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S U M M A R Y
We present a new method for data weighting in waveform inversion to improve the obtained
seismological earth model. We define ‘sensitivity’ as an index to show the homogeneity of the
waveform inversion data set. The sensitivity is directly evaluated from the partial derivatives of
the synthetic seismograms and can be evaluated regardless of the method used to compute the
synthetics. In this study we use the Direct Solution Method, which is a highly suitable method
because of its accuracy and efficiency. If we weight the data so that the sensitivity is more or
less homogeneous throughout the whole Earth, we can achieve homogeneous resolution for
the entire region. The obtained model is an improvement over models obtained by previous
inversion schemes, in the sense that the new model efficiently retrieves the robust information
in the data. The inversion of a large data set using our methods can be expected to lead to
further improvement of seismological earth models.
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1 I N T RO D U C T I O N

Seismological earth models have until now primarily been obtained
by inversion of secondary data which are extracted from observed
seismic waveform data, such as the traveltimes of body waves, the
phase velocity of surface waves and splitting functions of modes of
free oscillations (e.g. van der Hilst et al. 1997; Grand et al. 1997;
Ritsema et al. 1999; Masters et al. 2000). Direct inversion of seismic
waveforms, which utilizes all of the information contained in the
data, has the potential to yield better earth models. In recent years
waveform inversion for detailed 3-D Earth structure has become
feasible (e.g. Megnin & Romanowicz 2000; Hara 2002), as has joint
inversion of waveform data and secondary data (e.g. Gu et al. 2001).
Further improvement can be expected by using more sophisticated
forward modelling and inversion methods.

During the past decade our research group at the University of
Tokyo has made significant progress in developing an accurate and
efficient method for computing synthetic seismograms. Our basic
approach, the Direct Solution Method (DSM) (Geller & Ohmi-
nato 1994), is a Galerkin weak form method that achieves both
accuracy and computational efficiency when calculations are made
using optimally accurate numerical operators (Geller & Takeuchi
1995). Our forward modelling software both for spherically sym-
metric earth models (Cummins et al. 1994; Takeuchi et al. 1996) and
3-D heterogeneous Earth models in spherical coordinates (Cummins
et al. 1997; Takeuchi et al. 2000) can compute synthetic seismo-
grams which are about 30 times more accurate than those computed

by conventional algorithms using the same amount of CPU time.
This allows rigorous computation of the partial derivatives of the
synthetic seismograms without any approximations other than dis-
cretization. In contrast, most previous waveform inversion studies
incorporate further approximations such as path-average approxi-
mation (Woodhouse & Dziewonski 1984) or non-linear asymptotic
coupling theory (Li & Romanowicz 1995).

We have also developed efficient algorithms of waveform in-
version for 3-D Earth structure and earthquake source param-
eters (Geller & Hara 1993; Hara 1997). These efficient algo-
rithms make it feasible to perform iterative linearized waveform
inversion for a 3-D heterogeneous initial model. The compu-
tational requirements for such iterative linearized inversion of
surface wave data are relatively small, and our group has success-
fully carried out such inversions (Hara & Geller 2000). In con-
trast, waveform inversion of complete seismograms (including both
surface waves and body waves) is much more computationally in-
tensive, and is only now becoming feasible (see the Discussion in
Takeuchi et al. 2000).

If it were possible to invert a completely homogeneous wave-
form data set, recorded by evenly distributed stations for evenly
distributed events with evenly distributed magnitudes, we could ob-
tain an ideal earth model. However, in practice, the actual data set
is far from homogeneous, so the use of some data weighting is re-
quired in order for the inversion to simulate the results that would
be obtained if an ideal data set were available. In this paper we
develop a new weighting scheme by defining an index to show the
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homogeneity of the waveform data set. Various studies (e.g. Pulliam
& Stark 1993; Trampert & Snieder 1996) have pointed out that ho-
mogeneous sampling is one of the keys to obtaining a reliable earth
model. For inversions of phase data such as delay time tomography,
path coverage can be used as a weighting index to achieve homo-
geneity. However, for waveform inversion this is neither possible
nor appropriate for the following reasons:

(1) Waveform inversion utilizes amplitude information as well as
phase information, but path coverage cannot take amplitude effects
(e.g. the effect of source magnitude and mechanism) into account.

(2) Waveform inversion rigorously considers finite wavelength
(Fresnel zone) effects, but path coverage cannot take this into
account.

(3) Waveform inversion utilizes all phases in the waveform data,
but it is almost impossible to draw paths for all phases included in
the data.

In this paper, we show that the ‘sensitivity’ of the waveform data
set is a useful index that is easy to evaluate. Many studies, including
Li & Tanimoto (1993), Zhao et al. (2000) and Dahlen et al. (2000),
have computed sensitivity kernels for particular data. However, the
sensitivity as defined in this paper is represented as the sum of
the sensitivity kernels for the entire data set (or an arbitrary subset
thereof). We will show that weighting the data to homogenize the
sensitivity improves the robustness of the inversion. The reasons for
this improvement are also discussed.

