
NEFARZET, HBERO WIS 2 TN 2 Tik B THIE) B—lyree Dy o> T
F L7z ZOETIE, INFTHEAZHEEF 212, HEBRTHEDFRBEINCOWTHHL
TWEE T,

AIEFTIE T VX LREHSG e LT, BRI E | SR Z TRENCOWTHRD EiF % s
4.7.1 BB, 7 XaBEEGY L, HEBOa— X (ZEAGELLHER, 3L
{ 1% Sato Fehler and Maeda 2012(')) 2g) $ EE T, a—XKE M- -HBEHTHED
[ ST WET (B 212 Campillo and Paul, 2003)”) A3, 4 [EZRFE OE S X
WARFER A, BRI D 2551%. BilC BT/ review @B RIEZEZ SR L TLZE W,

| §10.2 A brief history of Seismic
Interferometry

note 1) f23R %2 ¢ DL ¥ 2 — 337 (il 212 Snieder and Larose (2013)7 0%kl (il 2.12. Schuster, (2009)('? Sato,
Fehler and Maeda (2012),('?) Nakata et al (2019)(7) 2% % Z8),
MBI Tk, HIER72 1T Tld7z < EBRE R & — )L (e.g., Lobkis and Weaver, 2001)©), EHEEY (e.g.,
Snieder and Wapenaar, 2010),(') H#?*# (e.g., Gizon et al., 2010)"), #EFEHFE (e.g., Roux and Kuperman,
2004)) 7yt 2 RBRIGER IR TVE T,
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B TIIED 7 A4 7713 1950 FRETX2DIED 5, Aki (1957)D 12 & 3 22
H CAHBEE (SPAC %) O 7 A4 7 7 I3MBIR THIED LB T3, Ocean acoustics D778
Tl Cox (1973),) exploration seismology M%7 TiZ Claerbout (1968)) M JEERAY A
DBHDET, A OT7 AT 7IELEL K OMEH I EFRATLRE™Y, LiLHEERS
5 26 %D 1983 I TLILBE R FREIA S Z b e T 2987 0 — 75 Aki DFIEIC
FEH U (R - )75, 1983)C0, FICRE T OMBRRHEZ FAN 2 720 O Fik (MBI,
microtremor survey ) ¥ U TBAIIHZEEN S XHITR D F Lz, £ OBRMENERE IR
HED Z WG 2 HEE T 2 BIciE, BN FER D £ Lk,

WEXOE CTHERTWIESEH I NS L 51257 % 5 21F D& IE Campillo and
Paul, [2003]” TF, DML TIEA F> a THAE LB Z M L % Lk, BT
FRDZHPTH, THIREEL L e a — X OMEMEEZEIRE T 2 2 itk o T, R
DIEFEEMHTE 2 2 e 2R L ¥ L7z, 2005 4£12 Shapiro 513 (9, AREND & 72 /51015
SHICEPRLTVD E WS HERWFICWD, ZOWDEDOD TTHoHh Y 74027 O
S 2 HEE T % HITKPI L E L7z, ambient noise tomography & MHEI 5 FIETT, Z
oMfFackiE. K, BHA, HE, 3—a vy BZ L ok TREOMLThbM
5X512khE L,

MAJO (1AR) & DIE B 1B RS RS % FTFE EEI30-200%

40 T T T !

W
o

FASE O AR [E]

-30 -20 - 0 10 20 30
Lag time[45)]
Fig. 10.1: MAJO(#afR) & D BHI A o b B #x o A B.AHBE BI R 2 81 A o BT
W7z, A 20-200 DY RRR T 4 VR =% T0ET, L—V —KOERHE
RTHRNE T, BIEREDIEDH R % causal part & KU, B DR % acausal part & K f
£9. )

B IR T CHEAIC R 2 BRI, 2 > OB S 28 CHERTE o H EAHB BT
T, MHEAMAHBEBEBROEEIZ. H20d— OB SICEIR (a virtual source) 23HDH. B

note ) e X A DML R L LTELDLATVET, HEKREZ Y, Y4 F—DF 4 2T 4 7R GR
BESCE, AIRSE) 2 S BB ERE- 25 T, iy LT, Han, SHAISROGHER. B8Rl S
OWEZTHNTITVE Lz 2V Ea—20ERT 2HORROT, HEMHBERBOHES 7S
EEEDOHD S L7225 TT, Y, HAHERD S Y FTBlET-72Z2 5T, RBES T 7YY
P2 - T, MEHEEDRR2HEID=E5TT,
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5 — T OBHIRTIIE %2 Eﬁbfmét%ﬁféiﬁoppflml%ET%iL;%
MRIC D 2 B R e OB R OMH BB Z R L TnE T, TOFKITIIREL D
TRAXAY Y I2220HH X7,

1 DHIZHIEANE T D, RENCA R P 2EL Zehk2 2 Td, @
EPEWE TR, HWEREEEEDOFH L WHIEBEEREI DD 50, HEE N
B LROVDIIRERZRXY Y b THT, X 10.1 HE»PIT, DB bRRIEBRTD %0
D & 5 7% Rayleigh D% R TR E T,

