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Abstract

Progress in determining the details of the global 3-D seismic velocity structure requires the ability to accurately model
Ž .seismic wave propagation e.g., travel times, waveforms, etc. through heterogeneous 3-D Earth models. While for
Ž .spherically symmetric models quasi- analytical solutions are available for the verification of numerical algorithms, this is

not the case for general heterogeneous models. It is therefore desirable to establish global 3-D test models and verified
reference seismograms, which allow us to assess the accuracy of numerical algorithms quantitatively. Prior to a workshop
held on this issue at the 1997 IASPEI Meeting, a 3-D test model was handed out to various groups and long-period synthetic
seismograms were returned. This workshop was the initiation of the COmparison of global SYnthetic seismogram techniques
Ž . Ž .COSY Project, which aims at establishing a WWW page http:rrwww.geophysik.uni-muenchen.derCOSY , where the
test models and seismograms as well as some of the algorithms can be accessed. In this paper, we study the accuracy of and
compare solutions from different numerical methods for a spherically symmetric model and the 3-D test model. The

Ž .algorithms compared use the normal-mode method, the Direct Solution Method DSM , a direct evaluation of the Greens
Ž . Ž .function for spherically symmetric media GEMINI , and the finite-difference FD method. Our 3-D test model is a

Ž . Ž .perturbation to the spherically symmetric background model PREM based on a scaled temperature field from numerical
modeling of mantle convection. The model displays many features in common with recent seismic tomographic images. We

Ž .suggest that in addition to future 3-D reference Earth models, verified reference synthetic seismograms should be
established for use by the seismological community. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Global seismology aims at finding the Earth model
with the best overall fit to the enormous amount of
recorded data that is available today. This data set is
growing at an almost exponential rate. The informa-
tion contained in the whole spectrum of modern
seismic broadband recordings exceeds by far what
we are able to model or resolve with present simula-
tion algorithms, receiver coverage and inversion
techniques. While the station coverage is becoming
denser, and the ocean bottoms are being instru-
mented with permanent recording equipment, com-
putational seismologists are advancing the develop-
ment of algorithms that allow the simulation of wave
propagation through anelastic, anisotropic, fully het-
erogeneous models on a global scale.

Most of the geodynamical questions to be re-
solved today are directly related to seismic hetero-
geneity andror anisotropy in the Earth’s deep inte-
rior. These features include the transition between
the crust and mantle, the subduction, sinking and
deposition of slabs, upper mantle seismic anisotropy
and its connection with plate motion, the position
and extent of hotspots, small-scale heterogeneities in
the mantle, the structure near the core–mantle

Ž .boundary CMB , anisotropy and rotation of the
inner core. Resolving these features will require
more and better data, and improved inversion and
forward modeling algorithms for global 3-D Earth
models with a broad wavenumber spectrum.

Verification of seismic modeling algorithms for
3-D models is difficult, because — unlike for the
spherically symmetric case — in general, no analyti-
cal solutions exist which can be used as reference

Žsolutions the recent work by Pollitz, 1998 is an
.exception . The comparison of synthetic seismo-

grams computed with different numerical techniques
is one of the most promising approaches for perform-
ing verification. Since the importance of full wave
3-D modeling will certainly grow, we propose that in
addition to developing global 3-D reference Earth
models, libraries of verified synthetic reference seis-
mograms for particular source–receiver geometries
should also be developed. This will enable modeling
Ž .and inversion algorithms to be tested and their
accuracy evaluated.

At the time when the COmparison of global
Ž .SYnthetic seismogram techniques COSY workshop

Ž .was held IASPEI Meeting 1997 , no global 3-D
reference Earth model was available. Instead, the
3-D test model for the COSY Project was based on
the temperature field obtained by 3-D mantle con-
vection modeling. As we show below, this model has
several features which a future 3-D reference model
will probably share, in particular, the depth-depen-
dence of the spectral properties as well as the ampli-
tudes of the seismic velocity and density perturba-
tions.

In the following sections, we present and discuss
the 3-D model used in the simulations, review the
seismic modeling algorithms, and discuss the model-
ing results for both the spherically symmetric back-
ground model and the 3-D model COSY01_50.

2. 3-D global test model

The COSY global 3-D test model is based on the
Žspherically symmetric model, PREM Dziewonski

.and Anderson, 1981 , and a 3-D perturbation to this
background defined between the Earth’s surface and
the CMB. Details on the background model are
given in Section 4.1. The global test model was
chosen so that its general characteristics, such as the
amplitudes and the spectral properties of the pertur-
bation in seismic velocity and density, are similar to
results from global seismic tomography and geody-
namics. We deliberately did not use one of the
current global tomographic models, but rather chose
an independent 3-D model based on the temperature
field based on numerical simulation of mantle con-
vection.

The convection simulations are described by
Ž .Bunge et al. 1996; 1997 . They investigated the

effects of depth-dependent viscosity, heating mode
Ž .internal and from below , and an endothermic phase
change in the upper mantle. For convection models
with internal as well as bottom heating and a strong
increase in viscosity in the lower mantle, the result-
ing temperature field had characteristics similar to
the 3-D velocity perturbations of current tomo-
graphic models. In particular, layered viscosity led to
long linear downwellings, similar to long quasi-lin-
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Fig. 1. COSY01_50 model perturbation on spherical shells at
different depths. Left column: for harmonic degree lF6. Right

Žcolumn: for harmonic degree lF50. The perturbation as a
.percentage applies to the shear-wave velocity. P-wave velocity

and density perturbations are half the shear-wave perturbation.

ear subduction zones penetrating into the mantle and,
more importantly, to the presence of dominantly
long-wavelength features in the lower mantle. These
features are a consequence of the slow sinking of
subducting lithosphere in the lower mantle because
of the increase in viscosity with depth and are com-

Ž .patible with the results of Su and Dziewonski 1991 .
The particular model we use stems from a simula-

tion with internal heating and depth-dependent vis-
Ž .cosity and no phase changes in the upper mantle

Ž .described by Bunge et al. 1996 . The 3-D tempera-
ture field is defined at 64 depth levels between the
Earth’s surface and the CMB and is represented in
terms of spherical harmonic coefficients up to har-
monic degree lF50 using the following normaliza-

Ž .tion Stacey, 1992 :
1r2

lym !Ž .
mp cos u s 2yd 2 lq1Ž . Ž . Ž .l m ,0 lqm !Ž .

=P cos u , 1Ž . Ž .lm

which is defined so that the mean square over a
spherical surface is unity.