2 M E T H O D

2.1 Definition of sensitivity

Our definition of sensitivity is general and can be applied not only
to waveform inversion but also to other types of geophysical inverse
problems. In a geophysical inverse problem we first formulate the
expected relation between the data set d and model parameters m:

d = f (m), (1)

where f is a function specifying the assumed dependence of the
data set on the model.

If the model m is perturbed by a small amount δm, the expected
data will also be perturbed. The expected perturbation to the data
δd can be linearly approximated as follows:

δd = ∂ f

∂m
δm. (2)

The sensitivity for a particular perturbation to the model, δp,
S(δp), is defined by the squared norm of δd:

S(δp) =
∣∣∣∣ ∂ f

∂m
δp

∣∣∣∣
2

. (3)

The sensitivity defined in eq. (3) can be readily evaluated from the
partial derivatives ∂ f /∂m and is applicable to waveform inversion
in a straightforward manner.

2.2 Explicit formulation of sensitivity

The definition of sensitivity, eq. (3), is general and formal. However,
if we appropriately choose δp in eq. (3), we can define sensitivity
with a physically clear meaning. We will show explicit formula-
tions for block parametrizations and for global parametrizations.
For simplicity, we consider model parameters only for the rigid-
ity µ; however, the extension to other cases is straightforward. We

represent the model parameters by basis function expansions such
as:

µ(x) =
∑

l

ml�
(l)(x), (4)

where the expansion coefficients ml are the model parameters that
are unknowns in the inversions, x is the position in the Earth and �(l)

are the basis functions for the model. (Note that the basis functions
for the model and for the wavefield are in general distinct sets.)

2.2.1 Sensitivity for block parametrizations

If we use block-wise functions as the basis functions �(l)(x) in
eq. (4), we define the sensitivity for a perturbation in the rigidity
of one particular block. The sensitivity of the kth block is defined
for a perturbation in the rigidity

δµ(x) = �(k)(x). (5)

The corresponding δp in eq. (3) is

δpk′ = δk′k, (6)

where δk′k is a Kronecker delta. As we can see from eq. (5), the sen-
sitivity depends on the block size. By homogenizing this sensitivity
we will achieve higher (lower) spatial resolution for regions where
smaller (larger) blocks are used. This definition can be straightfor-
wardly extended to the case in which we use spline functions as the
basis functions �(l)(x) in eq. (4).

2.2.2 Sensitivity for global parametrizations

If we use global and orthogonal functions (e.g. spherical harmonics
or Fourier basis) as the basis functions �(l)(x) in eq. (4), we define
the sensitivity for a point perturbation in the rigidity

δµ(x) = δ(x − x j ), (7)

where xj is a particular point in the Earth. The corresponding δp in
eq. (3) is

δpl ′ = (
�(l ′)(x j )

)∗
. (8)

By homogenizing this sensitivity, we achieve a homogeneous spatial
resolution which has no regional preference. In other words, these
basis functions are not suitable if the goal is to achieve a higher
spatial resolution for some particular region.

2.3 Sensitivity for actual waveform inversion problems

As the basis functions �(l) in the expansion of eq. (4), many recent
waveform inversion studies have used spline functions in the ver-
tically dependent part and spherical harmonics in the horizontally
dependent part:

�(l)(r, θ, φ) = W (k)(r )Y (s,t)(θ, φ), (9)

where W (k)(r) are spline functions and Y (s,t)(θ , φ) are spherical har-
monics whose angular and azimuthal order are s and t respectively,
and where the superscript (l) is an index for a set of (k, s, t). For
this case, we define the sensitivity of Subsection 2.2.1 for the ver-
tically dependent part and the sensitivity of Subsection 2.2.2 for
the horizontally dependent part, i.e. the sensitivity for the rigidity
perturbation

δµ(r, θ, φ) = W (k)(r )
1

sin θ
δ(θ − θ j )δ(φ − φ j ), (10)
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where (θ j , φ j ) is a particular horizontal position. The corresponding
δp in eq. (3) is as follows:

δpl ′ = δpk′s′t ′ = δk′kY s′t ′ ∗(θ j , φ j ). (11)

If we evaluate the sensitivity at every horizontal position for a
particular vertical model parameter we obtain a sensitivity map at
that depth range, which indicates the distribution of the information
included in the data set. Examples of computed sensitivity maps are
presented in Section 3 (Figs 1, 2 and 5a).

2.4 Weighting algorithms to homogenize sensitivity

2.4.1 Homogenization for a particular depth range

We first formulate an algorithm to homogenize the sensitivity of
eqs (3) and (11) for a particular (kth) vertical model parameter. We
divide the whole data set d into several data bins d0, d1, . . . , dN and
determine the weighting factor for each bin. For example, when the
data set consists of multiple waveform data traces one possibility
is to treat each trace as a data bin and change the weighting factor
for each trace. Another possible strategy is to define several time
windows (e.g. define one window for each phase) in each trace and
treat each time window as a data bin.

We define the weighting factor
√

wi for the ith data bin di as
follows:

d′
i = √

wi di , (12)

where d′
i is a weighted data bin. Note that wi is the weighting factor

for the square norm (i.e. |d′
i |2 = wi|di |2), and the weighting factor in

eq. (12) is defined by the square root of wi . Our goal is to determine
w i so that the total sensitivity becomes homogeneous. Note that,
when w i = 1 for all i, all data are unweighted.

