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S U M M A R Y
In the waveform inversion for global 3-D heterogeneous mantle structure, it is critical to
accurately compute the perturbation of synthetic seismograms caused by the crustal hetero-
geneities. In actual applications, to reduce the required CPU time, a weak form equation of
motion in terms of global trial functions is widely used. For those trial functions, the princi-
pal difficulty is how to compute the effect of the perturbation in the location of boundaries
(such as Moho and the surface). In previous studies, the formulation has been based on the
first-order perturbation theory of the free oscillation. However, this method holds only for
weakly heterogeneous media and for lower frequencies. In this study, we derive the exact weak
form elastic equation of motion for finite boundary perturbations. Our method can be applied
to arbitrary strongly heterogeneous media and to arbitrary frequencies, and should facilitates
accurate crustal correction.
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1 I N T RO D U C T I O N

The crust is the most heterogeneous region of the Earth and accurate crustal correction (i.e. accurate computation of the perturbation of
synthetic seismograms caused by the crustal heterogeneities) is critical for obtaining accurate mantle structure models. The heterogeneities
are usually represented by the summation of (i) the perturbation of physical properties (such as density and elastic constants) in the internal
regions and (ii) the perturbation of the location of the boundaries (such as Moho and the surface), and the principal difficulty is how to compute
the effect of the latter perturbation (e.g. Dahlen & Tromp 1998).

One popular solution is to use local trial functions. For example, the finite element method in terms of local trial functions (e.g. Lysmer
& Drake 1972) and the spectrum element method (e.g. Priolo et al. 1994; Komatitsch & Vilotte 1998) can compute such an effect in a
straightforward manner. Mizutani (2001) proposed an optimally accurate finite difference scheme (Geller & Takeuchi 1998; Takeuchi &
Geller 2000) for the medium with arbitrary boundary shapes. Although forward computations up to higher frequencies for 3-D heterogeneous
global Earth structure models have recently become feasible (e.g. Komatitsch & Tromp 2002a,b; Tsuboi et al. 2003), the required CPU time
is intensive and the applications of such methods to global waveform inversion studies are still in the stage of becoming feasible.

The computational method applied to the actual waveform inversion studies for global 3-D Earth structure thus far has been either the
modal summation method (e.g. Woodhouse & Dziewonski 1984; Li & Tanimoto 1993) or the direct solution method (e.g. Hara et al. 1993;
Cummins et al. 1994; Geller & Ohminato 1994; Geller & Takeuchi 1995; Takeuchi et al. 1996; Cummins et al. 1997). Both methods solve
the weak form equation of motion (or its equivalence) and use vector spherical harmonics as the laterally dependent part of the trial functions.
If the structure model has only large-scale lateral heterogeneities, most of the matrix elements become zero because of the selection rule and,
thus, the required CPU time to solve the equation of motion is greatly reduced.

Even for those global trial functions, accurate computation of the perturbed synthetic seismograms caused by the perturbation of physical
properties (such as density and elastic constants) is straightforward. Direct solution of the equation of motion for laterally heterogeneous
media (without using any perturbation approximations) is becoming feasible (e.g. Cummins et al. 1997). Higher order perturbation solutions
(e.g. Lognonné & Romanowicz 1990; Takeuchi et al. 2000) have been proposed and the latter method ensures convergence. These solutions
should allow highly accurate synthetic seismograms even for strongly heterogeneous media and for higher frequencies.

On the other hand, as for the perturbation of synthetic seismograms caused by the perturbation in the location of the boundaries, severe
limitations still exist because previous solutions rely on the first-order perturbation theory of the free oscillation; Woodhouse (1976) and
Woodhouse & Dahlen (1978) formulated a method to compute the perturbation of the eigenfrequencies, and Woodhouse (1980) extends these
results to compute the perturbation of synthetic seismograms. They consider the infinitesimal perturbation of free oscillations in the vicinity of
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Finite boundary perturbation theory 1045

Figure 1. Schematic picture showing the one-to-one mapping between the initial model (a) and the perturbed model (b). Broken lines show the meshes of the
mapping; the intersections of the mesh in the initial model are mapped to the corresponding intersection in the perturbed model (e.g. the position P is mapped
to P′). Solid thick lines show the external and internal boundaries, and the shaded region shows the region deformed by the mapping.

the reference frequency: representative eigenfrequency of the considered modes. Thus, this method breaks down for strongly heterogeneous
media or for higher frequencies.

In this study, we derive the exact weak form equation of motion for the medium with finite boundary perturbations. This method can
be applied to arbitrary trial functions; that is, to both global and local trial functions. We can solve the derived equation of motion by either
direct solution or higher order perturbation approximations, which allows highly accurate synthetic seismograms. We also show that we can
derive the previous results by Woodhouse (1980) as a special case of our formulation.

2 T H E O RY

Following the conventions of previous studies, we formulate our theory in Cartesian coordinates. In this paper, we ignore the effect of
self-gravity and Earth rotation.

2.1 Equation of motion and definition of the perturbation

First we write the equation of motion for both the initial model and the perturbed model. Following the convention of Woodhouse (1976),
perturbation is expressed by one-to-one mapping between two models. The schematic relation is shown in Fig. 1. Figs 1(a) and (b) show the
initial model and the perturbed model, respectively, and the intersections of meshes in Fig. 1(a) is mapped to the corresponding intersections
in Fig. 1(b) (e.g. position P in the initial model is mapped to P′ in the perturbed model).

As is obvious, the equation of motion is dependent on the choice of trial functions. In the perturbation theory of physical properties (such
as the density and the elastic constants), we usually use the same trial functions for both the initial model and the perturbed model. However,
in previous boundary perturbation theories (Woodhouse 1976; Woodhouse & Dahlen 1978; Woodhouse 1980), different trial functions are
defined. Those trial functions are related by the mapping (as is shown later in eq. 8). Here, we follow this definition.

The weak form equation of motion for the initial model is as follows:

ω2

∫
V

[
φ

(m)
i (x)

]∗
ρ (x) ui dx −

∫
V

[
φ

(m)
i, j (x)

]∗
Ci jkl (x) uk,l dx = −

∫
V

[
φ

(m)
i (x)

]∗
fi (x) dx, (1)

where ω is the frequency; ui is the unknown wavefield for the initial model; φ
(m)
i is the trial function for the initial model; ρ, Cijkl and fi are

the density, the elastic constant and the external force for the initial model, respectively; and V denotes the whole space of the initial model.
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Here, we assume the Galerkin weak form: the weight functions are the complex conjugate of the trial functions (see, e.g. Geller & Ohminato
1994).