The temperature field has been normalized to
represent a percentage perturbation in either P-veloc-
ity, S-velocity, or density. The maximum perturba-
tion is "6% The RMS perturbations are — depend-

ing on the maximum harmonic order — 0.36%
Ž . Ž . Ž .lF6 , 0.76% lF32 and 0.78% lF50 . Exam-
ples of the perturbation fields are shown in Figs. 1
and 2 for different maximum harmonic orders and
regions of the model. In the depth sections shown in
Fig. 1, we observe that for low orders, the maximum
perturbations occur in the lower mantle. For higher
orders, we see sheet-like structures at the surface as
well as longer wavelength structures at the bottom of
the mantle. In the mid-mantle, the perturbations are
— as is consistent with recent results from seismic
tomography — smaller than at the top and the
bottom of the mantle. The strong long-wavelength
perturbation at the base of the mantle, which can also
be observed in the low-order cross-sections of Fig. 2,
is due to the slow sinking of the lithosphere in
connection with the increase of viscosity with depth.

The characteristics of the perturbation model are
Ž .summarized in the spectral heterogeneity map SHM

shown in Fig. 3. The normalized sum D of thel

squared spherical harmonic coefficients A and B ,lm lm

l
2 2D s A qB , 2Ž .Ž .Ýl lm lm

ms0

is plotted against harmonic order and depth. The
SHM shows the presence of the strongest perturba-

Fig. 2. COSY01_50 model perturbation in sections through the
mantle at constant w. The sections are shown in the planes
through source and receiver locations in the numerical experiment.
Left column: for harmonic degree lF6. Right column: for har-
monic degree lF50.
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Fig. 3. SHM of the COSY01_50 model. Normalized power of the
model perturbation is shown as a function of harmonic order and
depth. Normalized sums over depth or harmonic order are pro-
jected to the boundaries. Note the higher-order perturbations near
the surface and the dominant long-wavelength energy at the base
of the mantle.

tions at low orders at the bottom of the mantle and
the absence of strong short-wavelength features in
this region. It also shows energy up to high orders at
the top of the mantle which is due to the sheet-like
structures seen in Figs. 1 and 2. Summing the power
over all depth levels shows the characteristic domi-
nance of long-wavelength features also observed by
global tomography. Summing over all harmonic or-
ders shows that lateral heterogeneity is strongest at
the top and at the bottom of the mantle, which is also
observed in the real Earth.

In this paper, synthetic seismograms for the model
described in this section will be calculated using
various techniques. Some of those techniques can
only be applied to low-order models. It is clear that
full wave effects will be most pronounced for mod-
els with energy at high harmonic orders and at high
frequencies. It is envisaged that the spatial and tem-
poral frequency range of test models and seismo-
grams will be extended in the future as algorithms
and computational hardware evolve.

3. Global synthetic seismogram methods

In this section, we briefly review global seismic
modelling techniques with emphasis on the algo-

Ž .rithms used in this study see Table 1 .

3.1. ReÕiew

The following review is by no means complete
but should give some idea of the diversity of ap-
proaches for calculating seismograms in a spherical
Earth. We focus on methods that allow computations
of the complete wavefield. Therefore, ray-theoretical
Ž . Žand related methods e.g., Gilbert and Helmberger,
1972; Weber and Davis, 1990; Kendall and Thom-

.son, 1993; Liu and Tromp, 1996 are not considered.

3.1.1. Spherically symmetric media
Most presently used methods for the calculation

of 3-D seismograms are based upon a spherically
symmetric model as a reference model for perturba-
tion methods. Therefore, the calculation of seismo-
grams for the spherically symmetric part of the
model is still an essential ingredient for many for-
ward calculations. Many calculations, including sev-
eral in this paper, are based on the summation of

Ž .normal modes NM . The elastodynamic equations in
spherical coordinates are transformed into the fre-
quency domain and the displacement components are

Žexpanded in vector spherical harmonics e.g., Alter-
.man et al., 1959 . The resulting system of differen-

tial equations for the expansion coefficients can be
Ž .solved in many different ways. Gilbert 1980 solves

numerically for the eigenfrequencies of the earth by
an iterative procedure for the homogeneous system.

ŽThis was extended to include point sources Gilbert
.and Dziewonski, 1975 and combined with efficient

algorithms to search for the eigenfrequencies
Ž .Woodhouse, 1988 .

Other methods solve the inhomogeneous system
Žof partial differential equations including the source

Table 1
Annotation for the various algorithms used in the figures of this
study

Abbreviations Method Author

NM1 Normal mode Megnin

NM2 Normal mode Clevede´ ´ ´
DSM1–3 Direct solution method; Takeuchi

1st, 2nd, 3rd-order Born
GEM Green’s function Dalkolmo

evaluation
FD Finite difference Igel
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.term directly in the frequency domain and synthetic
seismograms are obtained after an inverse transform

Žto the time domain e.g., Chapman and Phinney,
1970; the WKBJ method used by Chapman and
Orcutt, 1985; full wave theory used by Richards,

.1973 and Choy, 1977 . Alternatively, the reflectivity
Ž .method Fuchs, 1968 , which was originally devel-

oped for horizontally layered media, was extended to
Žspherical media Fuchs and Muller, 1971; Muller,¨ ¨

.1985 by use of an earth-flattening transformation.
ŽThis transformation is exact for SH-waves the

.toroidal problem , but it is not exact for P-SV wave
Ž .propagation the spheroidal problem . There are in-

accuracies with this approach at low frequencies and
for waves which turn near the center of the Earth
Ž .Choy et al., 1980 .

An asymptotic approach to finding the eigenfre-
quencies and eigenfunctions of a spherical Earth

Ž .model was presented by Zhao and Dahlen 1996 ,
who applied conditions of constructive interference
to body waves. Another approach for the calculation
of global synthetic seismograms was introduced by

Ž .Cummins et al. 1994a; b . They used the Direct
Ž .Solution Method DSM developed by Geller and

Ž . Ž .Ohminato 1994 and Geller and Takeuchi 1995 to
Žsolve the weak form of the wave equation Galerkin

. 2formulation similar to finite-element approaches.
An improved algorithm for the P-SV problem was

2 The ‘weak form’ and ‘strong form’ of partial differential
Ž . Žequations PDE are standard terms in applied mathematics see,

.e.g., Strang and Fix, 1973 or Geller and Ohminato, 1994 , but
appear not to be widely known in seismology. The strong form is
the familiar form of the PDE. In the weak form, the solution is

Žexpanded in terms of trial functions sometimes called coordinate
.functions , whose expansion coefficients become the unknown

variables, and the PDE is thereby transformed into a set of
Ž .algebraic equations the weak form . The terms ‘weak’ and

‘strong’ denote the strictness of the conditions that must be
satisfied by the respective solutions. Let us use the elastic equa-
tion of motion as an example. The weak form solutions need only
explicitly satisfy continuity of displacement, as continuity of
traction and free surface boundary conditions are ‘natural’ condi-

Žtions that are automatically satisfied at least in an approximate
.sense by the weak form solutions. In contrast. the strong form

solutions must explicitly satisfy continuity of traction and free
surface boundary conditions, and are thus subject to ‘stronger’
requirements. Continuity of displacement is an ‘essential’ condi-
tion that must be explicitly satisfied by both the strong and weak
form solutions, as must zero-displacement boundary conditions.