We denote the sensitivity for the ith data bin di at the jth horizontal
position as Sij. From the definition of the sensitivity (eqs 2 and 3) and
from the definition of the weighting factor in eq. (12), the sensitivity
S′

ij for the weighted data bin d′
i can be defined as follows:

S′
i j = wi Si j . (13)

The total sensitivity Tj for the weighted data set is defined as follows:

Tj =
∑

i

S′
i j =

∑
i

wi Si j . (14)

Our primary goal in choosing the weights is to homogenize Tj over
j, i.e. to minimize the total variance of Tj. Here we define the total
variance σ 2(T) as

σ 2(T ) =
∑

j

(Tj − T̄ )2, (15)

where T̄ is the horizontal average of the total sensitivity for the kth
vertical model parameter. The explicit form of T̄ is

T̄ = 1

J

∑
j ′

Tj ′ , (16)

where J is the total number of (discretized) horizontal points. Here
we assume evenly discretized horizontal points. If the horizontal
points are unevenly discretized, we replace eq. (16) with the appro-
priate discretized equation for

T̄ = 1



∫
S

T (x) d S, (17)

where T(x) is the total sensitivity at horizontal position x, S is the
whole horizontal surface we are considering and  is the total area
of S.

Weighting factors that minimize σ 2(T) in eq. (15) can greatly
homogenize the total sensitivity, but they are not the most appro-
priate weighting factors. If some of the weighting factors are very
large, the noise in the data is greatly enhanced, which degrades the
obtained model (see Section 4). Thus, in determining weighting
factors we need to impose conditions not only to homogenize the
resultant total sensitivity but also to avoid large perturbations from
the weighting factors for the no-weighting method (i.e. w i = 1 for
all i). We define the penalty function as follows:

L =
∑

j

(Tj − T̄ )2 + γ
∑

i

(wi − 1)2 , (18)

where γ is an appropriate damping factor.
We impose the following conditions for the total norm of weight-

ing factors w i:∑
i

wi = N , (19)

where N is the total number of data bins. This means that the total
norm of the weighting factors should be equal to that for the no-
weighting method (i.e. the case for w i = 1 for all i). We also impose
the condition

wi ≥ ε, (20)

where ε is a small positive number, to avoid negative or zero weight-
ing which would diminish the physical interpretation of the weight-
ing factors. The problem of minimizing eq. (18) under the condition
of eqs (19) and (20) is a quadratic least-squares problem subject to
linear equality/inequality constraints.

2.4.2 Homogenization for multiple depth ranges

Next we derive an algorithm to simultaneously homogenize sensitiv-
ity for multiple vertical model parameters. Seismological data have
very different sensitivity for different depths. For example, if we
invert surface wave waveform data they have great sensitivity in the
upper mantle but almost no sensitivity in the deep lower mantle. It
is critical to make an appropriate choice of spline functions W (k)(r)
in eq. (9) so that the sensitivity for each vertical model parameter
is more or less equal for each k. We must define narrow (broad)
spline functions for depth ranges in which the data set is sensitive
(insensitive), as has been done in most previous studies.

Nonetheless, we often have a great divergence of sensitivity for
each vertical model parameter; we therefore introduce the following
special method. For the case of multiple vertical model parameters,
the penalty function which is a generalization of eq. (18) is

L =
∑

k

∑
j

(
T (k)

j − T̄
)2

+ γ
∑

i

(wi − 1)2

=
∑

k

∑
j

(
T (k)

j − 1

J K

∑
k′

∑
j ′

T (k′)
j ′

)2

+γ
∑

i

(wi − 1)2 , (21)

where T (k)
j is the total sensitivity for the kth vertical model parame-

ter at the jth horizontal position, T̄ is the averaged total sensitivity
for the whole volume, and K is the total number of vertical model
parameters. If we determine the weighting factors by minimizing
L in eq. (21) for an inhomogeneous data set, the data weighting

C© 2004 RAS, GJI, 158, 681–694



684 N. Takeuchi and M. Kobayashi

scheme essentially contributes only to homogenizing the sensitivity
for different vertical parameters and does not contribute well to ho-
mogenizing the sensitivity for different horizontal positions. Each
data bin is sensitive only to a specific depth range and specific az-
imuthal range, but weighting factors are tuned to enhance or reduce
the depth sensitivity without reducing the variance of the horizontal
sensitivity. We have confirmed this fact by numerical experiments
not presented in this paper.

To avoid this problem, we replace eq. (21) with the following
penalty function:

L ′ =
∑

k

∑
j

(
T (k)

j − T̄ (k)
)2

+ γ
∑

i

(wi − 1)2

=
∑

k

∑
j

(
T (k)

j − 1

J

∑
j ′

T (k)
j ′

)2

+γ
∑

i

(wi − 1)2 , (22)

where T̄ (k) is the horizontal average of the total sensitivity of eq. (16)
for the kth vertical model parameter. The first term of eq. (22) is
the summation of total variance around the averaged sensitivity for
‘each’ vertical parameter. Because we only consider variance over
j, minimizing eq. (22) guarantees homogenization in the horizontal
direction. In the next section, we will show that this penalty function
works well in solving real problems.