The weak form equation of motion for the perturbed model is as follows:

ω2

∫
V ′

[
φ

(m)
i

′
(x′)

]∗
ρ ′(x′)ui

′dx′ −
∫

V ′

[
φ

(m)
i, j

′
(x′)

]∗
Ci jkl

′(x′)uk,l
′dx′ = −

∫
V ′

[
φ

(m)
i

′
(x′)

]∗
fi

′(x′) dx′, (2)

where u′
i is the unknown wavefield for the perturbed model; φ

(m)′
i is the trial function for the perturbed model; ρ ′, Cijkl

′ and fi
′ are the density,

the elastic constant and the external force for the perturbed model, respectively; and V ′ denotes the whole space of the perturbed model. Note
that the trial functions used are different in eqs (1) and (2). We can use x instead of x′ in eq. (2), but we use x′ for convenience in the later
discussions.

Here, we denote the mapping between the two models as

x → x′(x)

and we define the perturbed model as

ρ ′(x′) = ρ(x), (3)

Ci jkl
′(x′) = Ci jkl (x), (4)

fi
′(x′) dx′ = fi (x) dx. (5)

Note that all tensors (such as Cijkl
′) and vectors (such as fi

′) are expressed not in terms of oblique coordinates schematically as shown in
Fig. 1(b), but in terms of Cartesian coordinates even for the perturbed model. The definitions of eqs (3) and (4) are different from those in
previous theories. In these theories, they defined the mapping so that the boundaries in the initial model are mapped to the boundaries in the
perturbed model (as in this paper) and assume that the physical properties between the two models are the same; i.e. the distribution of the
density and the elastic constants are the same in the undeformed inner regions, and are smoothly extrapolated for the boundary regions. The
resultant perturbed physical properties are given as

ρ ′′(x′) = ρ(x) + ∂ρ

∂x
(x)[x′(x) − x], (6)

Ci jkl
′′(x′) = Ci jkl (x) + ∂Ci jkl

∂x
(x) [x′(x) − x], (7)

to the first order. However, we adopt the definition of eqs (3) and (4) rather than eqs (6) and (7), because the smooth extrapolations in the
latter leave ambiguity in the higher order terms for finite perturbations. Note that if we superimpose the appropriate perturbation of physical
properties, we can express the perturbed model defined in the previous theories to the first order (see Section 3).

For the perturbed model of eqs (3)–(5), we define the trial function φ
(m)′
i by

φ
(m)
i

′
(x′) = φ

(m)
i (x). (8)

We discretize the unknown variable ui in eq. (1) as

ui (x) =
∑

n

cnφ
(n)
i (x) (9)

and u′
i in eq. (2) as

u′
i (x

′) =
∑

n

c′
nφ

(n)
i

′
(x′), (10)

where cn and c′
n are unknown expansion coefficients. Substituting eqs (9) and (10) into eqs (1) and (2), respectively, we obtain the following

equation of motion in the matrix form:

(ω2T − H)c = −g, (11)

(ω2T′ − H′)c′ = −g, (12)

where

Tmn =
∫

V

[
φ

(m)
i (x)

]∗
ρ(x)φ(n)

i (x) dx, (13)

Hmn =
∫

V

[
φ

(m)
i, j (x)

]∗
Ci jkl (x)φ(n)

k,l (x) dx, (14)

T ′
mn =

∫
V ′

[
φ

(m)
i

′
(x′)

]∗
ρ ′(x′)φ(n)

i

′
(x′) dx′, (15)

H ′
mn =

∫
V ′

[
φ

(m)
i, j

′
(x′)

]∗
Ci jkl

′(x′)φ(n)
k,l

′
(x′) dx′, (16)

gm =
∫

V

[
φ

(m)
i (x)

]∗
fi (x) dx =

∫
V ′

[
φ

(m)
i

′
(x′)

]∗
fi

′(x′) dx′. (17)
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Note that the right-hand side of eqs (11) and (12) are common because of eqs (5) and (8). Note also that the perturbation of synthetic
seismograms, δui, obtained from δc(= c′ − c) is

δui (x) =
∑

n

(c′
n − cn)φ(n)

i (x)

=
∑

n

c′
nφ

(n)
i (x) −

∑
n

cnφ
(n)
i (x)

=
∑

n

c′
nφ

(n)
i

′
(x′) −

∑
n

cnφ
(n)
i (x)

= u′
i (x

′) − ui (x)

�= u′
i (x) − ui (x). (18)

We use eq. (8) at the third line of eq. (18).

2.2 Explicit matrix elements

Next, we derive the explicit matrix elements of eqs (15) and (16) by using φ
(n)
i , ρ and Cijkl instead of φ

(n)′
i , ρ ′ and C ijkl

′. In contrast to the previous
studies, we do not use the first-order Born approximation. We denote the explicit elements of x and x′ as x = (z, x, y) and x′ = (z′, x ′, y′).
Here, we assume the mapping between x and x′ is expressed by


z′ = z + δZ (x, y, z)
x ′ = x
y′ = y;

(19)

i.e. we assume the mapping is expressed by elevation as high as δZ. This expression cannot express all kinds of one-to-one mapping. Note,
however, that we can express almost every boundary perturbation that appears in actual global seismological problems and, if we can once
represent the boundary topography, we can represent arbitrary heterogeneous structure by superimposing the heterogeneities of physical
properties. We will derive the matrix elements for general one-to-one mapping expressed by x′ = x + δδX(x) in the next subsection.

For x′ and x of eq. (19), we can expect
 dz′

dx ′

dy′


 =


 1 + δZ,z δZ,x δZ,y

0 1 0
0 0 1





 dz

dx
dy


 . (20)

We integrate eq. (15) by substitution using eqs (3), (8) and (20), and we obtain

T ′
mn =

∫
V

[
φ

(m)
i (x)

]∗
ρ(x)φ(n)

i (x)

∣∣∣∣∣∣∣
1 + δZ,z δZ,x δZ,y

0 1 0
0 0 1

∣∣∣∣∣∣∣ dx

=
∫

V

[
φ

(m)
i (x)

]
ρ(x)φ(n)

i (x)(1 + δZ,z) dx. (21)

This is the mass matrix for the perturbed model. From eqs (13) and (21), we get

δTmn =
∫

V

[
φ

(m)
i (x)

]∗
ρ(x)φ(n)

i (x)δZ,z dx, (22)

where

δTmn = T ′
mn − Tmn . (23)