2OHIIMBZ R OLEPBRVWKTH T, @HMERNES S 7 4 BT 2175 DI
Z. TORMET —XPEBINZDEROVLENH D I, MBRTWIETEK, —F
R T E T A RED T — X 2 HET 2 e AT E T30 HER FONE
WS HEIE, MEPCEEME ORI Z(L 2N 2 LTIEFEICERNTT, #iEz o
T, WO LHBRGR S DR L2 2 7201213, # DR LFE S cHiENE 2
5 (#EVRLHMBEMINS) E2FHFORLENDHDET, LrL. ZOXIREBEDORN
BN Z 2 Z L I3IEFEICHTT, H5X7OMHEMEBEBEREZETE L. 2 ORMZ(Lx: 7
2Z2lF. MOBRLEILHMTEZ > TWAHIEBOGRE BT T2 HICHY L E T, E
BEL KILRHIEB I S S ORI L DB AR I NS X5 IR -oTEF Lz BlZ
1 Sens-Schonfelder Wegler, 2006 ).

ZZTIE BERERZHA L. HERTBEOFMICOWTHH L TVWEXS, 22
DFFTERNE, BEETZEU Tz review XX 2B Z I L TL 2 X0,

Rough Earth Club and Smooth Earth Club

SI brings a reunion of different research fields: ocean acoustic (Cox, 1973), seismic explo-
ration (Claebout, 1968), and seismology (Aki 1957). Surprisingly the ideas were proposed
independently and simultaneously.

Even in the seismological community, there were different cultures: one is the rough Earth
club and smooth Earth club. Keiiti Aki defined them in his letter to V. I. Keilis-Borok, as

.. To a geodynamicist, the earth’ s property is smoothly varying within bodies
bounded by large-scale interfaces. Most seismologists also belong to this “smooth
earth club” because once you start with an initial model of smooth earth, your data
usually do not require the addition of small-scale heterogeneity to your initial model.
As summarized well in a recent book by Sato and Fehler (1998), the acceptance of coda
waves in the data set is needed for the acceptance of small-scale seismic heterogeneity of
the lithosphere. There is an increasing number of seismologists who accept it, forming
the “rough earth club.” 1 believe that you are also a member of the rough earth club,
judging from the emphasis on the hierarchical heterogeneity of the lithosphere. . .

( ‘ ‘Seismology of Earthquake and Volcanic Prediction’’ , Lecture notes, Aki 2003). Seismic
wavefield above 1 Hz was a territory of the "rough Earth club," whereas that below 0.1 Hz
was a territory of the "smooth Earth club." The members of the rough Earth club are familiar
with stochastic treatments of the seismic wavefield. The recent development of SI means a
reunion between the "rough Earth club" and the "smooth Earth club."

The dominant frequency of microseisms at around 0.2 Hz corresponds to the gap between
"rough Earth club" and "smooth Earth club". Sl enables us to utilize coherent signals from
random seismic wavefields with an assumption of stochastic stationary excitation. Although
surface wave tomography was a tool of the "smooth Earth club," SI broke the gap. Scattering
due to strong lateral heterogeneities in the crust and the sediment was a big barrier for "smooth

note 3) FEIRCHNICH & D F A, RBHELEE TV £, 0.05-0.5 Hz THIUIH » B, Zh X b ERIE:E L
BHTHARIEDZNWTT, bBAA, THORKBELHET 2 7=DICEEROBMO A ERE 2D
ES
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Earth club." When we apply SI, the scatterer is important because it enhances the randomness.
SI plays a complementary role in the "smooth Earth club." This role of SI is true of other
communities, such as seismic exploration, acoustic, physical oceanography, and so on.

In this lecture, the next chapter explains the excitation mechanism of microseisms by ocean
swell. The next chapter explains the basic principle of SI with a demonstration by a WEB
application. Then the last chapter explains some applications, which are done by our group
mainly.
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HIEB IR T kO MR & BF S 5 - DML EEEZTAEL & 5,0,

IR HEMAEBEBEBOEREEZILVWLET, V77 7TV %EE57DT (http:
//www.eri.u-tokyo.ac.jp/knishida/Seismology/wave2Drandom2.html) #H 31T
Lo nrbeduve AnEd,

l 10.3.1 Cross-correlation analysis

Event c¢: Seismic velocity
— l 'l /C
[ L:I(z)i»( 1)
. I ;
lz Station 1 Lindg k)
| -— > time
Station 2 ;

CCF  fuher+ndr

~/ T > 1
Lag timk 1

Fig. 10.2: Schematic figure of cross-correlation analysis for a pair of seismograms when an
earthquake ocurred.