3 N U M E R I C A L E X P E R I M E N T S

3.1 Model parameters used in this section

In the numerical experiments in this section we use the following
initial model and model parameters in computing the sensitivity
and inverting for 3-D Earth structure. The initial model is the mod-
ified isotropic PREM (Dziewonski & Anderson 1981). We replace
the S-velocity model for Moho–220 km depth with the SH veloc-
ity model (propagating perpendicular to the axis of symmetry) of
the anisotropic PREM. We determine only the rigidity µ; the other
structural parameters (i.e. the density and Q structure) are all fixed.
Because, in these numerical examples we invert only the transverse
component of the waveform data and neglect toroidal–spheroidal
coupling, the Lamé constant λ does not affect the data set. The
source parameters are also fixed to the Harvard CMT solutions (with
ramped source–time functions).

The model parameters are defined by the expansion eq. (4). The
basis functions used are the spherical harmonics of degree 0–12
for the laterally dependent part and the six boxcar functions for
the layers (Moho–310 km depth, 310–670 km depth, 670–1000 km
depth, 1000–1500 km depth, 1500–2000 km depth and 2000 km
depth–CMB (core–mantle boundary)) for the vertically dependent
part. The total number of model parameters is 1014.

3.2 Examples of computed sensitivity

In this subsection we provide some simple examples to show how
the sensitivity is evaluated. In all examples below we use the sen-
sitivity for δµ of eq. (10). Fig. 1 shows the sensitivity for the case
in which the whole data set d in eq. (1) consists of a single trace.
Fig. 1(a) shows the sensitivity map at Moho–310 km depth for a
shallow event. The data set is a trace of the receiver at Ala-Archa
in Kyrgyzstan (AAK; 42.639◦N, 74.494◦E) for the Aleutian earth-
quake (M w = 7.9) of 1996 June 10. A Butterworth bandpass filter

with corner frequencies of 0.025 and 0.02 Hz is applied. Because
the centroid depth of this event is shallow (29 km depth), surface
waves are dominant in the trace.

Fig. 1(a) intuitively shows the accuracy of the DSM. Because the
DSM accurately computes the effect of the couplings between mul-
tiplets (although we do not explicitly compute the modes), we can
accurately compute the sensitivity including the contribution from
the off-great circle. In contrast, previous global waveform inversion
studies using modal summation methods have assumed that sensi-
tivity exists only on the great-circle path. However, Fig. 1(a) shows
that the off-great circle makes a significant contribution to the sen-
sitivity, and that the DSM can accurately and automatically evaluate
the effects of finite wavelength. Also, because waveform inversion
is a procedure for interpreting the residual of the waveform fit be-
tween synthetics and data based on the distribution of sensitivity,
the ability to accurately compute the sensitivity means the ability to
accurately invert for 3-D Earth structure. Thus, if we analyse a large
data set using the DSM we can expect further improvement of the
seismological earth model.

The sensitivity can be computed not only for a whole trace but
also for a subset of a trace in an arbitrary time window. In Fig. 1(a)
we also show the sensitivities for the time windows G1, G2 and G3
in a data set trace. The left three sensitivity maps for G1, G2 and G3
employ the same colour scale as that used for the whole trace. The
right two sensitivity maps for G2 and G3 employ a colour scale that
is normalized by the maximum sensitivity for each plot. We can see
that the sensitivity for the whole trace is almost equivalent to the
combined sensitivity of G1, G2 and G3, and that each contribution
can be automatically evaluated with the amplitude effects included.

The sensitivity can be evaluated not only for surface waves
but also for body waves. Fig. 1(b) shows the sensitivity at 1500–
2000 km depth for a deep event. The data set is a trace of the re-
ceiver at Matsushiro in Japan (MAJO; 36.5425◦N, 138.2073◦E) for
the Bolivian earthquake (M w = 8.2) of 1994 June 9. A Butterworth
bandpass filter with corner frequencies of 0.025 and 0.02 Hz is ap-
plied. Because the centroid depth of this event is deep (647.1 km
depth), body waves are dominant in the trace.

Fig. 1(b) shows the automatic evaluation of the sensitivity of
body waves. It is well known that body waves are highly sensitive
to the regions around their bottoming points. For this distance (� =
147.89◦), the SS minor arc and the SSS major arc bottom around this
depth. Although we do not specify the types of ray, a mechanical
evaluation of the sensitivity using eqs (3) and (11) can reproduce
this feature.

The above examples are all for cases in which the whole data set
consists of a single trace, but our methods can also be applied to a
data set constituting of multiple traces. Fig. 2 shows the sensitiv-
ity at Moho–310 km depth for the whole data set for the Bolivian
earthquake of 1994 June 9. The results show that a higher sensitivity
is automatically computed around the epicentre and its antipode. A
higher sensitivity in the region in which the path coverage is dense is
also automatically computed. Thus the use of our index ‘sensitivity’
allows us to automatically evaluate the coverage of the waveform
inversion data set.