Ž .presented by Takeuchi et al. 1996 . Friederich and
Ž .Dalkolmo 1995 used an alternative approach by

numerically integrating the appropriate system of
ordinary differential equations with source term and

Žsummation over vector spherical harmonics see
.Takeuchi and Saito, 1972 . An advantage of both

this approach and the DSM approach is that neither
eigenfrequencies nor eigenfunctions have to be eval-
uated in contrast to the large number of modes that
have to be summed when the NM approach is used
to compute complete seismograms.

Complete solutions to the general 3-D problem in
a heterogeneous sphere still require impractically
large amounts of CPU time if the finite-difference
Ž .FD method is used. However, it is practical to
obtain complete solutions to the wave equation for
axi-symmetric media using the FD method. This

Ž .approach — pioneered by Alterman et al. 1970 for
P-SV wave propagation — allows the calculation of
complete synthetic seismograms for spherically sym-

Ž .metric media for certain axi-symmetric source
types. This approach was applied to long-period

Ž .seismograms by Igel and Weber 1995; 1996 and
Ž .Chaljub and Tarantola 1997 .

3.1.2. Laterally heterogeneous media: perturbation
methods

In present research, the calculation of synthetic
seismograms is often undertaken by treating the 3-D
part of the model as a slight perturbation to the
spherically symmetric part of the Earth model. Such
an approach is computationally much less demand-
ing than calculating the complete wavefield for an
arbitrary 3-D structure, but does not necessarily yield
sufficient accuracy. Nevertheless, this approximate
treatment of lateral heterogeneities has played a fun-
damental role in studies of the long-wavelength 3-D
structure in the Earth’s mantle. We will review only
the key points of this approach here. The recent

Ž .monograph by Dahlen and Tromp 1998 presents
the various perturbation approaches for aspherical
structures in detail.

The NM approach is most appropriate for long-
Ž .period surface waves. Jordan 1978 and Woodhouse

Ž .and Dziewonski 1984 used the great-circle approxi-
mation, assuming that seismograms are sensitive only
to the horizontally averaged structure along a great-
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circle path between source and receiver. First-order
perturbation theory for a slightly aspherical Earth in
the time-domain was developed by Woodhouse
Ž . Ž .1983 and Tanimoto 1984 . Further approximations
to the first-order perturbation theory were introduced

Ž .by Romanowicz and Roult 1986 , Romanowicz
Ž .1987 using an asymptotic formalism, and Park
Ž . Ž .1987 , and Dahlen 1987 , introducing the sub-space

Ž .projection method, and Mochizuki 1988 , and Pol-
Ž .litz 1992 .

Where the scale length of the lateral heterogeneity
Žis much longer than the wavelength of surface

.waves , generalized ray theory can be applied in
Žcombination with the Born approximation e.g.,

Snieder, 1986, 1988; Snieder and Romanowicz, 1988;
.Romanowicz and Snieder, 1988 . The studies by

Ž . Ž .Mochizuki 1986 , Park 1987 and Romanowicz
Ž .1987 showed that the path-average approximation
Ž .PAVA commonly used in surface wave studies is
equivalent to zero-order perturbation theory when
coupling along branch is taken into account. Later,
this approach was also applied to body waves
ŽWoodhouse and Dziewonski, 1987; Tanimoto,

.1990 , but its validity is questionable for this case as
Ž .the sensitivity of body waves to the varying struc-

ture along the ray path is not accounted for. Li and
Ž .Tanimoto 1993 suggested that this drawback can

be avoided by taking into account cross-branch modal
coupling in an asymptotic fashion. This approach

Ž .was extended by Li and Romanowicz 1995 who
introduced the ‘‘nonlinear asymptotic coupling the-

Ž .ory’’ NACT , thereby avoiding restrictions as to the
length of the synthetic seismograms. The effects of
these various approximations on the resolution of
tomographic images and particularly the superiority
of the NACT approach over the PAVA approach

Ž .were described by Li and Romanowicz 1995 . Mar-
Ž .quering and Snieder 1995 developed an equivalent

method using a travelling wave approach. The ef-
fects of the Born approximation for slightly aspheri-
cal Earth structures was investigated by Cummins
Ž .1992 . The scattering of surface waves using vari-
ous approximations was studied by Friederich and

Ž . Ž .Wielandt 1993 . Tromp and Dahlen 1990 pre-
sented formulae for NM solutions based on the Born
approximation which take into account higher order
scattering terms by formal summation over the Born
series.

Ž .Su et al. 1993 developed two approaches for
aspherical structures for surface wave seismograms
based on the Born approximation. They performed
various tests and pointed out the importance of in-

Ž .corporating mode coupling. Takeuchi et al. 2000
extended the DSM method to compute complete
synthetic seismograms for laterally heterogeneous
media based on the first and higher-order Born ap-

Ž .proximation. Capdeville et al. 2000 used NM cou-
pling to investigate 3-D effects on surface waves.

3.1.3. Laterally heterogeneous media: complete solu-
tions

In the past decade, many methods have been
developed for the calculation of wave propagation in
3-D heterogeneous media without using perturbation
approximations. These efforts have been most suc-
cessful for long-period surface waves because of the
relatively light computational requirements. Varia-

Ž .tional Galerkin formulations of the problem of an
aspherical anelastic Earth were applied by Park
Ž . Ž .1986 , Park and Gilbert 1986 , and Morris et al.
Ž .1987 , although due to the computational costs these
techniques are practical only at low frequencies. The

ŽGalerkin method was also applied to zonal axi-sym-
. Ž .metric structures by Park and Yu 1992 and Yu and
Ž . Ž .Park 1993 . Lognonne and Romanowicz 1990 and´

Ž .Lognonne 1991 used high-order perturbation the-´
ory up to order n and showed that for all practical
purposes order 3 was sufficient to achieve a degree
of accuracy equivalent to the variational approach at

Ž .low frequencies. Hara et al. 1993 used the DSM to
compute long-period surface waves without perturba-
tion approximations, and used this approach to invert
iteratively for long-wavelength 3-D upper mantle
S-velocities.