First, we consider a transient phenomenon such as an earthquake or a volcanic explosion.
102D &5 HHMETHENEE I 2B, BlIN 1 & 2 OHIERRIRIC
U THEAHBIREE ¢ %

1 T
d12(1) = lim — / u (tux (¢ + 7)dr. (10.1)
T—oo T 0

DEIICERLE T, HAMBIRERIZ 1| DRELRZ+7HL 0 WIRT 2 L IRET
Z) 2:%@7*—])121@ @12(0)) 72

D (w) = (U] (w)Uz(w)) (10.2)
YEFRMR T IO ZoGE, BHIA 2 ZEISE 1 XD t BETERTEAEET 3

note 4) FHEGIA 2L D P 2 KRS %1213, Snieder et al. (2010)('9) 231D,

note 5) TEREI I, ERBIEREZ 2HEEIE. BREOEY 27 3 Y IAEETGEYMLTWES, ERIICHK
SRR ENTVE ERELTWEDT, () IZERAED L3R SRNDT, BEOEKRTTZ—V
IEBUIHRERA, XD BEICHRL 2V ERRIIT OB EER 2SR L T EI W,
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V277 VTR, 2V v 235 BREETEDOGINCEL 2 BHkK, s 2Ty
Sal—YvardthE b 3, A FICBHEIA 1-5 TOREE., f iz oM EAHBRE
X 141% 1 © 4 OHEEABEREE) PERI N F T, HAMBEREK DY — 27 ORI %5
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| 10.3.2 In a case of a closed system

B THEZHERNICE 2 5 ET, normal mode @7 71— FIXHRNTITHAE
PIRATEBDY, MIBHTBEDO 74 T 72HBELLTVEWSIFELD D T B 21X
Lobkis and Weaver, 2001("), Z ZT. %9 normal mode ® 7 70 —F TEZ T\ E
£9,

WAL ERZ AKX X 2 oM ER. HIERBERY A X 2oz vv2E23, BA
BRIRETHZ2EDTPDEFT, T TEEHREDLD 1 ZOrEBEAOMEZE 2 % 325,
normal mode DiFiixZ ZDEE 2 KIT. 3 RTTAELHIETEHIENTEET,

Ensemble of repeating experiments

RABENIZ, EBRETEDIRLERL TOWARNEEZET, + =0 X DETTIEHEMEARZ
FELTBD, B =0 TRICH LTS Y Eakhz fKi,x) ohzmzaxd, i
2720, BORIBEZHIET 2 WO EBREEZIET, TDXIREBIEE ko MIEDIEL
ij—onoteé)o

R LBINT X AEDOMES normal mode D7 70 —F TCEZTVWEET, =0

note 6) EEKIc S5 . TUH VIR > THIRHER L 22 v, BRUNCER L & 5 nEERE IC X 21
HHEBIE—83 3 L3R D /A (AT — M),
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pa—t”2 = k2 4 F(0)8(r) (10.3)

EhET,
Green BBl THI f T T2 EMDOINEZZEZATVWEEL & 5, 8 EX 8.16 2
5. t >0 TOD Green FAEUIEBBIE u,, & EEEBE w, 2> T

G(x,x";t) = Z Un ()t (¥ sin wt, (10.4)

n n

rELZEDTEZ T, kBIHORITTOHNI K120t T 25D RIRIE uk (x, 1) (t > 0)
ZRDB7DIZIE, AT f & Green A TE AT &

uk(x,1) = Z Sinc(uﬂun(x) / un (x") FR(x")dx’, (10.5)

n

LhbEF, 2T Ak—/un(x’)fk(x’)dx CERT DL
Wk (x, 1) = ZA Sm(“’”t) (10.6)
EWVSTETENMINEZEL T TEET,

White noise

ITRIVELTMABALENN FITOWTEZTWEET, SA N, HH03
(E@SU&}Z TEELLBATOVAAHAIEER L ERLEL S5, ZOXSRMEEEZROZ
FHOMEE Y KR E 0D 20701 O(f) = const 27D FT,

LIV LERIMICEZTVWEEL & 5, Figure 104 OLEDRERTLZE WV, WEZE
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ZIRD CEFEF0 7801 ODIERSHEIES E LET), T 2 THOHBERBRE ¢(x,x") ZEZ T
AEL & D,

N-1
$0) = lim L kZ; PRGN FE (4 0) (10.7)

CEHCOCMHBEBERZ ERL T, VWE 2 [EOAMED Ax/2 2N &, A J1IHBI T
2LMHERBR VI ERELET, 2558 ¢ ldx—x' ZUOBEKE D, é=x—x’
el R

else

1 Ax
M@={O|ﬂs (10.8)

YRDET, ¢(&) 7— ) THEUERRT S 2. ®(k,) = Ax D ET, T IT ky, W

2nm/L TFo RT—ARZ L (FIRRZ FL)IE 2Ax D FF (K 10.4),
MER R EIIHE X L, CIIEBRCEET -2 ZEDETBELTALLE SR 5T
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ZHUSHCOAHBE BT R B R 72D TT, ZLO7 Y H Y IR L TES%E (2
CTCWRkDB7 Yy TNOBEZBIHMTIF-HE ST SR W EKRO D 2EHICKRD £
HFho XDEMBEMICE S L HEMREN 100% o T LEVWET, R THHYWTT
M. TOIRBEDVIHENC 1 Y ILDBFFMLTVWA Z L ICERL E7,

FITED 77—V THEEREZ LT T v Y IR L o TAEL &9, AL 2
WEDNTW Zehbhs e BnEgeeld = k51287 —2R7 bLE 3135 <
FCHEINRER 2O, ToREE T L LRV e AN KEL D TETCL RV
F5, FIZENEY Y)Y ULTEIHL LG EEZEZTAEL &5, KRVIDIER
DIRCHES GEHEEEAEZ 1/VN LD EF, ZOESICEENNITLEN > THEL
RoTWEETD, Moo RTENET,