3.3 Improvement of the coverage

In this and the following subsections we demonstrate how, and the
degree to which, the use of our data weighting method changes
the obtained earth model. Fig. 3 shows the method used to choose
the data set employed in this inversion. The basic idea is to in-
clude all useful data regardless of the type of phase. We apply three
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Figure 1. (a) Sensitivity map at Moho–310 km depth (uppermost left) for the whole waveform trace (shown uppermost right), and sensitivity maps for the
waveform data within time windows in the trace for G1 (second uppermost), G2 (third uppermost left and right), and G3 (lowermost left and right). For each
sensitivity map, the blue star and circle indicate the epicentre and the receiver, respectively, the solid line indicates the minor arc path, the red area indicates the
high-sensitivity region and the black area indicates the low-sensitivity region. For the G2 and G3 maps we show sensitivity maps both in the same colour scale
as the uppermost left figure (the two figures on the left) and in the normalized colour scale by the maximum value for each plot (the two figures on the right).
The values of each colour palette show the relative amplitude compared with the maximum for the whole trace. (b) Sensitivity at 1500–2000 km depth (left)
for the whole waveform trace (shown on the right). The blue star, blue circle, solid line and colour notations are the same as in (a). The values of the colour
palette show the relative amplitude compared with the maximum of this plot.

different bandpass filters (200–400 s, 100–200 s and 50–100 s) to
a single trace and compare them with corresponding synthetic seis-
mograms. We extract time windows in which the residuals between
the data and synthetics are reasonably small for each filtered trace

and adopt data in those time windows as a data set. The width of the
adopted time windows can be different for each filtered trace, and
the time window for lower-frequency data is usually larger than that
for higher-frequency data. The time window for each trace is not

C© 2004 RAS, GJI, 158, 681–694
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Figure 1. (Continued.)

Figure 2. Total sensitivity at Moho–310 km depth for the whole data set
for the Bolivian earthquake of 1994 June 9 used in the inversion in Section 3.
Minor arc great-circle paths (shown by white lines) are also plotted.

necessarily continuous but sometimes has breaks (i.e. we can have
multiple time windows). Because surface waves sample a shallower
region than body waves, their fit to synthetic seismograms is some-
times poor. A typical example is shown in Fig. 3(b). In this case the
fits for G2 and G3 are poor, and we exclude those surface wave parts
from the data set. As a result, we have multiple time windows, and
we can utilize the information from minor arc body waves as well
as major arc body waves and multi-orbit phases.

The data used are Pacific21 (Pacific21/OHP and
Pacific21/SPANET), IRIS (IRIS/IDA, IRIS/USGS and IRIS/CDSN)
and GEOSCOPE data. We made a data set for the 20 events (M w ≥
7.0 between 1991 and 1999) shown in Fig. 4(a). The resultant data
set consists of 2592 time windows in 1161 independent traces.
The data in each time window consist of velocity seismograms (in
m s−1) at each time step (1 Hz sampling). The total path coverage
is shown in Fig. 4(b). Although the energy of the major arc and
multi-orbit phases is smaller than that of the minor arc phases, these
later phases sample the regions where minor arc path coverage is
poor (e.g. beneath the Indian Ocean and the Central Pacific). It is
thus important to utilize the later phases as much as possible.

We inverted the above data set using three different weighting
methods: our weighting method, the moment normalization method
and the no-weighting method. The moment normalization method
is one of the weighting methods used in several previous waveform
inversion studies. The weighting factors in eq. (12) are given as
√

wi = A/M (i)
0 , (23)

where A is a constant and M (i)
0 is the moment of the event for ith

data. In the no-weighting method, the weighting factors in eq. (12)

are constant:
√

wi = B, (24)

where B is a constant. (For most cases B = 1, i.e. w i = 1.) In
this numerical example, constants A and B in eqs (23) and (24) are
determined so that the sum of the total sensitivity

∑
k

∑
j T (k)

j is
equal for each weighting method. This normalization allows direct
comparison of the total sensitivity distribution and the resultant
earth models.

Fig. 5(a) shows a comparison of the total sensitivity distribution
at three layers of different depth. In defining weighting factors in
eq. (12), we treat each time window as a data bin. We determine
2592 weighting factors. In determining the weighting factors for
our method, we minimize eq. (22) using γ = 10−5 as a damping
factor. We can see that the total sensitivity distribution for the data
set used in the no-weighting method is very heterogeneous, espe-
cially at greater depths. This is caused by the fact that energy from
the great Bolivian earthquake of 1994 June 9 dominates. Using the
moment normalization method, the heterogeneity of the total sen-
sitivity distribution is slightly improved. However, as expected, the
resultant total sensitivity distribution merely reflects the seismic ray
path density, and thus this method cannot improve the sampling in
regions where path coverage is poor (e.g. beneath the Indian Ocean
and the Central Pacific). In contrast, using our weighting method the
total sensitivity of the data set becomes more or less homogeneous
over all regions.