In contrast, due to the much greater computational
Žrequirements, methods for computing complete in-

.cluding both body and surface waves synthetics in
3-D models are much less advanced. Most of these
techniques have been developed in a cartesian coor-
dinate system. The reason is that the equations in
spherical media are more complicated and regular
grid methods such as the FD method or the pseudo-
spectral method cannot be readily applied to a whole
sphere unless a multi-domain approach is adopted
Ž .Thomas et al., 1999 . Early attempts to solve the
elastic wave equation in spherical coordinates explic-



( )H. Igel et al.rPhysics of the Earth and Planetary Interiors 119 2000 3–23 9

Žitly by numerical methods e.g., Alterman et al.,
.1970 were impractical because of the limitations of

available computational facilities. With the advent of
parallel supercomputing and the dawn of the Ter-
aFlop era, the calculation of synthetic seismograms
for a 3-D sphere with purely numerical techniques is
becoming feasible. The first attempts to apply the FD
method to realistic global wave propagation were

Ž .carried out by Igel and Weber 1995; 1996 and
Ž .Chaljub and Tarantola 1997 . Their algorithms

solved the wave equation in an axi-symmetric form,
thereby reducing the problem to two dimensions. In
the axi-symmetric form, the space-dependent fields
in the governing equations are independent of longi-
tude. Thus, the model, wavefield and source terms
are all axi-symmetric, which limits the applicability
of this approach to sources of toroidal and explosion
type. With the use of parallel hardware, global wave-
fields with dominant periods of around 10 s can now
be simulated following this approach. As these tech-
niques allow the calculation of the complete wave-
field, the effects of strong lateral heterogeneity such
as that within subduction zones can be investigated.

Regular grid methods are inappropriate to model a
complete sphere in a single-domain approach. There-
fore, a multidomain approach was introduced for the

Ž .SH case Igel and Gudmundsson, 1997 and for the
Ž .acoustic case Thomas et al., 1999 , allowing wave-

field calculation in a full sphere for zonal models. A
pseudo-spectral technique based on Chebyshev poly-

Ž .nomials was introduced by Igel 1999 for spherical
sections. This algorithm allows the study of az-
imuthal effects of 3-D structure such as subduction
zones. A complete solution for spherical axi-sym-
metric media based on the DSM approach was pre-

Ž .sented by Cummins et al. 1997 . The ultimate goal
is to be able to calculate seismograms for an arbi-
trary 3-D sphere.

3.2. Algorithms used in this study

We summarize the various methods and algo-
rithms used to compute synthetic seismograms pre-

Ž .sented in this paper see Table 1 .

( )3.2.1. NM summation NM1,2
The modal superposition technique used in this

study is the path average approximation referred to

Ž .as PAVA Woodhouse and Dziewonski, 1984 . In
the PAVA approach, seismograms are calculated
under the assumption that the horizontally averaged
structure along the great-circle path between the
source and the receiver governs the effects of lateral
heterogeneity. This is equivalent to considering only
the coupling of modes along a single dispersion
branch and ignoring coupling between modes of
different branches. A detailed comparison of PAVA
and the more accurate nonlinear asymptotic coupling
Ž . Ž .NACT approach by Li and Tanimoto 1993 was

Ž .carried out by Li and Romanowicz 1995 . The
improvement of NACT over PAVA is mainly signif-
icant for body waves. For the COSY 3-D test model,

Žonly PAVA seismograms were available Megnin,
.NM1 . Further NM seismograms were submitted

Ž .Clevede, NM2 for the spherically symmetric PREM´ ´ ´
model. As some of the subroutines for calculating
the NM eigensolutions are the same in both of these

Ž .algorithms NM1,2 , their results should not be con-
sidered entirely independent.

( )3.2.2. GEMINI GEM
This method, developed by Friederich and

Ž .Dalkolmo 1995 for spherically symmetric media,
uses neither modal superposition nor an earth-flatten-
ing transformation. The strong form of the system of
ordinary partial differential equations including the

Ž .source terms Takeuchi and Saito, 1972 is numeri-
cally integrated and summed over vector spherical
harmonics. As the solutions are evaluated in the
discrete frequency domain, the numerical effort is
proportional to the length of the desired seismograms
for a fixed frequency band. This method requires less
computational effort than NM techniques for higher
frequency applications. In this approach, the expan-
sion coefficients of the spherical harmonics are
directly evaluated using second-order minors. The
material parameters between discontinuities are rep-
resented by continuous functions, so there is no need
for subdivision into homogeneous shells as is the
case for the reflectivity technique. The synthetic
seismograms are obtained after direct summation
over the vector spherical harmonics and numerical
inverse Fourier transform. Temporal aliasing is
avoided by evaluating the Green’s function at com-

Ž .plex frequencies Phinney, 1965 .
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3.2.3. DSM1–3
The DSM was first presented by Hara et al.

Ž .1991 , who used the eigenfunctions of degenerate
singlets of a spherically symmetric model as trial
functions. The general DSM formulation was pre-

Ž .sented by Geller and Ohminato 1994 . The DSM
allows the computation of synthetic seismograms
and their partial derivatives by solving the weak
form of the elastic wave equation. It transforms the
weak form into a system of linear equations, which
is constructed using trial functions. In the spherically
symmetric case, no approximations are made and the
complete wavefield is simulated. Cummins et al.
Ž .1994a; b applied this method to spherically

Ž .symmetricmedia SH and P-SV cases . Later, this
approach was extended to rotationally symmetric

Ž .media Cummins et al., 1997 using the optimally
accurate numerical operators derived by Geller and

Ž .Takeuchi 1995 . The DSM synthetics presented in
this paper are based on an extension of the DSM
method to 3-D media using the first-order andror

Žhigher-order Born approximation Takeuchi et al.,
.2000 . The operators used in the DSM can also be

transformed and applied in explicit time-domain al-
gorithms such as the FD method using purely local

Žtrial functions Geller and Takeuchi, 1998; Takeuchi
.and Geller, 2000 .

3.2.4. FD
The wave equation can be solved numerically by

replacing the partial differential equations with FD.
All space-dependent fields are defined on regular
grids. In spherical coordinates, this leads to space-
dependent grid spacing. Because the stability of FD
algorithms is proportional to the inverse of d x , thej

increment along coordinate j, FD methods become
impractible for whole Earth models in spherical co-
ordinates. Nevertheless, they can be applied to the
rotationally symmetric case, where the difficulties
due to the grid spacing near the poles vanish and the
depth range is restricted to a maximum depth to be
adjusted for each particular problem. Igel and Gud-

Ž . Ž .mundsson 1997 , Igel and Weber 1995; 1996 and
Ž .Thomas et al. 1999 developed algorithms for the

SH-, P-SV and acoustic cases for rotationally sym-
metric Earth models. Although the restriction to
rotationally symmetric models seems severe, many
model-dependent wave propagation phenomena can

be studied for short length-scale models and high
frequencies.