Equipartition of energy

NTDULTHERED LS ALF—RHEINTVEINEZTVWEEL & 5, HEIZ

ouk(x,1)

= D" Afun (x) cos(wn), (10.10)

note 8) SERIC FHL T B IIXZERINIC R L 3 5 B ED D b BT — V) TART 3 BN H D F 5, BT -V T
Zfar 7 —) TR OB EE R L b v

N
F(kn) = Afo(xj)e*ﬂ""nxJ' = 6FPFT (k,), (10.9)
7=0

LD ET,

note 9) JEREICIE x? HARICHEVE T,

note 10) g3 A3 SIFIAEIR T 1 ORERYIEZ 2 TV T, Percival DARD BT — AR Y b LOFES
1X2x05 ) —HLET,
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E—RHh OEH A LFX— T, 1 pu, 20 CT2EEETTIUT XL
n:%uﬁﬁwﬁwﬁ) (10.11)

LRBZEHIPD T, —HEEIILF — V, 1ZEOEER L 2T T2
RS B & AT %

Yh::%(Aﬁ)zngwnﬂ (10.12)
BIIALF—T+VIF
T +V = (AF)? (10.13)

TiMliTZ2 2900 3, 2F hHAEORHE O f THIL &, FE— R
FOLE — DHARHE (A2 B— B 2D T, ZOKEDMINI L E, X LF—
DS (equipartition of energy) EATWA EIERZ LICLE T,

Cross-correlation functions

22T uk(x)) & ub(xo) DHEAHBEIBEEL % (x1,x0;7) 2% 2. HEMHBEELE

1 T
o (x1,x2;7) = lim f/ uk (xq, Du* (xa, 1 + 7)dt, (10.14)
—00 0

LEFRLET,
ko EIERT L7282 D7 % ¥ T ¢(xy,x2:1) %

1 N-1
P0x1,x231) = (¢4 (1. x230), = lim < ;) ¢ (x1, x21) (10.15)

YLET, ZITHREBBEADTEZD Oy 3 kKBTI 7o F Y IAEERTI 2L
£9,

WEHARBEE RO VX ATV T WA D, FE— FOZ R LT — (BT
AINF— L EE X LEF DN T +V) BELL JE I, ZNZNOZEH) (RIE A,) D
HHRET3, A, DMHEMEDIHFHEIXITDO X5 12EL Z e AR E T,

N-1 2

A

_ 1: 0
(AmAn)=£Eg>é éOA;A§=5mn;g. (10.16)

ERDET,
iR G E D
A d

P(x1,x251) = ——= —(G(x1,x2;1) — G(x2,x1; 1)) (10.17)

w32 dt

EHT 5, HAMHBEBEKOMD & 7'V — VBB ZEH IO 2B L, £, 20K
XA LHEMHBE O DIF,

d A2
o1 = —7°(G(x1,xz;r> — G (x2,x1; 1)), (10.18)
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WKERTE, A—F U RADEE LT 2 Z e hHiskaoe!h,

HEOHBEMHBEEE & Hi$ 2856, —FRZREERE. 30X —Y5EDRE T
T, BRUFRHERD 2 E 2 2856, HIBRNEZ S DN NP HEORE RO 61X, KES
] (angular order [ ¥ azimuthal order m) ICIZ T A NF—DYNAELEEZ DL LN TEE
T, L2 L. BEESHIERATICER L TW 2 IRMTlE. 27517 (radial order n) 1213
FF—IZENEHEINET A, FiCn=0DHAE—FPERTZ D T

FLALRTEZATVS D, MEZFRICANZ VY, FlRM 1 GEHFRIR R
Y) BEZGECIRES R L T LE 5 DRERSD H 5, ZOffi#z AT,
BDIRLERT 2 20w GEBRENR) MRNFRERDTEFIREZEZEZ TOVRWEDITHE
BMOMBIZEZ D TR A, BHERRROLDIIIBEDOIREEZR T 2HLERDHD 75,

il 9.1

HHEAHBEIRIR 0 B2 K2 FHE L. X (10.18) ZE T,

] 10.3.3 In a case of an open system

AEITIE 2 KOTHERBE I 2 MBS, D 2552 MELE3, BT, REE
BEZLETEPRYBOWIAMTY, F-HENREAOTTIE. HEMAHBREE Y Green
BIBORAE DT 2 Z e ST & F 3,0 1d)

T L - ROMEREEREIIR L, 2 X FHRIEEZ, t=0DX A I 7T
YELIMRMEEZ T, REEHEEMH - TERT 3 L EEISIRIED B 2 IR,
B S 2 B S BRI IS - TIRBEA2 0 S8 3 2 L L SMTH 2HER T D £5, HiE
BT BEEEZ S L ZITWL O0E S REE WS DT, Z DM ¥ & % FfiE
THRENZOHOHWNTT,