To integrate eq. (16) by substitution, we need to relate φ
(n)′
i,j (x′) to φ

(n)
i, j (x). To do this, we should evaluate from which point lim

ε→0
(x′ + εe j )

is mapped, where e j denotes the jth unit vector. From eq. (20), as ε → 0, we have

x + εe j ′ → x′ + ε Jj j ′ e j , (24)

where

[Jj j ′ ] =


 1 + δZ,z δZ,x δZ,y

0 1 0
0 0 1


 . (25)

Thus, we have

x′ + εe j ← x + εQ j ′ j e j ′ , (26)
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where

[Q j ′ j ] =


 1 + δZ,z δZ,x δZ,y

0 1 0
0 0 1




−1

=




1 − δZ,z

1 + δZ,z
− δZ,x

1 + δZ,z
− δZ,y

1 + δZ,z

0 1 0
0 0 1


 , (27)

or

Q j ′ j = δ j ′ j − δZ, j

1 + δZ,z
δ j ′z . (28)

From eqs (26) and (28), we get

x′ + εe j ← x + ε

(
δ j ′ j − δZ, j

1 + δZ,z
δ j ′z

)
e j ′ (29)

Using eqs (8) and (29), we get

φ
(m)
i, j

′
(x′) = lim

ε→0

φ
(m)
i

′
(x′ + εe j ) − φ

(m)
i

′
(x′)

ε

= lim
ε→0

φ
(m)
i

[
x + ε

(
δ j ′ j − δZ, j

1 + δZ,z
δ j ′z

)
e j ′

] − φ
(m)
i (x)

ε

= lim
ε→0

φ
(m)
i

(
x + εe j − ε

δZ, j

1 + δZ,z
ez

) − φ
(m)
i (x)

ε

= lim
ε→0

φ
(m)
i (x) + εφ

(m)
i, j (x) − ε

δZ, j

1 + δZ,z
φ

(m)
i,z (x) − φ

(m)
i (x)

ε

= φ
(m)
i, j (x) − δZ, j

1 + δZ,z
φ

(m)
i,z (x). (30)

Integrating eq. (16) by substitution using eqs (4), (20) and (30), we get

H ′
mn =

∫
V

[
φ

(m)
i, j (x) − δZ, j

1 + δZ,z
φ

(m)
i,z (x)

]∗
Ci jkl (x)

[
φ

(n)
k,l (x) − δZ,l

1 + δZ,z
φ

(n)
k,z(x)

]
(1 + δZ,z) dx. (31)

This is the stiffness matrix for the perturbed model. From eqs (14) and (31), we obtain

δHmn =
∫

V

[
φ

(m)
i, j (x)

]∗
Ci jkl (x)φ(n)

k,l (x)δZ,z dx

−
∫

V

{[
φ

(m)
i,z (x)

]∗
Ci jkl (x)φ(n)

k,l (x)δZ, j + [
φ

(m)
i, j (x)

]∗
Ci jkl (x)φ(n)

k,z(x)δZ,l

}
dx

+
∫

V

[
φ

(m)
i,z (x)

]∗
Ci jkl (x)φ(n)

k,z(x)
δZ, jδZ,l

1 + δZ,z
dx,

,

(32)

where

δHmn = H ′
mn − Hmn . (33)

Eqs (21) and (31) are the rigorous matrix elements and eqs (22) and (32) are the perturbation of matrix elements as a result of finite
boundary perturbations. Note that we use neither the explicit value of φ

(n)
i nor the infinitesimal perturbation approximation, and thus these

matrix elements hold for arbitrary trial functions and for arbitrary strongly heterogeneous media and arbitrary higher frequencies.

2.3 Explicit matrix elements: general case

Using procedures similar to those presented in the previous subsection, we can derive the matrix elements for the general one-to-one mapping
given by

x′ = x + δX(x). (34)

The results are given by

T ′
mn =

∫
V

[
φ

(m)
i (x)

]∗
ρ(x)φ(n)

i (x) |J| dx, (35)

H ′
mn =

∫
V

[
Q j ′ jφ

(m)
i, j ′ (x)

]∗
Ci jkl (x)

[
Ql ′lφ

(n)
k,l ′ (x)

] |J| dx, (36)
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where

Ji j = δi j + δXi, j , (37)

Qi j = (Ji j )
−1. (38)

Explicit elements of |J| and Q in eqs (35) and (36) are directly computed from explicit evaluations of eqs (37) and (38), although the
mathematics are tedious. Note that J and Q are known because δXi are known variables.

3 F I R S T - O R D E R P E RT U R B AT I O N T H E O RY

In this section, we derive the explicit matrix elements under the first-order Born approximation treating the perturbations, δX in eq. (34), as
infinitesimal. Note that every equation in this section is to the first order. The independent variable for each function is x unless explicitly
stated otherwise. We assume that δX is derivable and its non-zero region is finite, and δX i, j are thus all first-order terms.

3.1 Explicit elements

As stated in Section 2.1, the distribution of the density and the elastic constants for the perturbed model differ between our theory and
previous first-order perturbation theories. We derive the matrix elements for the perturbed model of the previous theories. We first evaluate
the perturbation of our matrix elements, and then add the required perturbation resulting from different distributions of the density and elastic
constants, i.e. the total perturbation of the matrix elements, δAmn, is given as follows:

δAmn = ω2δTmn − δHmn + ω2

∫
V

[
φ

(m)
i

]∗
δρ ′φ(n)

i dx −
∫

V

[
φ

(m)
i, j

]∗
δCi jkl

′φ(n)
k,l dx ,

(39)

where

δρ ′(x) = ρ ′′[x′(x)] − ρ ′[x′(x)], (40)

δCi jkl
′(x) = Ci jkl

′′[x′(x)] − Ci jkl
′[x′(x)]. (41)

First, we evaluate δT mn and δH mn in eq. (39) to the first order. From explicit evaluations of eqs (37) and (38), we get

|J| = 1 + δXi,i , (42)

Qi j = δi j − δXi, j . (43)

Substituting eqs (42) and (43) into eqs (35) and (36), we get

T ′
mn =

∫
V

[
φ

(m)
i

]∗
ρφ

(n)
i (1 + δX p,p) dx, (44)

H ′
mn =

∫
V

[
φ

(m)
i, j − δX j ′, jφ

(m)
i, j ′

]∗
Ci jkl

[
φ

(n)
k,l − δXl ′,lφ

(n)
k,l ′

]
(1 + δX p,p) dx. (45)

Substituting eqs (13), (14), (44) and (45) into eqs (23) and (33), we get

δTmn =
∫

V

[
φ

(m)
i

]∗
ρφ

(n)
i δX p,p dx, (46)