4. Computational results: spherically symmetric
model

In this section, we will compare synthetic seismo-
grams for the spherically symmetric background
model used below in the 3-D study. The verification
of the accuracy of the synthetics for this case is
essential before we can consider 3-D models. For the

Ž .dislocation source type strike–slip and receiver
Ž .locations considered here Fig. 4 , only transverse

displacement will be considered, and for the case of
an explosive source, only P-SV motion will be con-
sidered. The seismic wavefield velocities rather than
displacements are computed and are recorded at the
Earth’s surface at the receiver locations given in Fig.
4.

For reasons of symmetry, it is sufficient to con-
Žsider only three of the five receiver locations namely,

.receivers 1–3 Fig. 4 . The algorithms compared are
listed in Table 1. The ‘‘author’’ column in this table
indicates which author of the present paper was
primarily responsible for computing the synthetics
using the method shown, rather than the authorship
of the software used. In some cases, both are identi-
cal, but in others, pre-existing software was used.

4.1. Model and simulation parameters

The spherically symmetric model used in this
study is a slightly modified version of PREM. The
original PREM model contains an ocean layer. In
this study this layer was omitted and the parameters
of the topmost crustal layer extended to a radius of
6371 km. The elastic parameters are the isotropic
part of PREM without attenuation. Gravitational ef-
fects and the Earth’s rotation are not taken into
account.

The sources used in this study are located at a
Ž .latitude of 908 North Pole at a depth of 100 km.

Ž .Only two source types were used: 1 a strike–slip
Ž .source M sM sM , all other M s0; and 2x y y x 0 i j

an explosion source M sM sM sM . In bothx x y y z z 0

cases, M s1025 dyn cm. The seismograms were0
Ž .either submitted filtered NM1, NM2 or as Green’s

Ž .functions others and filtered accordingly.
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Ž .Fig. 4. a Left: Source spectrum used in the seismogram comparison. The spectrum is a cosine taper with corners at 31.4, 37.0, 400 and
Ž . Ž .3500 s period. Right: Spike filtered with the spectrum on the left. b Receiver locations q at the Earth’s surface. In all our simulations,

Ž .the epicenter is located at the North Pole 908 latitude , and the source depth is 100 km.

The spectrum of the filter and a filtered spike are
shown in Fig. 4, top. The cosine-tapered filter has
the form

F v s0 v-vŽ . 1

1 vyv1
F v s 1ycos p v Fv-vŽ . 1 2ž /ž /2 v yv2 1

F v s1 v Fv-vŽ . 2 3

1 vyv3
F v s 1qcos p v Fv-vŽ . 3 4ž /ž /2 v yv4 3

F v s0 vGv .Ž . 4

The corner frequencies v are: v s1r31.4 sy1 ;1 – 4 1

v s1r37 sy1 ; v s1r400 sy1 ; and v s1r35002 3 4

sy1. This filter is used in all examples unless the
seismograms are compared as a function of fre-

Ž .quency Figs. 7, 9, 12 and 14 . In the other cases, the
Green’s functions were convolved with a source time
function of the form

s t sy2a tea 2 t 2Ž .

where t is time and as4rT , T being the dominant
period.
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4.2. Strike–slip source — SH motion

Seismograms for a receiver at an epicentral dis-
tance of 458 from a strike–slip source are shown in

Ž .Fig. 5 top . The wavefields were filtered so that a
dominant period of 50 s was obtained. We show both

Ž .the individual traces left as well as the difference
between each of the traces and one of the NM

Ž .solutions NM1 . To calculate the differences the
seismograms were resampled with a sampling inter-
val of 4 s. All of the seismograms are in good
agreement before the arrival of the surface waves.

Fig. 5. Transverse component of displacement for a strike–slip
Ž . Žsource. Both seismograms left column and differences with

.respect to NM1, right column, multiplied by a factor 5 are shown.
Trace annotations are described in Table 1. The dominant period
is 50 s. Top: epicentral distance 458, middle: 908, bottom: 1358.
Some dominant phases are marked.

Fig. 6. Transverse component of displacement and the difference
Ž .multiplied by a factor 5 to NM1 for a strike–slip source ob-

Ž .served at 1358 epicentral distance surface waves . Same parame-
ters as previous figure.

Ž . 3The quasi- analytical methods agree well for the
surface wave arrivals. However, the FD solution is
inaccurate in both amplitude and phase, although the
envelope of the surface wave train is in overall
agreement. The misfit observed in the differential
seismogram is mainly due to a phase error in the FD
solution. This is discussed in more detail below.

Ž .In Fig. 5 middle , seismograms at an epicentral
distance of 908 are shown. In general, the above
discussion holds. The body waves are well modeled
by all methods as is the qualitative behaviour of the
surface wave train. The phase error of the FD surface
wave solutions has increased, leading to a consider-
able misfit. At a distance of 1358, the solution for the
body waves are still well modeled by all methods
Ž .Fig. 5, bottom , and all methods except FD are

Ž .almost identical for the surface waves Fig. 6 .
Ž .The relative difference root-mean square of the

energy in the seismograms for particular time win-

3 Quasi-analytic denotes solutions of the equation of motion
that are expressed partly but not entirely in terms of analytic basis
functions. For problem in spherical coordinates, the u- and f-de-

Ž .pendence of quasi-analytic basis functions is given by vector -
spherical harmonics. For NM solutions, the vertical dependence of
the basis functions is given by the eigenfunctions of the laterally
homogeneous part of the model, which are determined numeri-

Ž .cally see, e.g., Takeuchi and Saito, 1972 . For the DSM imple-
mentation used in this paper, the vertical dependence of the basis

Žfunctions is purely local i.e., essentially the same as used in local
.finite element or FD calculations . In contrast, purely numerical

methods such as FD use local basis functions for both the vertical
and horizontal dependence of the solution.
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dows is shown in Table 2 for an epicentral distance
of 458. The choice of NM1 as a reference solution is
arbitrary. The results for the body wave time window
shows that all methods are identical within 0.5%.
The results for the surface waves confirm the prob-
lems of the FD solution for surface waves. The level
of accuracy for all other techniques is basically the
same for body and surface waves.

We now investigate whether the accuracy depends
on epicentral distance. Accumulation of errors is
expected for FD as distance increases, but not for the

Žother methods, as they are all Fourier spherical
.harmonic methods. Table 3 shows the difference of

the DSM and FD solutions and the NM solutions
Ž .NM1 as a function of epicentral distance for a time
window containing the body wave arrivals. We can
see — as expected — that the FD solutions are
decreasingly accurate with increasing distance.

A further point of interest is the convergence of
numerical solutions, when the effective sampling of

Žthe wavefield is increased i.e., when the frequency
.is decreased without changing the grid spacing . In

Fig. 7, part of the seismograms at 458 distance are
convolved with source wavelets of increasing domi-
nant period. This effectively increases the number of
grid points per wavelength with which the wavefield
is sampled. The time window contains the arrivals of
the S and sS phases. We compare the GEM, DSM
and FD solutions for which impulse responses were
available. The solutions diverge for dominant periods
smaller than 15 s as the particular algorithms were
not run with grids that support those high frequen-
cies with sufficient accuracy. However, DSM and
FD both have coherent high-frequency energy, which

Ž .are probably actual phases e.g., before and after sS .