In a case of many random sources

ALK 2 AP TV 2 R BOEPRTAE L & 5o WO X512, T3 2 000
VRO EES DR L TW A RN EEZTAEL x5, TITH1=0TI7 X
LBANDE LRI Z, BOBELBHIL TW2HEEZ LT,

i HEHOBEIE (=0,--- ,N) D% 6(ri —r)s() fF L LET, k FEHDRITTOEN
uk(x,1) 1%

k(e = P (r = rinfl, (10.20)
i=0

CEIET, 22T i HHOMEHROMEEZRL 3,

note I pormal mode DFE Tz & 51T Green BIFLIE

D u (Pur (x) o witH (1), (10.19)
3 “k

G(x,x',t) =

rEIY 3,

note 12) F— 7o RFRTHIUD, BRPSABEZDIINF TS v 7 2L, FEFICX2HEHOPDAEVEELS
TN TEET,

note I3 A FAHBIBI I 2 3515 2 & 2 & b BN OB m ol S h 3 FER MK L F LI, EITLR
MOFTe e BENHEE 206 LNEHA, http://www.eri.u-tokyo.ac.jp/knishida/Seismology/
wave2Drandom2 .html
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CITRBLE XL T2-DICHBICEHL Ty — ) Tl %R E L T,
Uk(r,w) = Y G (r-riw) ff, (10.21)
i=0
e
ol

- . VI} . . t

Fig. 10.5: FHIC—FRIC 7 > X 2R TRD 7 LT 258 oM,

ZZTt=0URFIHERTIEED XS RIRELPBH SN2 0E2ZEZTOEEL x5,
Htog TOIRBEEZTAZL XD, 52 RTIEHE D Green B ZE X TW3 72912,
R r=cty PN A THREINZEPEET 52221 DET, ThbDLEE
r ODFRVOHEICALE T 200D U720 —F IR E T3 2 ik b g5, 54
HORBBRIE N Ax 722 LET, 25 T2 RGN Ax DIREEZ 22, BBX
Z 2nr /| Ax HOANDBDAHELTWB Z ik 3 (X 10.5 £), RIEOFHBZEIIES
X7 1?2t oT. FATOHBREIZBEE X2 20r/Ax(r'/?)? = 2n/Ax ¥ 72 EEEIC
WIFL <D E T, DEDFEMICE >0 T o b AREDRBOBFENER LT 2 Z &
b3 (X 10.5 H).

22T, REEHEZEOCVHLEL x5, SHANTOZEMNZBHEIL TS 2 e LET,
ZOBEI. R r OFMCH T T AN X o TR I N IE. LS & 26
UL, FMNOEN DRIZERCHER T2 N TEEST, 2%, AN TOFS
BHECOHISEENNTEEZRZ LR TEEY, R ITREDITRL TIEWIT
BVDIE, HAHEMAZTDE=0D&A I ZOATETR, F EIARIENICE 2 5
TRIERERIICIE > 0 DD WEED K EWH EHTT, Sr=0 THHNOH B EZT
WE T, HERICEVWRKMZEZZ 58I E0FRSIZERICKE L5701, ARNDA
HOMPIIER T 2N TEET, 2D, MEOAIHNIBDH T 25E (1272 LI
IR I3F ) EEMTH 2 e nnhh 5,

HEK THIED web D F F http://www.eri.u-tokyo.ac.jp/knishida/
Seismology/wave2Drandom2.html (ZFZ DEHFETI I 2 —>a YL TW0WET (K
10.6),

I TREHEDD, BURBEIR 7 v AR L TH L EIRELE T, D
EDME L Fr(w) ORIHAHLT02 e LET, 0 X5 RN X BHIBE D
L%E NEfToT, ZO7F Y INVEEEEZZRNEEZ LT, SN Fi. iR
Fj L EWZIEAHBTH D, FOHBETH I LIRET S L

(F]*Fiy = 6ijF;, (10.22)

note 14) Jrzc 7 — YA ERT I LI LETD,
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ETHE"R V3 T B Cross-correlations
’ ‘-“'- 'ii . » - A LY P L = 12
.8 su - : o pesn iy :
b | .' _r'\-‘ ] . ""‘ L ;-_’,',,.' '-'n.:. Jm‘m‘ ALA ]3
|+ u ‘.‘\" "'_:_ " ¥ r_" ‘_L. ’:‘-‘: ' A f A ]4
~:.; > : Fo oVl ’ ‘ -r'-." ; A f\ Ash s
4 >, . . . .
-.}_ el 0 ,?- A :, .;,'Wavef{:lms 1
v’ as - 2
. -I. Lo b - #_ e— ; - I N O T T Vo ¥ A A, P R
;_" \{.."' > OE . -.l'-i:f WNM,J'\WMB
Py de¥a "t ., O B I A e A CV A P v
0 LR '0‘5‘ v a N Lo, Wy Ay Yy WY P, Vo SY |
i ' SR o g A -
o - LA -
,‘A'-‘.l.;_ AT A
IR 5 7.
1f¥}*.-\ AN ) '
L L R 1 A S