3.4 Improvement of the obtained model

Other than weighting the data, the inversion scheme in our numerical
experiments follows the standard damped least-squares procedure.
We assume the following matrix equation between δdobs (the resid-
uals between the observed data and the synthetic data for the initial
model) and δm0 (the residuals between the true model and the initial
model):

δdobs = Aδm0, (25)

where A is the assumed dependence of δdobs on δm0. We apply
the damped least square scheme to the following equation for the
weighted data δd′

obs:

δd′
obs = A

′
δm0, (26)

where

δd′
obs = W

1/2
δd′

obs (27)

A
′ = W

1/2
A, (28)
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Figure 3. (a) Comparison of waveform data (red lines) and synthetic seismograms (green lines). The traces are bandpass filtered seismograms with corner
periods of 200–400 s (uppermost), 100–200 s (middle) and 50–100 s (lowermost) of transverse component data of the HRV station for the Aleutian earthquake
of 1996 June 10. Yellow boxes show time windows in which data are adopted as a data set. (b) Magnification of the black box in (a).

and W is a diagonal weighting matrix whose explicit elements are
Wi j = w i δ i j . The inverted model ˆδm is obtained from the equation:

ˆδm = (A′T
A

′ + �)−1A
′T

δd′
obs

= (AT
WA + �)−1A

T
Wδdobs, (29)

where Γ is an appropriate diagonal matrix of damping factors.
Fig. 5(b) shows a comparison of the obtained models. The ob-

tained model is significantly improved in the sense that it reproduces
the robust feature of previous results. Because, in this numerical ex-
ample, we use a relatively small data set containing only 20 events,
even the combined use of both the DSM and our weighting method
might yield a model with worse accuracy and resolution than the
models from previous studies. However, only the model obtained
by our weighting method agrees well with the models from previ-
ous studies, which intuitively shows that our weighting method is
effective. Note that this does not mean that we cannot obtain a bet-
ter model using our weighting method. If we use a large data set,
the resultant model should be improved, especially for small-scale
structures.

We summarize the notably improved features below. At
Moho–310 km depth, only from the model using our data weighting
method we can confirm that the distribution of mid-ocean ridges
agrees well with very low-velocity anomalies, and that the distri-
bution of the old continent and old ocean agrees well with very
high-velocity anomalies. In contrast, for the models by the previous
methods, the overall high- and low-velocity patterns are more or
less similar, but their detailed distribution does not agree with the
surface tectonics.

At the depth range of 670–1000 km, velocity structures at the
subduction zones are greatly improved. Most of the previous studies
have suggested the existence of high-velocity anomalies beneath
Indonesia and South America, which are considered to be related to
a slab penetration into the lower mantle. The model obtained by our
method clearly confirms these features.

Looking at the lower mantle, we see that the model obtained by
our method avoids spotty and extremely large anomalies. For ex-
ample, in the model obtained by the no-weighting method we can
see extremely large high-velocity anomalies beneath Panama and
the Gulf of Guinea in the depth range of 1000–1500 km, whose
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Figure 4. (a) Distribution of the epicentre used in the inversion in Section 3.
(b) Minor arc (upper) and great-circle (lower) path coverage of data set used
in the inversion.

amplitude (about 3 per cent) seems to be too large because the
mid-mantle is considered to be weakly heterogeneous. Also, at a
depth range of 2000 km CMB, we can see 2 per cent high-velocity
anomalies beneath Africa, which were not reported in previous stud-
ies. However, most such spotty features disappear using our method.
We can see that deep colours are dominant in the model obtained
by our weighting method compared with the models obtained us-
ing previous methods. Because the colour scale is normalized by
the maximum amplitude of heterogeneity, this dominance of deep
colours indicates the disappearance of spotty features.

4 R E A S O N S F O R T H E I M P ROV E M E N T

In this section we will discuss the reasons for the improvement in the
model obtained by our weighting method. We show that our method
is approximately equivalent to a homogenization of the resolution
of the obtained model. We also show that this procedure improves
the shape of the resolution kernel because the model is constrained
by various independent data, whereas using the previous weighting

methods the model is essentially constrained by only some partic-
ular subset of the data. We discuss how this improvement in the
resolution kernel enhances the robustness of the inversion.

Fig. 6 compares the resolution between the model obtained by
our method and those obtained by the previous weighting methods
at three different depth ranges. Although our model parameters are
represented by spherical harmonic expansions for the laterally de-
pendent part, we can transform the basis of the resolution matrix
from a spherical harmonic basis to a block basis. Fig. 6 shows the
distribution of diagonal elements of the transformed resolution ma-
trix. Although the absolute values of the diagonal elements depend
on the block size, we can show that the difference is only a scaling
factor as long as the number of blocks is sufficiently large. Obvi-
ously, the resolution of the model obtained by our method is much
more nearly homogeneous than that using the previous methods.
Comparing Fig. 6 with Fig. 5(a) we can see that the resolution is
more or less proportional to the sensitivity, and that homogeniza-
tion of the resolution is achieved by the homogenization of total
sensitivity. This fact is also shown theoretically if we substitute the
definition of sensitivity of eq. (3) into the definition of the resolution
matrix and ignore contributions from off-diagonal elements.