δHmn =
∫

V

[
φ

(m)
i, j

]∗
Ci jklφ

(n)
k,l δX p,p dx

−
∫

V

{[
φ

(m)
i, j ′

]∗
Ci jklφ

(n)
k,l + φ

(n)
i, j ′Ci jkl

[
φ

(m)
k,l

]∗}
δX j ′, j dx. (47)

In deriving the last term of eq. (47), we use the symmetric nature of Cijkl: i.e. Cijkl = Cklij.
Next, we add the required perturbation of the density and the elastic constants. Substituting eqs (3), (4), (6) and (7) into eqs (40) and

(41), we can see the required perturbations are

δρ ′(x) = ∂ρ

∂x
(x)[x′(x) − x], (48)

δCi jkl
′(x) = ∂Ci jkl

∂x
(x) [x′(x) − x]. (49)

Substituting eq. (34) into eqs (48) and (49), we get

δρ ′ = ρ,pδX p, (50)

δCi jkl
′ = Ci jkl,p δX p. (51)
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Substituting eqs (46), (47), (50) and (51) into eq. (39), we get

δAmn = ω2

∫
V

[
φ

(m)
i

]∗
ρφ

(n)
i δX p,p dx

−
∫

V

[
φ

(m)
i, j

]∗
Ci jklφ

(n)
k,l δX p,p dx

+
∫

V

{[
φ

(m)
i,p

]∗
Ci jklφ

(n)
k,l + φ

(n)
i,pCi jkl

[
φ

(m)
k,l

]∗}
δX p, j dx

+ω2

∫
V

[
φ

(m)
i

]∗
ρ,pφ

(n)
i δX p dx −

∫
V

[
φ

(m)
i, j

]∗
Ci jkl,pφ

(n)
k,l δX p dx. (52)

Note that we exchange the indices ( j ′ → p and l ′ → p) and use the symmetric nature of Cijkl in the third line of eq. (52). Integrating the first
three terms of right-hand side of eq. (52) by parts, we obtain

δAmn =
∫

S

{
ω2

[
φ

(m)
i

]∗
ρφ

(n)
i − [

φ
(m)
i, j

]∗
Ci jklφ

(n)
k,l

}
δX pn p d S

+
∫

S

{[
φ

(m)
i,p

]∗
Ci jklφ

(n)
k,l + φ

(n)
i,pCi jkl

[
φ

(m)
k,l

]∗}
δX pn j d S

−
∫

V

{
ω2

[
φ

(m)
i

]∗
ρφ

(n)
i − [

φ
(m)
i, j

]∗
Ci jklφ

(n)
k,l

}
,p

δX p dx

−
∫

V

{[
φ

(m)
i,p

]∗
Ci jklφ

(n)
k,l + φ

(n)
i,pCi jkl

[
φ

(m)
k,l

]∗}
, j
δX p dx

+ω2

∫
V

[
φ

(m)
i

]∗
ρ,pφ

(n)
i δX p dx −

∫
V

[
φ

(m)
i, j

]∗
Ci jkl,pφ

(n)
k,l δX p dx

=
∫

S

{
ω2

[
φ

(m)
i

]∗
ρφ

(n)
i − [

φ
(m)
i, j

]∗
Ci jklφ

(n)
k,l

}
δX pn p d S

+
∫

S

{[
φ

(m)
i,p

]∗
Ci jklφ

(n)
k,l + φ

(n)
i,pCi jkl

[
φ

(m)
k,l

]∗}
δX pn j d S

−
∫

V

[
φ

(m)
i,p

]∗{
ρω2φ

(n)
i + [

Ci jklφ
(n)
k,l

]
, j

}
δX p dx

−
∫

V
φ

(n)
i,p

[
ρω2

[
φ

(m)
i

]∗ + {
Ci jkl

[
φ

(m)
k,l

]∗}
, j

]
δX p dx, (53)

where S represents the internal and external surfaces in V and nj is the unit normal vector of the surface.

3.2 Multiplet coupling problem

Now we consider the matrix elements of eq. (53) for the multiplet coupling problem in the vicinity of the reference frequency and show the
obtained elements, which are the same as those in Woodhouse (1980). We assume we use the eigenfunctions s(n)

i as trial functions φ
(n)
i . In this

subsection only, we assume an elastic Earth model (i.e. Cijkl are real). We denote the reference frequency as ω0. For this multiplet coupling
problem, the matrix elements of eq. (53) are as follows:

δAmn =
∫

S

{
ω0

2
[
s(m)

i

]∗
ρs(n)

i − [
s(m)

i, j

]∗
Ci jkl s

(n)
k,l

}
δX pn p d S

+
∫

S

{[
s(m)

i,p

]∗
Ci jkl s

(n)
k,l + s(n)

i,pCi jkl

[
s(m)

k,l

]∗}
δX pn j d S. (54)

Note that the last two terms of eq. (53) disappear because s(n)
i satisfies the homogeneous equation of motion and

ρω2s(n)
i + [

Ci jkl s
(n)
k,l

]
, j

= 0(ε2), (55)

ρω2
[
s(m)

i

]∗ + {
Ci jkl

[
s(n)

k,l

]∗}
, j

= 0(ε2), (56)

when ω − ω0 = O(ε). If we denote the amplitude of boundary perturbation in the normal direction (from − to +) as δh, then δXp is given as

δX p = δhn+
p (57)
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on the surface S, where n+
p is the normal vector of the surface from − to +. Substituting eq. (57) into eq. (54), we obtain

δAmn =
∫

S

{
ω0

2
[
s(m)

i

]∗
ρs(n)

i − [
s(m)

i, j

]∗
Ci jkl s

(n)
k,l

}
δhn+

p n p d S

+
∫

S

{[
s(m)

i,p

]∗
Ci jkl s

(n)
k,l + s(n)

i,pCi jkl

[
s(m)

k,l

]∗}
δhn+

p n j d S

= −
∫

S

{
ω0

2
[
s(m)

i

]∗
ρs(n)

i − [
s(m)

i, j

]∗
Ci jkl s

(n)
k,l

}+
−δh d S

−
∫

S

{[
s(m)

i,p

]∗
Ci jkl s

(n)
k,l + s(n)

i,pCi jkl

[
s(m)

k,l

]∗}+
−δhn+

p n+
j d S.

(58)

These are the matrix elements given in Woodhouse (1980), which are derived from eq. (18) of Woodhouse (1976).