Table 2
Ž .Relative difference as a percentage between the SH seismograms

for an epicentral distance of 458. The upper right triangle shows
Ž .the difference for the body waves 700 sF tF1000 s and the

lower left triangle shows the difference in a time window contain-
Ž .ing the surface waves 1100 sF tF1500 s

Ž .D % NM1 NM2 DSM GEM FD

NM1 0.0009 0.42 0.36 0.16
NM2 0.009 0.42 0.37 0.15
DSM 0.05 0.08 0.37 0.43
GEM 0.31 0.33 0.18 0.21
FD 9.3 9.6 8.9 9.1

Table 3
Ž .Relative difference as a percentage between the SH seismograms

as a function of epicentral distance in a window containing the
body wave arrivals

Ž .D % 458 908 1358

FD–NM 0.16 0.9 2.1
DSM–NM 0.42 0.10 0.19

The waveforms are very similar for periods G20 s.
The difference between FD and DSM rapidly drops
below 0.5% for periods G20 s, indicating that the
solutions have converged. The differences with GEM
converge more slowly, indicating some slight differ-
ences in either the model or source term.

4.3. Explosion source — P-SV motion

The results for the same receiver locations for an
explosion source are shown in Fig. 8. The vertical
component of velocity is shown. At an epicentral
distance of 458, the body waves are well modeled by
all techniques, but there are some differences in the
amplitude of the surface waves. As in the SH case,
FD does not accurately model the surface wave train.

Ž .At larger epicentral distances 908 and 1358 , the

Fig. 7. Frequency-dependence of difference between FD, GEM
and DSM solutions for a time window containing the S and sS
arrivals at 458 epicentral distance. Left: The Green’s functions
convolved with source wavelets of various dominant periods.

Ž .Right: Difference as a percentage between the various methods
as a function of dominant period.



( )H. Igel et al.rPhysics of the Earth and Planetary Interiors 119 2000 3–2314

Žbody wave arrivals for all the methods FD ex-
.cluded match well, apart from small deviations in

amplitude and some low-frequency energy of un-
known origin, despite the complexity of the seismo-
grams.

Ž .The relative differences as a percentage are
shown in Table 4 for both body and surface waves at
458. The two NM approaches are basically identical
with GEM and DSM having small differences in
some of the later body wave arrivals and also some
differences in the surface waveform. The FD solu-
tion has an average misfit of around 5% for the body
waves and 30% for the surface waves.

The frequency-dependence of the difference is
studied in Fig. 9 for receiver 1 at 45 for a window

Fig. 8. Vertical component of displacement and the differences
Ž .multiplied by a factor 5 for an explosion source at 908 latitude.
Trace annotations are described in Table 1. The dominant period
is 50 s. Top: epicentral distance 458. Middle: 908. Bottom: 1358.
Same amplitude scaling for all traces.

Table 4
Ž .Relative difference as a percentage between the P-SV seismo-

grams for an epicentral distance of 458. The upper right triangle
Ž .shows the difference for the body waves 200 sF tF1100 s and

the lower left triangle shows differences for the surface waves
Ž .1100 sF tF1600 s

Ž .D % NM1 NM2 DSM GEM FD

NM1 0.068 0.45 0.81 5.6
NM2 0.042 0.49 0.87 5.7
DSM 1.90 2.08 0.48 5.2
GEM 1.00 1.13 0.99 4.9
FD 29.5 29.3 22.9 23.2

containing the arrivals of the P and PP phases. The
RMS-difference between the DSM and GEM solu-
tions becomes smaller with increasing dominant pe-
riod. However, the FD solution has a slightly differ-
ent relative amplitude of the P and PP phases,

Ž .which can be seen in Fig. 8 top . This relative
difference seems to be more significant at longer
dominant periods which leads to the increasing mis-
fit with dominant period.

5. Results: COSY01_____50 model

In this section, we compare seismograms calcu-
lated for the COSY01_50 model for various maxi-
mum harmonic order of the 3-D model perturbation.
Waveform synthetic data for the 3-D model were
only available for the strike–slip source, and we
therefore compare only synthetics for the transverse
components. The methods available for the 3-D study

Ž .were the NM approach using the PAVA NM1 , the
DSM approach using the Born approximation of

Žvarious orders DSM1–3, see Takeuchi et al., 2000
.for details , and the axi-symmetric FD approach. The

main limitation at present is the frequency range that
can be attained with these techniques using currently
available computational facilities. The bulk of the
comparative figures were obtained using a filter with
a dominant period of around 50 s.

Waveforms of the transverse motion for the
COSY01_50 model with harmonic order lF6 as
well as seismograms for the spherically symmetric
model PREM are shown in Fig. 10. The seismo-
grams for the perturbed and unperturbed Earth mod-
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Fig. 9. Frequency-dependent difference between FD, GEM and DSM solutions for a time window containing the P and PP arrivals at 458

Žepicentral distance. Left: The Green’s functions convolved with source wavelets of various dominant period. Right: Difference as a
.percentage as a function of dominant period.

Ž . Ž . Ž . Ž .Fig. 10. Comparison of waveforms transverse displacement for S receiver 1 , SS receivers 3 and 5 for PREM solid and COSY01_50
Ž .dashed with maximum harmonic order 6. Note the improving amplitude characteristics with increasing order of the Born approximation
for the DSM seismograms.
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Table 5
Comparison of traveltime perturbations obtained from the syn-

Ž .thetic seismograms with ray-theory R-Th . The traveltime pertur-
bations due to the COSY01_50 3-D model perturbation were
determined by cross-correlating the corresponding seismogram
window with the one obtained for the PREM model

Ž .DT s FD DSM1 DSM2 DSM3 NM1 R-Th

Ž .S 458 3.9 4.0 4.9 4.2 5.1 4.3
Ž .SS 908 y2.0 y1.6 y1.6 y1.6 y0.5 y2.8
Ž .SS 1358 6.6 4.8 7.0 6.8 6.5 6.0

els are superimposed to highlight the differential
Ž .effects. The time window contains the S receiver 1

Ž .or SS receiver 3 and 5 arrivals. In order to compare
the differential effects due to the 3-D structure, the
traveltime perturbation of the wavegroup in this time
window is extracted by cross-correlating the seismo-
grams for the spherically symmetric PREM model
and the traces for the 3-D model. As the seismo-
grams were resampled to a sampling rate of 10 Hz,
the error of the traveltime perturbation should be
Ž .O 0.1 s . The PREM and 3-D seismograms are shown

with correct relative amplitudes. The traveltime per-
turbations for the various techniques are summarized
in Table 5 and compared with results from ray-the-
ory. Full ray-tracing for 3-D heterogeneous models

Ž .was undertaken. Takeuchi et al. 2000 showed that
assuming ray-path perturbation as second-order per-
turbation is a good approximation for the low-degree
COSY model. While all methods agree on the sign
of the traveltime perturbations, there is considerable
scatter in the magnitude of these effects.