Fig. 10.6: 1 25 Y X L5 01230040 LT 2358 OIKEIG ORI, i &R Fi
MTHYGEEEATVET,

LEFEFOCD) ) cozenrsruR s AT ML (HEMHEBEEKD 7 — V) 2D,
S

Dip(w) = (@) = Y &P (r1 = i, )G (12 = 1, ) (ff (@) ff (@)
L,y
:zyﬂmurq%@qurqmmﬁ (10.23)

LELZEDHERET,
IR DBA TR E W & IERESEINZ A TV 25512 EX MRS
TEEHZ SN,

¢u;ﬁ/Gan—mwmwvrw&wmp (10.24)
Ls

YETLZ, 7V —VEBROBAAAET EEBTHETLTWAHEICZ>TVWEST, ZOR
DRI I B 2 AR T,

B9 O i: tHEAHRARIE & Green BAXIDER

C ORI ZFHES 272012, K107 O &5 ZEEROREZE X $9, RO E
B S ORERE ry AR ¢y TRBILE T,
(LoD 728 Green BB K —/4 |Nkr BT 2 LIEML 5. Z DU RUIHERE r

note 15 Jangledy 1 k LT V¥ Y IV PR Mo -H2 R T LIcLET
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(@) (b)

w

0.2
1 / SULHATY \ N

— o
N2
Z0\
o
o

w
—
.

3 2 4 0 1 2 3 4 BT 90 0 90 ‘ 180

Fig. 10.7: (a) ry ZREIE L ¢ 10 LA Z 7y P LA, (b) & ry =3 O (X
10.7(a) ZR) b o 72fli% 7a v + L7z,

PEEICHARTEWE 2121324 AT geld 2553

eik(rZS_rls)
@120(/—dlv, (1025)
1 kLT

Fis, 25 107125 2 X 5B 1ry, B 2ry EDEEIR ro O OEBET S,
H3 LS, REFE ry OB INZWOBIMA 1 & 2 L TOMMEEIZ. HEHEDZEZ K
ETHo/ETEZED £, FMHZOMBIBEN A ZEL T2 R ET, £
5B e., 2HBIHRZES SR> TIMHOZELITER» 72 D (1B A, stationary
point), ZDMMOFEIRTITIML <IREIL F3 (K 10.7) 7 ¥ X LRFEDMEEE 2 555
B ZER SR 8 2 o 20230 o 2RO T 5 (stationary zone & FEHINL ) IR E L 72
D, ZOMOEMONERIEOFZE I T bIH S N E 5 (EREE, Bl 2 133%EH 2007 28), %
T2 IBEBIE s IR L TR E o TV B 728, RO AR DA T HIH X
ﬂénote 17)o

UTPULBRZZEZ T, 35D LEBZHHAZIRAE T, K 10.7 RETHE VL LS
W27 ¥R LIRNERIED D 2B oNHBIC ML TwS & Z, T9I0EL TS 2558
Z E M (mono pole, dipole, quadrapole %) DELRSOE TRETEZE T (ZEREML
N2 Yy BHIZHZ L1270 BEDEEEEZE T, Z0HLE. 2 BRROMICE
DBABHERIET VXL TT, ZDIDIT, rg S TS 2 D OB TRINAHT ® it
REPNMHTH 2MERIZFLLRD X T, —J7 ¢5 250D 1 DIFITIE (stationary zone D

note 16) Green B BRI IE

H(t-*~
GZD(I',I)Z—L ( c),
2[5 2
-z
FE BRI T 1 . 1
G2D r.w :_LH<2) wr/ec oc_eikr—n/4’
(@) == (wrfo) = o
LT ET, SCCHEB kR k= w/c vEREN. HY H2EA Y S LBBTH S, H() & Heviside
DRSBRBIRT T,

note I7) WA S BB L CIRBIT 2 MHEREETY, BERL, —RICHEENSH L TVRWIERICS,
stationary zone DA G5BT 2 Z L BRI N2 720 TT, BRED I LT, HAEMHBERBEKDHK
ERu AR MTHIMWEIZ. 7 — 2T EEERANTT,
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B HEED & BT 2 DOBHS DT ENEF T8I re 2 HH 2 IZFRMMHEE 720
i?‘o D% b stationary zone ([ZJiliEEIRD D 2 HED A, HAMBERFICHFS L E3,

fIE 9.2

DU b R BE TR 7 23, MEMHBRIE O 2 MR T 2 72 D IR EEET#&
ZB, TITREDES RIRMEPADZ S, FABBERT G (r| - ry, w) *
G?*P(ry—rg,w) LB WIHIZIFRIMER (7 — V) 2 E# 5 2 L) 2V — VEoE
HIAAED TR TE 3,

. ICLO LEMETHNZMA T &, HAEMEBEBEEEFER X,

2. MCRLUEMEREIDRZDH L TWE I R2EZ S, (1) THELEMHA
HEEARE SR A TN L, MHEMHBIRER e k. 2 2T, KFHM
HARDONENC B 2N DEFENZ & Z L ITHERE K

3. HEMBERKD Y — 7 EZ IS RZ &, BHHIFEE O RO B R 2 & 558

DLERMEIE I 0R 5% RS D £ L7, Z 2T Wapenaar and Fokkema (2006)(' ")

v u il BT
ou

on

WO ERERE E T E LT, 3P LER L TVWE F 3., Rayleigh DI EH
CELETEZS L

= —iku (10.26)