4 N U M E R I C A L S O L U T I O N

4.1 Matrix elements in terms of the fourier basis

We derive the perturbation of the matrix elements in eqs (22) and (32) resulting from finite boundary perturbations. Here, we discuss how to
evaluate these matrix elements when we use global functions (such as the discrete Fourier basis and spherical harmonics) as the horizontally
dependent part of the trial functions. In this subsection, we first show the explicit formulations for a 2-D SH problem in terms of the discrete
Fourier basis. We show that if the matrix elements are rigorously evaluated, we obtain huge numbers of non-zero elements and require huge
CPU time to solve the equation of motion in eq. (12). We incorporate some approximations to greatly reduce the non-zero elements and,
thereby, the required CPU time.

We assume the problem (the structure, the source and the wavefield) is homogeneous in the y direction for both the initial model and the
perturbed model. We denote the rigidity as µ. We use the laterally homogeneous initial model: the density ρ and the rigidity µ are a function
of z only. We assume the whole space is a rectangle whose measurements are Lx and Lz in the x and z directions, respectively. For this problem,
the matrix operators for the initial model (eqs 13 and 14) are as follows:

Tmn =
∫ Lz

0

∫ Lx

0

[
φ(m)

]∗
ρφ(n) dx dz, (59)

Hmn =
∫ Lz

0

∫ Lx

0

[
φ(m)

,x

]∗
µφ(n)

,x dx dz +
∫ Lz

0

∫ Lx

0

[
φ(m)

,z

]∗
µφ(n)

,z dx dz. (60)

The perturbation of the matrix operators (eqs 22 and 32) as a result of the perturbation, δZ in eq. (19), is as follows:

δTmn =
∫ Lz

0

∫ Lx

0

[
φ(m)

]∗
ρφ(n)δZ,z dx dz, (61)

δHmn =
∫ Lz

0

∫ Lx

0

[
φ(m)

,x

]∗
µφ(n)

,x δZ,z dx dz −
∫ Lz

0

∫ Lx

0

[
φ(m)

,z

]∗
µφ(n)

,z δZ,z dx dz

−
∫ Lz

0

∫ Lx

0

[
φ(m)

,z

]∗
µφ(n)

,x δZ,x dx dz −
∫ Lz

0

∫ Lx

0

[
φ(m)

,x

]∗
µφ(n)

,z δZ,x dx dz

+
∫ Lz

0

∫ Lx

0

[
φ(m)

,z

]∗
µφ(n)

,z

δZ,xδZ,x + δZ,zδZ,z

1 + δZ,z
dx dz. (62)

Here, we show how to evaluate eqs (61) and (62) when we use the trial functions

φ(n)(x, z) = W (q)(z) �(α)(x), (63)

where (n) is the index to denote a pair of indices (q, α), W (q) represents the vertically dependent part of the trial functions (e.g. the linear
spline functions) and �(α) represents the discrete Fourier basis:

�(α)(x) = exp(iα	kx x)

(
	kx = 2π

Lx

)
. (64)

In a manner similar to that of the popular approach for the perturbation of the physical properties, we parametrize the perturbation, δZ in
eq. (19), in terms of appropriate basis functions. In our method, we expand in terms of the linear spline functions for the vertically dependent
part and the discrete Fourier basis for the horizontally dependent part, as follows:

δZ (x, z) =
K∑

k=0

smax∑
s=−smax

δzks X (k)(z) �(s)(x), (65)

where s max is the maximum order of the Fourier series to express the perturbation, δzks are the expansion coefficients, X (k) are linear spline
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Figure 2. The linear spline function system X (k)(z) used in the expansion of eq. (65) when the deformed region (the region where δZ is non-zero) is only in a
part of the space (z ≥ z0) and the deformed boundaries are the Moho (at z = z1), the Conrad (at z = z2) and the surface (at z = z3).

functions

X (k)(z) =




z − zk−1
zk − zk−1

(zk−1 ≤ z ≤ zk)

zk+1 − z
zk+1 − zk

(zk ≤ z ≤ zk+1)

0 (otherwise)

(66)

and K is the maximum of k. We neglect the first and the second line of eq. (66) for the k = 0 and k = K cases, respectively. Note that W (q)(z)
in eq. (63) and X (k)(z) in eq. (65) are distinct sets. We have various choices for the vertically dependent part of the basis functions in eq. (65),
but we use the linear spline functions because they give the simplest results in the formulations below. Here, we assume the deformed region
(the region where δZ is non-zero) spreads throughout the whole space.

When the deformed region is only in a portion of the space, we define a different linear spline function system. For example, if we perturb
only the Moho, the Conrad and the surface (or the bathymetry; note that liquid regions such as oceans are excluded from the SH problem), we
use the linear spline functions shown in Fig. 2. We assume the deformed region is only z ≥ z0, and the locations of the Moho, the Conrad and
the surface are z = z1, z = z2 and z = z3, respectively. For this case, we do not use X (0) to ensure the continuity of δZ and define X (1) –X (3)

whose node is z1 – z3, respectively. It is useful to use the linear spline functions, not restricted to this case, whose node coincides with the
location of the discontinuities because the expansion coefficients δzks in eq. (65) represent the spectrum of the elevation at the discontinuities:
i.e. the spectrum of the topography of the discontinuities. In the formulations below, we show the matrix elements of eqs (61) and (62) for δZ
in terms of eqs (65) and (66). Some modifications are required if we are to use the linear spline functions in Fig. 2, but the modifications are
very minor.

The use of the trial functions of eq. (64) is efficient when we can use the selection rule in this problem:

∫ Lx

0

[
�(α′)]∗

�(s)�(α) dx =
{

Lx (if − α′ + s + α = 0)

0 (otherwise).
(67)

However, if we substitute eqs (63)–(65) into eqs (61) and (62), we see that a huge number of non-zero elements in δH arise because we have a
term non-linear to δZ (i.e. the last term in right-hand side of eq. 62). To fully utilize the merit of the selection rule, we use the approximation
to re-expand the non-linear term in terms of the discrete Fourier basis, as follows:

δZ,xδZ,x + δZ,zδZ,z

1 + δZ,z
=

∑
k′

s′
max∑

s′=−s′
max

δz′
k′s′ P (k′)(z)�(s′)(x), (68)

where δz′
k′s′ are the expansion coefficients of this non-linear term and P (k′) is some z-dependent function used in the expansion (we give the

explicit form later in eqs 74–77). Using the trial functions of eq. (63) and the expansion of eqs (65) and (68), the matrix elements of eqs (61)
and (62) are as follows:

δTmn =
∑
k,s

Lxδα′,s+αδzks

∫ Lz

0
W (q ′)ρW (q) d X (k)

dz
dz, (69)
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δHmn =
∑
k,s

α′α	kx
2 Lxδα′,s+αδzks

∫ Lz

0
W (q ′)µW (q) d X (k)

dz
dz

−
∑
k,s

Lxδα′,s+αδzks

∫ Lz

0

dW (q ′)

dz
µ

dW (q)

dz

d X (k)

dz
dz

+
∑
k,s

sα	kx
2 Lxδα′,s+αδzks

∫ Lz

0

dW (q ′)

dz
µW (q) X (k) dz

−
∑
k,s

α′s	kx
2 Lxδα′,s+αδzks

∫ Lz

0
W (q ′)µ

dW (q)

dz
X (k) dz

+
∑
k′,s′

Lxδα′,s′+αδz′
k′s′

∫ Lz

0

dW (q ′)

dz
µ

dW (q)

dz
P (k′) dz, (70)

where (m) is the index to denote a pair of indices (q ′, α′). We see that the selection rule of eq. (67) is fully utilized and most of the matrix
elements are zero if s ′

max in eq. (68) is reasonably small. It is well known that for smooth media (i.e. if we can well approximate the perturbation
by the expansion of eq. 65 by smaller s max), we can approximate the wavefield by considering only coupling between nearby wavenumbers
and the truncation in eq. (68) should be a reasonable approximation. We show that this approximation works fine for actual applications in the
numerical examples below. The accuracy of the obtained solution increases as s ′

max becomes larger, but the required CPU time also increases.
In the actual application, we should choose an appropriate s ′

max considering the trade-off between accuracy and CPU time.
The remaining questions are how to choose P (k′) (z) and how to determine δz′

k′s′ in eq. (68). We can straightforwardly determine P (k′)

and δz′
k′s′ by explicit evaluations. Substituting the explicit form of eqs (65) and (66), we get

δZ,xδZ,x + δZ,zδZ,z

1 + δZ,z
= X (k−1)2

(z)
F (k−1)2

(x)

1 + G(k)(x)
+ X (k)2

(z)
F (k)2

(x)

1 + G(k)(x)

+ 2X (k−1)(z)X (k)(z)
F (k−1)(x)F (k)(x)

1 + G(k)(x)
+ G(k)2

(x)

1 + G(k)(x)
(71)

in zk−1 ≤ z ≤ zk , where

F (k)(x) =
∑

s

δzks�
(s)
,x (x), (72)

G(k)(x) =
− ∑

s
δz(k−1)s�

(s)(x) + ∑
s

δzks�
(s)(x)

zk − zk−1
(73)

and 1 ≤ k ≤ K . Comparing eqs (68) and (71), we see that P (k′) and δz′
k′s′ are as follows:

P (4k+1)(z) =
{

X (k−1)2
(z) (zk−1 ≤ z ≤ zk)

0 (otherwise),
(74)

P (4k+2)(z) =
{

X (k)2
(z) (zk−1 ≤ z ≤ zk)

0 (otherwise),
(75)

P (4k+3)(z) =
{

2X (k−1)(z)X (k)(z) (zk−1 ≤ z ≤ zk)

0 (otherwise),
(76)

P (4k+4)(z) =
{

1 (zk−1 ≤ z ≤ zk)

0 (otherwise),
(77)

δz′
(4k+1)s′ = 1

Lx

∫ [
�(s′)(x)

]∗ F (k−1)2
(x)

1 + G(k)(x)
dx, (78)

δz′
(4k+2)s′ = 1

Lx

∫ [
�(s′)(x)

]∗ F (k)2
(x)

1 + G(k)(x)
dx, (79)

δz′
(4k+3)s′ = 1

Lx

∫ [
�(s′)(x)

]∗ F (k−1)(x)F (k)(x)

1 + G(k)(x)
dx, (80)

δz′
(4k+4)s′ = 1

Lx

∫ [
�(s′)(x)

]∗ G(k)2
(x)

1 + G(k)(x)
dx . (81)
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Figure 3. (a) The initial model (thin solid line) and the perturbed model (thick solid line) used in this simulation. The broken line shows the wavefront of the
incident plane wave. P, O and P′ are the locations of the receiver in the record section of (b). (b) The record section computed by using finite perturbation theory
(FPT; left) and first-order perturbation theory (1DT; right) for the perturbed model shown in (a). The amplitude is normalized by the maximum amplitude of
each trace. (c) The synthetic seismograms for the initial model (thin line) and for the perturbed model (thick solid line) for the receiver O computed by using
FPT (left) and 1DT (right). (d) Comparison of the synthetic seismograms for the perturbed model for the receiver O computed using Aki & Larner’s method
(top; labelled as AL), FPT (middle) and 1DT (bottom).

4.2 Numerical examples

In this subsection, we show that our finite perturbation theory (hereafter referred as FPT) can compute the effect of crustal heterogeneities
much more accurately than can the existing first-order perturbation theory (hereafter referred to as 1DT). We consider 2-D SH problems and
use the trial functions of eq. (63). The FPT matrix elements for the perturbed models are eqs (61) and (62). In evaluating eq. (62), we do not
use the approximation of eq. (68) but consider all couplings between every pair of trial functions used and the error in FPT is only the result
of the use of a finite number of trial functions. We also compute a synthetic seismogram by using FPT with the approximation of eq. (68),
compare it to the synthetic seismograms computed by FPT with consideration of all couplings and thereby show that our approximation is
reasonable.

First, we show a simple example to demonstrate the accuracy of FPT and the inaccuracy of 1DT. Fig. 3(a) shows the medium we consider
here. We consider a homogeneous initial model with the density ρ = 103 kg m−3 and the velocity V s = 5 km s−1 (i.e. µ = 25 GPa). We consider
the perturbed model with 100 km perturbation in the surface topography whose wavelength is 1280 km. We consider the vertical incident
plane wave. Fig. 3(b) shows the computed synthetic seismograms for the perturbed model. The left synthetic seismograms are computed by
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FPT, the right synthetic seismograms by 1DT. We applied a bandpass filter with corner frequencies of 1/1000 and 1/50 Hz. The receivers are
aligned at each 40 km and the synthetic seismograms for the receivers P, O and P′ in Fig. 3(a) are explicitly labelled in Fig. 3(b). Fig. 3(c)
shows the enlarged waveforms of the first motion part for the receiver O. We can see two distinct discrepancies between the FPT and 1DT
synthetic seismograms.