The seismograms in Fig. 10 show a considerable
difference between the various methods as far as the
amplitudes are concerned. Apart from the FD and
DSM3 solutions, there are significant differences in
the amplitudes of the synthetics for the spherically
symmetric and laterally heterogeneous models for an

Ž .epicentral distance of 1358 receiver 5 . The DSM1
solution shows an increase in amplitude, which seems

Žto be proportional to the traveltime perturbation and
thus the velocity anomaly encountered along the

.raypath . This amplitude effect vanishes when third-
Ž .order terms are included DSM3 . The amplitude

effects seen in the NM1 solution do not seem to

Ž . Ž .Fig. 11. Comparison of waveforms transverse displacement for surface waves at an epicentral distance of 908 for PREM solid and
Ž .COSY01_50 dashed with maximum harmonic order 6. Note the improving amplitude characteristics with increasing order of the Born

approximation for the DSM seismograms.
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Fig. 12. Comparison of waveforms at an epicentral distance of 908 for PREM and COSY01_50 with maximum harmonic order 6 as a
Ž . Ž . Ž .function of dominant period. The seismogram groups are for PREM bottom , COSY middle and the residuals top . The time window

contains the arrivals of S, sS, SS and sSS.

show this correlation. However, it is well known
Ž .e.g., Li and Romanowicz, 1995 that the PAVA
approximation performs badly for body waves.

The amplitude effects are even more pronounced
in the surface wave trains shown in Fig. 11. The
DSM1 surface wave amplitudes are increased by
almost 30%. Although — as observed above —
there is a static phase error in the FD solution for the
surface waves, it is likely that the differential effects
are correctly modeled. The FD solution does not
show such an amplitude increase nor does the DSM3
solution or — in this case — the NM1 solution.
These amplitude effects are discussed in more detail
below.

For the DSM and FD approaches, the Green’s
functions were available, which allows us to investi-
gate the frequency-dependent behaviour of the 3-D

Ž .solutions Fig. 12 . The chosen time window con-
tains the arrivals of S, sS, SS and sSS phases. The
Green’s functions are convolved with wavelets of
varying dominant period. The differential seismo-
grams for the DSM1 and FD solutions agree well for
dominant periods G40 s.

Seismograms for models up to harmonic degree
50 were only available for the axi-symmetric FD
approach and the NM methods. Seismograms for an
epicentral distance of 1358 containing the SS and
SSS wavetrains for various models are shown in Fig.

Ž .13. For the low-order model lF6 , the differential
effects are very similar in amplitude and travel time.
The maximum amplitude of the traveltime perturba-

Žtions increases with increasing harmonic order see
.Figs. 1 and 2 . For the model with perturbations up

to ls50, the traveltime perturbations of the FD

Fig. 13. Comparison of waveforms for models with different
Žmaximum harmonic order. Seismograms for receiver 2 epicentral

.distance 1358 are shown. The seismogram groups are for PREM
Ž . Ž . Ž .bottom , COSY middle, thick line and the residuals top . Left
column: FD solutions. Right column: NM1 solutions.
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Fig. 14. FD seismograms for models with different maximum harmonic order at various dominant periods. Seismograms for receiver 2
Ž . Ž . Ž . Žepicentral distance 1358 are shown. The seismogram groups are for PREM bottom , COSY middle, thick line and the residuals top,

.multiplied by a factor of 1r2 .

solutions are considerably larger than those from the
NM solutions. This may indicate that we are outside
the domain of applicability of the path-average per-
turbation approach and that its solutions are no longer
accurate.

The effects of both dominant period and maxi-
mum harmonic order in the model perturbation are
illustrated in Fig. 14 for an epicentral distance of
1358 and a time window containing the SS arrival.
For the frequency range and the model wavenumber
range considered, the waveform effects are small.
The 3-D model perturbation predominantly affects
the arrival time of the individual phases.

6. Discussion

It is fair to say that the calculation of complete
synthetic seismograms for 3-D models on a planetary
scale is still in its infancy. The reasons are manifold.
Historically, the calculation of long-period synthetic
seismograms for spherical Earth models was pre-

dominantly built around the NM approach. As in
many cases, it is appropriate to view the Earth as
spherically symmetric to first order, the calculation
of complete waveforms for spherically symmetric
Earth models has been one of the most powerful
tools in global seismology. Due to the — almost —
spherical shape of our planet, it is natural that the
first waveform algorithms for 3-D media were based
on the NM approach, and combined with perturba-
tion theory to account for ‘‘small’’ perturbations
thereto. The limitations of this approach in the con-
text of scattering were equivalent to adopting a
ray-theoretical ‘‘ansatz’’ for the perturbation of the
spherically symmetric model. The early approaches
were soon extended to higher orders. Nevertheless,
an algorithm for complete 3-D seismograms at peri-
ods below 100 s for models with 3-D structure with
harmonic order greater than ls50 based on NM,
which has to include complete intermodal coupling,
does not seem to be in sight. This is due to the fact
that the number of modes to couple grows rapidly
with frequency.
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The rapid development of purely numerical tech-
niques for seismic wave propagation, particularly in
the field of seismic exploration, has not been paral-
leled in global seismology. One of the reasons may
be the difficulties of applying standard numerical
techniques in 3-D spherical geometry. The accurate
calculation of synthetic seismograms for a laterally
and vertically heterogeneous spherical model poses
formidable challenges concerning both the algorith-
mic approach and the computational effort. How-
ever, the ease with which the seismic wave equation
can be parallelized on massively parallel supercom-
puters seems likely to make such algorithms feasible
for global models in the near future.

6.1. Spherically symmetric models

In this context, a detailed look at how purely
numerical solutions to the wave equation — even for
spherically symmetric models — compare with other
Ž .e.g., quasi-analytic approaches is important to de-
termine the direction of future work on numerical
algorithms. It is too early for an extensive look at
complete 3-D solutions, as hardly any algorithms
exist at present in production mode, as is highlighted
through this study. Therefore, this study should be
considered as preliminary in nature. Future studies
with a more detailed investigation of 3-D algorithms,
possibly at higher frequencies and model wavenum-
bers, are required.