@y = f} / G*P*(r1 — 15, 0)G*P (ry — 1y, w)dl,, (10.27)
Is
2 PC 2D 2D
~ RGPy~ 11,0) - G (ry — 12, 0) (10.28)
0}

Y. HEMEEE Y Green BB EEOMIT o 30 ®  MHEMHBEBEKOM DD
&mn%ﬁmw%?é%ﬁmmofmiﬁmﬂ%

CTHELZDIZ., TITEEBEZZEELTORVE WS He., BEHEREGE2Z L 5T
mét@kﬂ%ﬁ%%@ﬁmﬁﬁﬁﬁ%%ﬁféﬁmzmoﬁf?oﬁ%@ﬁﬁ NEEE

note 18) =411+ Wapenaar and Fokkema (2006)(' ) %

note 19) Aki (1957) @ spatial autocorrelation method (SPAC %) Tld. /572 & FHEHEN S v X A A LTWS
FEREL THEM L TVET, A LTI, ZOEOHEMOEWA IR LD £3, HlZi1X2 XTo
% SPAC JEICHEHL S % & (Nakahara 2006 Z8). tHEAMHBIRIE D Hilbert 2412 Green B 2 D ¥ 7,
CAUREST D & AS T ZIH5. Green BIEL & I exp{i(wt —kx)} LiES ZLIERTLET,
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Z5 ¥, FHLTWMHEEZBEDE THANS S IEED 2 L TR Wnw e Green BIE &
BN TEEEA, ZODOBFEOMHAMBIBIEIX. Green BIf (RMHEICE - THIER
80 1ITH, REREORIEL/ N K D 3, FEEFRFRICHEB RS 2 EFR B TE R0
WS S, 3 — &% (B 213 Tonegawa et al., 2009) ) & 2 FEEEELEE S 2 Z L AT X
5,

il 9.3

HEBIKRTHED web LD FE http://www.eri.u-tokyo.ac.jp/knishida/
Seismology/wave2Drandom2.html ZEfTL T, ELEHET 2 Z2MFE L.
HERE OMIGZEERT 25 L,

§ 10.3.4 Ina case of an attenuating medium under a realistic
situation

RITHT 2 AN (EETRIC X 2 H45) LIBBICX 22 LF—0OEROH D EVWEE X
2T, EEREZHABD>TAEL x99, I I TREMILD-DIC—RITOMEEE
ZET, EEFHERE. B u, BE p, 5 o, W F 2o

o (x,w)

- pw*U(x,w) = + F(x,w) (10.29)

EMTET,
o o (x,w) 13FEH € = U /0x - T

o(x,w) = k(w)e(x, w) (10.30)

cEIBLLET, TIThk BEFHEERL L, BEZEDTEIET, 1030 2K
10.29 ITRAT % &,

oU(x,w)
ox

pw?U(x, w) = aa—x (K(w) ) + F(x,w) (10.31)
e E9,

JIGE RSN DG E OREZE Z 3. 20 u(t, x) DIEIIEE RS u(t, x) = u(t,x+L)
iz LET,

0%u(x, w)

o+ Fw) (10.32)
X

- pw?U(x,w) = k(w)

Z 2T F(x,w) & forcing term T3,
Ut F ZEAR u,(x) TRIHT 2L

Ulx, ) = ) an(@)in(x)

F(x,w) = Z Fu(@)itn (). (10.33)
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LD ERT, 2592 L EREHMEE -k, LT DL

- w?a, = —k(W)k2a,(w) + Fy(w) (10.34)
¥ hEF, I CHELD 7 DEREE KK 0 = kky/p ZERLET, ULEFr®
RN

an(w) = -1 (10.35)
w? — Wi
LR bET,

Z ZC. cross spectrum (U* (w, x1), U(w, x2)) ZHE X E T,

(U (@,x1), U(w,x2)) = > (apan i, (x1)it (x). (10.36)

ZORZFMT 272012 (aja,y) ZFHHE L £3, Z T forcing XA 7 A FEERET
RN

(FyFuw) = Fyonw (10.37)
LEFET, Thbb,
(U, Up) = fo Sn.n (10.38)
" (w? = wp)(0? - W)
PEXEE, ZORARY ML O(w,x1,x2) = (U (w,x1), U(w,x2)) 1
o 7
D(x1,x2,w,) = Z (aﬂ - w%)(oa)z ~o7) uy (x1) i, (x2) (10.39)

B Z ZIm ( Wl w*g) Un (x1)ut, (x2) (10.40)

> FyQn | *
) Z 2(6‘) )2 ((4)2 —w? B w? — (4)*2) u”(xl)un(XZ) (10.41)

n

CEEEYET, Z2ITw, ~Re{w,} +iRe{w,}/(20,) ELEF L7, o AXER?
kSR LUT tw, DETHARZ LD ET, 2F D) x BIEDH AN T 2 K (causal
part) &, BOFMNAERET KK (causal part) ZR L TWVWE T,