One discrepancy, as can be seen in Fig. 3(c), is that the amount of both phase and amplitude perturbations do not agree between these
two methods. The 1DT synthetic seismogram has a smaller phase shift and a much larger amplitude perturbation. We see that the 1DT
synthetic seismograms are inaccurate and the FPT synthetic seismograms are accurate for the following reasons. The phase perturbation can
be predicted by using the ray theory. Because we have a 100-km bump at the receiver O, we expect a 20-s phase delay. Fig. 3(c) clearly
shows that the FPT can compute the expected phase delay but 1DT cannot. It is well known that the phase shift computed by the first-order
perturbation theory saturates at π/4. Actually, a 20-s delay is larger than the π/4 phase shift (12.5 s for the dominant frequency) and the 1DT
synthetic seismogram has a phase shift of almost π/4. For the amplitude perturbation, we expect a focusing effect caused by the topography.
However, because the wavelength of the topography (1280 km) is much larger than the wavelength of the wavefield (250 km for the dominant
frequency), the effect should be small. Fig. 3(c) shows that FPT can model such amplitude perturbation but 1DT cannot.

The other discrepancy is that, as can be seen in Fig. 3(b), only FPT synthetic seismograms have clear later phases. These later phases
are scattering waves as a result of the surface topographies. The surface topography should produce scattering waves and the lack of such
scattering waves shows the limitation of 1DT.

If we compare these synthetic seismograms to synthetic seismograms computed by a different method, we can directly confirm the
validity of FPT. We computed synthetic seismograms for the same problem using the method presented by Aki & Larner (1970; hereafter
referred as AL). We assumed that the medium in Fig. 3(a) consists of two homogeneous layers with the same density and velocity. We also
assumed that the interface between these layers is flat. Under these assumptions, it is rigorously true that the incident wave is the only upgoing
wave in the second (deeper) layer and we could thus avoid the Rayleigh ansatz error, which appears in the original formulation of AL. To
solve this two-layer problem, we made modifications to the original formulation equivalent to those by Kohketsu (1987). Fig. 3(d) shows a
comparison of the synthetic seismograms for the perturbed model for the receiver O computed by AL, FPT and 1DT. We observed remarkable
agreement between the synthetic seismogram computed by FPT and that computed by AL, while that computed by 1DT was completely
different. If we assume that the AL synthetic seismogram is exact, the waveform error (see eq. 5.4 of Geller & Takeuchi 1995) of the FPT
synthetic seismogram was only 0.417 per cent, while that of the 1DT synthetic seismogram was 134 per cent.

Next, we show that in the simulations of more realistic problems, a similar breakdown can be observed in 1DT synthetic seismograms.
We consider a plane of a great circle including the path shown by the solid line in Fig. 4(a) and simulate SH waves propagating on this plane
by solving the 2-D SH problem in Cartesian coordinates.

We apply the Earth flattening transformation to the modified isotropic PREM (Preliminary Reference Earth Model; Dziewonski &
Anderson 1981) and use it as an initial model. We replace the S velocity model in Moho 220 km depth of the isotropic PREM with the SH
velocity model (propagating perpendicular to the axis of symmetry) of the anisotropic PREM. We apply the Earth flattening transformation
to the topography of the surface (or the bathymetry), the Conrad and the Moho of the Crust 2.0 model (Bassin et al. 2000) on the solid line
in Fig. 4(a) (5120 km long), assume the topographies are symmetric with respect to the star in Fig. 4(a) and expand those 10 240–km–long
topographies in terms of the Fourier basis up to degree 24. The resultant topographies are shown in Fig. 4(b) (note that we only show the right
half of the considered medium) and the minimum wavelength of the topography in this model is 10 240/24 km, which is comparable to the
resolution of the Crust 2.0 model. We define the perturbed model by δZ in eq. (65) whose expansion coefficients δzks are the spectrum of the
above topography model. Thus, the s max in eq. (65) is 24. Here, we use the linear spline function system in Fig. 2 and set the boundary of the
deformed region at a depth of 80 km (i.e. z0 in Fig. 2 is set to the Earth flattening transformed position of 80 km depth).

We consider a line source on the Conrad at the place indicated by the star in Fig. 4(a). We assume the force system applied is a single
force that is perpendicular to the plane of the great circle. This source is not realistic but, because our concern here is to mimic the amount
of phase and amplitude perturbations and to mimic the effect of the couplings between different wavenumbers, the use of this source will
not affect the conclusion in this subsection. We compute synthetic seismograms for the initial model and the perturbed model, and show the
record sections in Fig. 4(c). For the perturbed model, we compute by using FPT and 1DT, respectively. We plot the synthetic seismograms at
the surface at every 80 km between 0 ≤ x ≤ 2960 km, where x represents the distance from the epicentre. We apply a bandpass filter with
the corner frequencies of 1/1000 and 1/50 Hz. In the record section for the initial model (Fig. 4c left), as well as the body waves observed
at the first motion part, we observe the Love waves traveling at a speed of approximately 4.4 km s−1 (aligning almost straight in the record
section). Their waveforms are almost one wave packet and do not clearly show dispersion. On the other hand, in the record section computed
for the perturbed model by using FPT (Fig. 4c middle), we observe Love waves with clear dispersion. For example, at x = 2960 km, Love
waves last for approximately 400 s and dominant frequencies become higher as time goes on. This is a well-known feature of Love waves
traveling through a continent. Because Love waves of higher frequencies are more greatly affected by crustal heterogeneity, they have a greater
phase delay as a result of the crustal thickening. On the other hand, the surface waves of lower frequencies are less affected by the crustal
heterogeneities. Thus, we have the Love waves with clear dispersion. However, in the record section computed for the perturbed model by
using 1DT (Fig. 4c right), we cannot clearly see dispersion, an indication that 1DT breaks down for this frequency range.

The breakdown of 1DT is also confirmed if we compare the amount of the phase and the amplitude perturbation in each trace. Fig. 4(d)
shows the comparison between the synthetic seismograms for the initial model and those for the perturbed model at x = 2960 km. Using
FPT, we observe a phase shift over π/4, while the amplitude perturbation is not so large. However, using 1DT, we see a phase shift of almost
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Figure 4. (a) The path on which the SH-wave propagations are simulated (thick solid line). The star shows the location of the source. Surface (or bathymetry)
topography of Crust 2.0 model (Bassin et al. 2000) are overlapped by black-and-white colour scale. (b) The crustal topography model used as the perturbed
model in this simulation to represent the Crust 2.0 model on the thick solid line in (a). The star shows the location of the source used with this perturbed model.
(c) The record section computed for the initial model (left), for the perturbed model by using finite perturbation theory (FPT; middle) and for the perturbed
model by using first-order perturbation theory (1DT; right). The vertical axis shows the distance from the epicentre and the horizontal axis shows the reduced
time by 4.4−1 s km−1. The amplitude is normalized by the maximum amplitude of each trace. (d) Synthetic seismograms for the initial model (thin solid line)
and for the perturbed model (thick solid line) at 2960 km from the epicentre computed by using FPT (left) and 1DT (right). (e) The synthetic seismograms for
the perturbed model computed by using FPT and the approximation of eq. (68) (s′

max = 24; upper), and by using FPT and considering all couplings between
every pair of the trial functions used (lower).