The homogenization of resolution, in general, improves the shape
of the resolution kernel. Fig. 7(a) shows examples of computed
resolution kernels at particular target points (20◦N–100◦W and 0◦N–
10◦E both at 670–1000 km depth) for the models obtained using
our weighting method and previous weighting methods. The path
coverage in these regions is also shown. If we use the no-weighting
method, the contribution of the path travelling in the vicinity of the
target point from the Bolivian earthquake (shown by white lines)
is large, and the resolution kernel is prolonged in that direction.
Even if we normalize the moment magnitude, the resolution kernel
is ill-shaped (has a large azimuthal dependence) because of the
inhomogeneity of the azimuthal coverage. Red arrows in the figure
indicate the regions where the azimuthal dependence is prominent.
On the other hand, if we use our weighting method the azimuthal
dependence is suppressed and we achieve an horizontally isotropic
resolution kernel. This is because the data travelling in the azimuth
where the path coverage is poor are enhanced. Because this should
be a general feature of our weighting scheme, we can generally
expect such an improvement of the resolution kernels.

Actually, if we compare the resolution kernels for the global
model parameter at each depth range, we can observe the improve-
ment in each of the ranges. Fig. 7(b) shows a comparison of the
resolution kernel for a particular degree-12 pattern (cosine part of
s = 12, t = 4) at 670–1000 km depth. This comparison is equivalent
to a comparison of the recovery of models for this degree-12 pattern
using noise-free synthetic data. The correlation between the input
pattern and the output pattern is 0.88, 0.79 and 0.73 for our weight-
ing method, the moment normalization method and no-weighting
method respectively. While the recovered models obtained by the
previous methods are seriously distorted, especially in the southern
Hemisphere, due to the contributions of off-diagonal elements of
the resolution matrix, the model obtained by our weighting method
shows coherence with the input model. Considering that the obtained
model is the convolution of the resolution kernel and the true earth
model with some addition of noise, this improvement in coherence
should enhance the robustness of the inversion.

One intuitive illustration of the improvement in the robustness is
the reduction of the variance for a data set which was not used in
the inversions. Fig. 8 compares the variance for the model obtained
using our weighting method with that for the model obtained using
one of the previous weighting methods. We compute the variances
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Figure 5. (a) Comparison of the total sensitivity map for our weighting method (left), for the moment normalization method (middle) and for the no-weighting
method (right) at Moho–310 km depth (upper), 1000–1500 km depth (middle) and 2000 km depth–CMB (lower). The red (black) area indicates the high-
(low-) sensitivity region. The colour scale is normalized by the maximum value of each plot. The values of each colour palette show the relative amplitude
compared with the maximum for our method at that depth. (b) Comparison of the model obtained by our weighting method (left), by the moment normalization
method (middle) and by the no-weighting method (right) at Moho–310 km depth (upper) and at 310–670 km depth (lower). The colour scale is normalized
by the maximum absolute value of each plot. In the plots for Moho–310 km depth, we also show the plate boundaries by solid lines. (b) Comparison of the
model obtained by our weighting method (left), by the moment normalization method (middle) and by the no-weighting method (right) at 670–1000 km depth
(uppermost), 1000–1500 km depth (second uppermost), 1500–2000 km depth (second lowermost) and 2000 km depth–CMB (lowermost). The colour scale is
normalized by the maximum absolute value of each plot.
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Figure 5. (Continued.)

for a data set consisting of the whole data set for one particular
event. The definition of the variance is as follows:∑

i

∣∣∣di − d(0)
i

∣∣∣2
, (30)

where d(0)
i is the ith synthetic data predicted by the obtained model.

In Fig. 8 we plot the ratio of the variance for the model obtained
by our weighting method against that for the model obtained by
a previous weighting method (either the no-weighting method or
the moment normalization method) at the epicentre of the corre-
sponding event. Blue circles indicate that the ratio is smaller than 1,
which means that the model obtained by our method better fits the
data, and red circles indicate the opposite. We see that our weight-
ing method is superior for most of the events. Note that the fitting
for the original data set used in the inversion is worst using our
weighting method (the variance reduction for the unweighted data
set is 73.1 per cent using our weighting method, 76.6 per cent us-

ing the moment normalization method and 78.6 per cent using the
no-weighting method). Better predictability for new data means the
better retrieval of the information included in both the original data
and new data, which means improvement in the robustness.

However, the robustness will not necessarily be improved as
the shape of resolution kernels is improved. This is because ex-
treme weighting will amplify the noise in data, thereby degrading
the accuracy of the obtained model. This is the reason why we
incorporate the damping factor γ in the penalty function when
determining weighting factors (eq. 22). Actually, if we estimate
the total variance of the obtained models (given by the trace of
C in eq. 20 of Jackson 1979), it increases as γ in eq. (22) be-
comes small and the weighting becomes extreme. Fig. 9 shows the
comparison of model error (the square root of total variance) of
the model obtained by various γ in eq. (22). We assume that the
covariances of the (unweighted) data set δdobs in eq. (25) are given by
σ d

2I, where I is an identity matrix. We also assume that the
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Figure 6. Comparison of the resolution of the model obtained by our weighting method (left), by the moment normalization method (middle) and by the
no-weighting method (right) at Moho–310 km depth (upper), 1000–1500 km depth (middle) and at 2000 km depth–CMB (lower). The colour scale is normalized
by the maximum value of each plot. The values of each colour palette show the relative amplitude compared with the maximum for our method at that depth.

damping factor Γ in eq. (29) is chosen to be � i j = δ i j σ d
2/σ (i)

m
2,

where σ (i)
m

2 is the variance of the ith model parameter of the initial
model δm0. The total variance of the inverted model is independent
of σ d other than a scaling factor, and the model errors in the plot
show the ratio compared with the case when γ in eq. (22) is infinity
(i.e. γ −1 is zero). When γ is infinity, the weighting factors w i all
become 1, which is the no-weighting method. Because the obtained
model for this case is what we call a ‘minimum variance solution’
(Jackson 1979), the total variance is the smallest. When γ is zero
(i.e. γ −1 is infinity), weighting occurs such that the total sensitivity
is as homogeneous as possible. The total variance exponentially in-
creases as γ −1 becomes larger and the weighting method approaches
the extreme case. Thus we should choose an appropriate γ so as
to compromise between the improvement of the resolution kernels
and the degradation of the total variance. Development of a quanti-
tative method for choosing this parameter remains a topic for future
research.