Nevertheless, this study has shown several major
Ž .trends. As expected, after quite some iterations the

synthetic seismograms for the quasi-analytic meth-
Ž .ods NM1,2; GEM, DSM shown in Figs. 5–9 agree

well for spherically symmetric models. Even though
Žthis is encouraging, there are still differences in the

.third decimal place for reasons we have not yet
fully identified. This must be investigated. The nu-
merical solutions based on the FD method agree well
with the other solutions for the body-wave part of
the seismograms. However, as far as the surface
waves are concerned, only the envelope of the sur-
face wave train is correctly modeled while the FD
solution shows an increasing phase shift with epicen-

Ž .tral distance e.g., Fig. 5 . This is probably due to the
implementation of the free surface boundary condi-
tion, which is of lower order than the high-order

differential operators acting inside the medium. This
must also be improved.

As the FD solutions are based on the zonal wave
equation, the source is not a pure strike–slip source
as in the other solutions, but a toroidal ring-source
input at a grid point close to the axis or rotational
symmetry. Although the radiation pattern of this
source is very close to the radiation pattern of a
strike–slip source, the fact that it is a ring source
will introduce slight alterations to the far-field wave-
form. The axi-symmetric approach — although lim-
ited in the model geometry — will remain an impor-
tant approach because — due to the reduction to
essentially a 2-D problem — much higher frequen-
cies can be achieved than with complete 3-D solu-
tions. It will be a challenge to develop an algorithm
that allows general sources to be modeled with this

Žapproach and not only axi-symmetric source like
.toroidal ring sources or explosions , so that this

approach can be used for modeling real data.
One of the great challenges for computing solu-

tions to the wave equation in the time domain will be
to minimize numerical artifacts such as numerical
dispersion that cause waveform and traveltime errors
particularly for long propagation distances. The nu-

Ž .merical solutions FD used in this paper were based
on fairly standard operators used in exploration seis-
mology. More accurate extrapolation operators for
the global problem are possible and the paper by

Ž .Takeuchi and Geller 2000 in this issue represents
an important step in this direction, particularly if
their approach can be extended to spherical coordi-
nates.

6.2. COSY01_50

The 3-D model perturbation allowed us to com-
pare the differential effects of the various ap-
proaches. While the polarity of the traveltime per-
turbations are the same for all approaches, their

Ž .magnitudes vary Fig. 10; Table 5 even for the
Ž .low-order model harmonic order lF6 , where the

ray-theoretical conditions clearly are fulfilled in the
frequency range considered. This should be cause for
concern, as these differences are mapped into model
perturbations by the algorithms used in tomographic
studies. A quantification of such effects are dis-

Ž .cussed in Clevede et al. 2000 . There are noticeable´ ´
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unphysical amplitude effects observed for the low-
Žorder approaches the PAVA — NM1, and the first-

and second-order Born approximations of the DSM
.solutions . These effects are most pronounced for the

surface waves.
The extension to higher orders clearly seems to

Ž .eliminate these artifacts Figs. 10 and 11 . Presum-
ably, the third-order Born series for the DSM ap-
proach is the same as the third order perturbation for
NM. The equivalence of the first-order DSM and
modal perturbation was demonstrated by Geller et al.
Ž .1990a; b . Their work supports the view that there is
no fundamental difference between modal superposi-

Žtion and other quasi-analytic approaches e.g., GEM,
.DSM . This approach can be, but has not yet been

extended to higher orders. One of the findings of this
paper that will help in applying the DSM approach
successfully to real data modeling is that the third-
order approximation has to be adopted to avoid the
numerical amplitude errors described above. This
highlights the importance of the comparison of syn-
thetics computed with different methods. Further
discussions of the effects of including higher-order
terms can be found in Lognonne and Romanowicz´
Ž . Ž .1990 and Takeuchi et al. 2000 .

The differential effects for models with various
Ž .maximum harmonic order Fig. 13 indicate that

while for low-order models, the perturbation ap-
Ž .proach NM1 and the FD solutions are comparable,

they diverge for models with larger perturbation
amplitude and shorter spatial wavelength. This may
be due to the fact that the perturbation approach has
been extended beyond its domain of applicability.
However, the difference may also be caused by the
axi-symmetric approximation of the FD solution,
which considers only the model perturbation in the
plane through source and receiver. Only with com-
plete 3-D solution will we be able to determine the
correct 3-D behavior.

For the FD solutions, impulse responses for all
models were available. This allows the study of the
synthetic solutions as a function of frequency and
maximum harmonic order in the model perturbation
Ž .Fig. 14 . In the frequency and wavenumber bands
considered, the differential effects are predominantly
on the traveltimes of individual phases. As the capa-
bility of algorithms evolves, and wavefields and
models with higher frequencies and wavenumbers

are simulated, this type of processing will be impor-
tant so that the limits of the various approaches can
be investigated.

7. Conclusions: lessons from COSY

As far as the calculation of synthetic seismograms
for Earth models on a planetary scale are concerned,
we are at a turning point. The first generation of
global 3-D tomographic models were obtained using
modeling approaches, which have more or less se-
vere limitations concerning traveltime and amplitude
effects. With the increasing resolution of global and
regional tomographic studies, the correct simulation
of the complete wavefield, including all scattering
effects, has become a major goal in theoretical global
seismology. Some of the most interesting geodynam-
ical features, such as the subduction of plates, are
characterized by relatively strong seismic velocity
perturbations, which can only be fully understood
with complete synthetic modeling techniques.

The problem with numerical approaches is that
often, the verification of computational codes, partic-
ularly for 3-D models, is difficult, as no analytical
solutions exist. To facilitate and, in some respect,
standardize the verification of global synthetic mod-
eling algorithms in the future, we have proposed a
3-D test model in the form of seismic velocity and
density perturbations to a spherically symmetric

Ž .model PREM expanded in spherical harmonic co-
efficients up to degree 50 for 64 layers in the Earth’s
mantle. This model and the results shown in this
study are accessible through the worldwide web
Ž .http:rrwww.geophysik.uni-muenchen.derCOSY .
It is envisioned that when the first generation of 3-D
reference Earth models are available they can also be
used as test models for future comparisons of syn-
thetics.

As this area of research is in its infancy, the
results shown here should be considered as prelimi-
nary. Nevertheless, the following general observa-

Ž .tions hold: 1 Purely numerical solutions to the
wave equation in spherical geometry are now capa-
ble of competing with other more classical ap-
proaches such as perturbation theory, as far as the
forward calculation of synthetic seismograms are

Ž .concerned. 2 The investigation of the differential
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effects of the various approaches shows that consid-
Ž .erable differences e.g., traveltime effects are ob-

served. This should be borne in mind when imaging
Ž .real data. 3 The optimization of the spatial and

temporal operators for the wave equation in spherical
geometry will play a major role in making numerical
algorithms for global seismology computationally
efficient and thus feasible for use in actual data
inversion.
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