π/4 and anomalously large amplitude perturbation for the main surface wave packet. This feature is very close to that shown in Fig. 3(c)
and indicates that 1DT breaks down for this realistic problem. Note that this does not mean that the formulations by Woodhouse (1980) are
inappropriate, because the author probably considered only lower frequency problems such as the free oscillations of the Earth. The only
conclusion here is that we need extensions to the previous formulations when we want to solve higher frequency problems than those assumed
in the previous formulations.

Finally, we confirm that the effect of truncation in the expansion of eq. (68) is small. Fig. 4(e) shows the comparison between the
synthetic seismogram at x = 2960 km computed by truncating the expansion in eq. (68) at s ′

max = 24 and the synthetic seismogram in Fig. 4(d)
(computed by FPT considering all couplings between every pair of trial functions used). Because s max in eq. (65) is also 24, under this
approximation, the number of non-zero matrix elements in δH of eq. (70) does not increase as a result of the non-linear term. However, as we
see in Fig. 4(e), the obtained synthetic seismograms are almost identical. This fact indicates that the approximation of eq. (68) achieves both
accuracy of synthetic seismograms and efficiency of computation, and should be useful in the applications to waveform inversion studies of
Earth structure.

4.3 Extension to the spherical case

The above formulation is for the Fourier basis. Extension to the spherical harmonics (i.e. extension to the spherical coordinate) is straightforward.
We express the equation of motion for the initial model (eq. 1 for the Cartesian coordinates case) in (r , θ , φ) and the equation of motion for
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the perturbed model (eq. 2 for the Cartesian coordinates case) in (r ′, θ ′, φ′). We denote the mapping (eq. 19 for the Cartesian coordinates)
from (r , θ , φ) to (r ′, θ ′, φ′) as


r ′ = r + δR(r, θ, φ)
θ ′ = θ

φ′ = φ.

(82)

The perturbation of the matrix elements (eqs 22 and 32 for the Cartesian coordinate case) as a result of δR in eq. (82) is as follows:

δTmn =
∫

V

[
φ

(m)
i

]∗
ρφ

(n)
i δR|r dV, (83)

δHmn =
∫

V

[
φ

(m)
i | j

]∗
Ci jklφ

(n)
k|l δR|r dV

−
∫

V

{[
φ

(m)
i |r

]∗
Ci jklφ

(n)
k|l δR| j + [

φ
(m)
i | j

]∗
Ci jklφ

(n)
k|r δR|l

}
dV

+
∫

V

[
φ

(m)
i |r

]∗
Ci jklφ

(n)
k|r

δR| jδR|l
1 + δR|r

dV, (84)

where | denotes the physical derivatives (e.g. |j denotes the derivatives with respect to the local Cartesian coordinates in the j direction) and
dV denotes the volume element in spherical coordinates, r 2 sin θ dr dθ dφ.

When we use the vector spherical harmonics as the horizontally dependent part of the trial functions φ
(n)
i , we can evaluate the matrix

elements of eqs (83) and (84) in the same fashion as that used in the 2-D SH problem in Section 4.1. We expand the perturbation, δR in
eq. (82), in terms of the linear spline functions for the vertically dependent part and the spherical harmonics for the laterally dependent part,
as follows:

δR(r, θ, φ) =
∑

k

smax∑
s=0

s∑
t=−s

δrkst X (k)(r )Y (st)(θ, φ), (85)

where δrkst are the expansion coefficients and Y (st) are the spherical harmonics.
In eqs (83) and (84), only the last term of right-hand side of eq. (84) is non-linear to δR and the other terms are linear. The laterally

dependent part of the linear terms can be expressed by a product of three generalized spherical harmonics (Phinney & Burridge 1973), which
can be evaluated using the Wigner 3-J symbol (e.g. Edmonds 1960) or the J-square symbol (e.g. Smith 1974). To evaluate the higher order
term, we re-expand it in terms of the spherical harmonics and truncate it at the angular order, s ′

max:

δR| jδR|l
1 + δR|r

=
∑

k′

s′
max∑

s′=0

s′∑
t=−s′

δr ′
k′s′t ′ Q

(k′)
jl (r )Y (s′t ′)(θ, φ), (86)

where δr ′
k′s′t ′ are the expansion coefficients and Q(k′)

jl (r ) are some vertically dependent functions. Using this expansion, the non-linear term
can be evaluated in the same fashion as the linear terms. Note that the equation of motion in terms of the spherical harmonics is related to
the equation of motion in terms of the Fourier basis via the Earth flattening transformation, and the useful approximation for the Fourier basis
should also be useful for the spherical harmonics.

5 D I S C U S S I O N

In this paper, we derive the exact matrix operators T′ and H′ in eqs (21) and (31) (or in eqs 22 and 32) for the finite boundary perturbation
problem in contrast to previous studies, which have derived the operators by using 1DT. In the numerical examples in this paper, we showed
that 1DT breaks down for surface waves with a period of 50 s in a realistic problem. In recent waveform inversion studies (e.g. Megnin &
Romanowicz 2000; Takeuchi & Kobayashi 2004), the body waves for this frequency range are used as a data set, but the surface waves for this
frequency range are excluded. This is mainly a result of the insufficient accuracy of 1DT for computing the effect of crustal heterogeneities.
Our method can compute accurate synthetic seismograms for arbitrary frequency ranges and should be better able to retrieve the information
in the surface waves of higher frequencies.

In our formulations, we ignore the effect of self-gravity and Earth rotation. Extension to include these effects is a topic of future research.
As was shown in Woodhouse & Dahlen (1978), the boundary conditions at the solid–liquid boundaries should be a prime topic.

In this paper, we do not discuss discretization. Geller & Takeuchi (1995) proposed the optimally accurate matrix operators for T and H in
eq. (11) to optimize the performance of the computation. Deriving the optimally accurate operators for T′ and H′ in eq. (12) (i.e. the optimally
accurate operators for eqs 21 and 31) is also an important research topic. They can be straightforwardly derived for the SH problem and we
have already used them in the numerical examples shown herein. However, we should newly design the operators for the P–SV problem and
the 3-D heterogeneous problem. With regard to the external force term, g in eq. (11) and (12), Takeuchi & Geller (2003) proposed an accurate
discretization. If we use these accurate discretization methods together with the finite boundary perturbation theory presented in this paper,
we should be able to further improve the accuracy of crustal correction.

C© 2005 RAS, GJI, 160, 1044–1058
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