5 D I S C U S S I O N

We derived a weighting scheme that allows automatic and more
or less objective determination of weighting factors in waveform
inversion. Although this is not the first study to weight the data in
waveform inversion, our method has significant differences and mer-

its compared with previous studies. For example, Li & Romanowicz
(1996) incorporate data weighting factors for each major phase in
waveform traces. This method enhances phases, such as Sdif, which
sample regions where the information included in the whole data
set is poor. However, the goal of their weighting is to estimate the
covariance matrix of data error accurately, including the effect of
off-diagonal elements. Their method is basically the inversion to ob-
tain the minimum variance solution. Also, as explicitly stated in their
paper, their method for determining weighting factors is somewhat
ad hoc. Thus the basic concept is completely different from that of
our method, and the latter is clearly preferable from the standpoint
of objectivity. Other studies have used the moment normalization
method, but this method is clearly not as effective as that presented
here, as shown in Fig. 5.

Because the key feature of our method is homogenization of the
resolution, the model obtained by our method is especially useful
to discuss the scale of heterogeneity in the Earth. The difficulty
in discussing the scale of heterogeneity from the models obtained
by previous methods is that it is not easy to distinguish whether
a difference of scale between two regions reflects a difference of
the actual scale of the Earth’s structure or simply a difference in
resolution. However, if we homogenize the resolution, we can avoid
this problem. In the near future, we hope to detect the scale of
heterogeneity in detail by obtaining a detailed earth model using a
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Figure 7. (a) Comparison of the resolution kernels for target points at 20◦N–100◦W (upper) and at 0◦–10◦E (lower) at 670–1000 km depth for the models
obtained by our weighting method (second left), the moment normalization method (second right) and the no-weighting method (right). Minor arc path coverage
at these regions is also shown (left). The target point is shown by a blue star. The red area indicates the region where the value of the resolution kernel is large,
the black area the region where the value is around zero and the blue area the region where the value is negative. The colour scale is normalized by the maximum
value of each plot. The values of each colour palette show the relative amplitude compared with the maximum for our method at 20◦N–100◦W. White lines
are minor arc paths from the Bolivian earthquake travelling in the vicinity of the target point (within 10◦ radius from the target point). Red arrows show the
regions where notable azimuthal dependence of resolution kernels is observed in the previous weighting methods. (b) Comparison of the resolution kernels for
a degree-12 pattern (cosine part of s = 12, t = 4) at 670–1000 km depth for our weighting method (left), the moment normalization method (centre) and the
no-weighting method (right). The values of each colour palette show the relative amplitude compared with the maximum of the input model.
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Our Weighting Method/No Weighiting Our Weighting Method/Moment Normalization Method

Figure 8. Ratios of the variance for the model obtained by our weighting method to that for the model obtained by the no-weighting method (left), and ratios of
the variance for the model obtained by our weighting method to that for the model obtained by the moment normalization method (right). The variance (defined
by eq. 30) is computed for the whole data set for one particular event which was not used in the inversion. The variance ratios are plotted at the epicentre of the
corresponding event. Blue circles indicate that the variance ratio is smaller than 1 (the variance for the model obtained by our weighting method is smaller),
and red circles indicate the opposite. The radius of the circles shows the value of the ratio.
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Figure 9. Comparison of the error (square root of total variance) of the
models obtained by using various γ in eq. (22). The model error is shown
by the ratio compared to that for the minimum variance solution (the model
when γ −1 is zero).

large data set, the DSM, and the weighting method presented in this
paper.

An apparent drawback of our weighting method is that it sup-
presses information for regions where higher resolution can be ex-
pected. One straightforward solution for this problem is to use non-
uniform local functions (e.g. spherical splines, Wang & Dahlen
1995) to define model parameters for the horizontally dependent
part as well as the vertically dependent part of the physical param-
eters of the Earth. In phase inversions, such parametrizations have
already been applied both in delay time tomography (e.g. Fukao
et al. 1992; Bijwaard et al. 1998) and surface wave tomography
(e.g. Wang et al. 1998). Besides a priori parametrizations, adaptive
parametrizations have been applied (e.g. Sambridge & Faletič 2003).
They usually define model parameters so that the density of param-

eters is proportional to the density of optical rays. These approaches
seem to be very successful. If we use our sensitivity instead of ray
density (note that the ray density is equivalent to the sensitivity for
the case of phase inversions), a similar approach should be possible
for the waveform inversion. This is also an important future research
topic.
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