IANX=DBEDEICHEHLLTVWEPRTVWEEL & 5, BRI H/D oH#EEH T
LE—Z D pd(x,x,w) LD TD, BIFIALF—1F

F3Qn

Wn

/ W?p®(x, x, w)dx ~

n

CREDZZPHRET, o WA HAEEHEE > 58I, E—FHlzhox
INF—IFFEBBUCRKHBIL, Qp CHBILE T, DFD F ~ w,/0n Lo THIDTT
FLE— i%\méhiTo;®t®ﬁ%®ﬂﬁdizw#—m%“ﬁéﬂfmébﬁf
372, ZOREEZEETHIDLENRDD T,

X 10.38 TE— FHEDOHENEN X WD ERREN TS, IR 22/ 5/ B AR E 72
BEIZE— FEOMEBESHETL v, HEAMAHBEBEBROFMEZE# L < &b 3, HEGmN
12iE. ZL OEET— FRNICHBEDZEN 2 WO REZE 0 Al LTI Z->TW3
FOCRZAET, Z2ZHroDMIEZY ST 50, HEBAICHEINTOET,

X0 3 ZorEM RIS 2 RAED DX Nishida (2011) R ¥ 2SO v,

(10.42)
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F & &: Green B HHEFERI D LLEX

1. WEFRTFHIEOMRIIKEL TIT T, A=V RRTHEETEL LS ICHEZERS
FTIRMEFEL, ARV D EWEEZ 2GR H 5, xRNy 775
v R WHEEE, 77— oOuhiEY, MEE) OMREN VS DI, REDED
PNTT DTN K o THEDIZE IR 5, Bl 21X equipartition & WD HEE—D ¥ 5T
YHRIZ & o TERDPIHKE— XN TOVRVD THEREDINE (Snieder et al. 2010),

2. REAED AT 5 & Z1E Green B & DL DAIRE, D2 EEHEICL S35 -
TH, BSEOERZ T 2 Z L 23ARE,

3. FERIEOMHIRIEIX. Green BIE X D HEMEARBK O T/ X W e ifF SN b,

4. & ITHBMBC & b IR AR Z RS 5 Z 2 i3#E LW,

Summary: pros and cons

1. o [RIREEEEDS VR 2R DIEREMEZ 5,
2. 00.05Hz &V FEAYITH, HELP HEORREZITI5W0,
3. X EEIRD DRITIRD 23D 2 & BT DERREENET 2NN D 5,

F £ &: Ambient noise tomography Di#dH & §§7

L o RABERAIHATET, <RI D 2D

2. 0 7 L—BMOHEIE. BOIME S (R | K0S EH5ET 5 2 b
T,

3. X EEOHHRD 555 v, Bl OERRHAEL 5 HMED D 5, FITH
RBATHEDHEE R, HEEREOHEE IR L THRA,

ToDO: N3 EBDH D EFAZH o ZMBIXTHEL 75 v ViEFORGR

1§10.4 An application for seismic
monitoring

HERPER TR Z 2RO XA F I 7 2%E 2% LT, HEMEDOREZ(LEIRZ 2F X
IEFICHEE T, KUEARLHBIHEVICTROTADIRENZEL L. 2o THE
HEPLEAGMEDOENT 2 Z e B HfF I N2 72D T,

I TS ORI AL EZRD LS T 25E, avtr—n Y —2AFHWTHEDIK
LHEBFRNES T 7 4 2RDBRIEIENTT, LELLZLDEEHENTIEDD ¥
Ao —HBERMEZME S 5E, BIROTHEEMESLEBRSMOMRD 72 SRS 2 A E 1
PREEEDOHEEEEZS ISR LET, 207D, 2 AREZERRE2 T ERZX 8
LT, ZNE7D ) A X BDOPARYDHEEZLLZDONPIE-oEDE LERA,

ZHuzr L, i P #EORIZL 2 M H 3 2 58 I HHIB IR TFIRIIIERICER R FIET
T, RERS, HEZ XY THEMBEEEZEIE T2 Z 812X T. RIEMWITHEDIRL
HEZBHIHK27-DTT, mOEMAHIZEZEZTAEL & 5, HERFE 2 L THIZEBHI
L. ZOREROMHAMABEEBOZE BT E3, ZDEEIE. 20 2 fEloRfElL
INTMEECERA AN A E=R—FT 5N TEET, I I TIEFEMCOVTIIRNE
BFAH, BRI HFZE Y LT, Sens-Schonfelder Wegler (2006) (£ >~ K+ 7 @ Merapi
KL)% Wegler and Sens-Schonfelder (2007) (FHEUIE DfENT) 235 %,
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| §10.5 Practical problems when
applying actual data

} 10.5.1 Azimuthal dependence of incident waves

ASHBARIE O 5 OARAFE R & 2 % 72912, Cox DD

> im,, (ﬂ) [ () cos(m) + by () sin(m?)] (10.43)
o c(w
BEZET,
Z DA IER R X
B/I
= Wg)()o)for the causal part
B (180
= mfor the acausal part (10.44)

Y EL Z KR E T (Weaver et al., 2009)%, ZoRX Ao T, ASHEOIEE %24
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§ 10.5.2 Finite frequency effects
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