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S U M M A R Y
We use the direct solution method (DSM) with optimally accurate numerical operators to
calculate complete (including both body and surface waves) three-component synthetic seis-
mograms for transversely isotropic (TI), spherically symmetric media, up to 2 Hz. We present
examples of calculations for both deep (600 km) and shallow (5 km) sources. Such synthet-
ics should be useful in forward and inverse studies of earth structure. In order to make these
calculations accurately and efficiently the vertical grid spacing, maximum angular order, and
cut-off depth must be carefully and systematically chosen.

Key words: angular order, direct solution method, shallow earthquakes, synthetic seismo-
grams, transverse isotropy, 2 Hz.

1 I N T RO D U C T I O N

The volume of high-quality broad-band digital seismic waveform

data has greatly increased in recent years. The installation of broad-

band seismic arrays (Rost & Thomas 2002; Rost & Garnero 2004)

and ocean bottom and borehole observatories (Sutherland et al.
2004; Suetsugu et al. 2005) has also provided valuable new data. In

most cases only secondary data, which are extracted from the ob-

served waveform data (e.g. traveltimes) are used in studies of earth

structure. Body-wave waveform data for shallow events are also an

important data set for studies of earth structure. The development

of new computational methods for further analysing waveform data

is thus highly desirable.

In recent times computational technology has made great

progress. Parallelized programs using inexpensive PC clusters can

provide throughput comparable to supercomputers. Although high-

end supercomputers are still faster than PC clusters, due to restric-

tions on public use it is often difficult to access supercomputers.

Currently a single node of a high-performance computer (HPC)

with an Intel Pentium 4, 3.2 GHz processor costs about 200 000 Yen

(roughly 2000 USD). The performance of HPCs will continue to

improve. It is desirable to develop seismological tools to take full

advantage of their computational performance. This paper is one

such effort.

Studies of the Earth’s internal structure, particularly the fine struc-

ture of the upper mantle transition zone and D′′, are one of the most

important tools for obtaining constraints on geodynamic processes.

One approach (e.g. Woodhouse & Dziewonski 1984) is to conduct

direct inversion for the global earth structure. However, as a practi-

cal matter, global coverage is highly uneven, and in many cases it is

useful to gather extensive profiles from a small geographic region

and invert for the 1-D structure of the study region. The 3-D struc-

ture is thus studied by comparing a patchwork of 1-D structures for

each of the well-sampled regions (e.g. the regions for which cov-

erage from arrays or dense networks is available). Studies of the

D′′ layer (Mitchell & Helmberger 1973; Lay & Helmberger 1983;

Young & Lay 1990; Kendall & Nangini 1996; Garnero & Lay 2003)

and the transition zone (Tajima & Grand 1998; Shito & Shibutani

2001; Tseng & Chen 2004) are examples of this approach.

In many cases of 1-D fine structure studies important information

is contained in overlapping seismic phases, such as upper mantle

triplications or S and ScS for the D′′ region; comparison of syn-

thetic seismograms to observed data is a vital step in analysing the

data (Lay & Helmberger 1983; Song & Helmberger 1998; Tajima

& Grand 1998). Since the data are in many cases broad-band, in

such cases it is necessary (or at least highly desirable) to be able to

calculate synthetic seismograms up to frequencies of 1 or 2 Hz.

At present there are three main possible approaches for computing

synthetic seismograms for 1-D media:

(1) superposition of normal modes (Woodhouse & Dziewonski

1984; Yu & Park 1993; Li & Romanowicz 1995; Park 1997),

(2) reflectivity (Keith & Crampin 1977; Fryer & Frazer 1987)

and

(3) the direct solution method (DSM, see references below).

Due to the difficulty of computing, storing and summing a large

number of overtones, it is generally considered impractical to use

modal superposition at frequencies higher than about 0.15 Hz. We

have not examined this question in detail, but as we are unaware of

any published studies that have used modal superposition to com-

pute full-wave (including both body and surface waves) synthet-

ics at frequencies higher than 0.15 Hz, we do not consider modal
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superposition methods further in this paper. Reflectivity methods

have been used in several studies of 1-D structure (e.g. Tajima &

Grand 1998; Moore et al. 2004) but the computations must be carried

out in cylindrical coordinates, which means that an earth-flattening

transformation must be used, resulting in numerical inaccuracy (As-

cher 1988). Methods for directly solving the strong form of the

equation of motion (Takeuchi & Saito 1972) have been given by

Chapman & Phinney (1970) and Friederich & Dalkolmo (1995).

Such methods are in principle equivalent to our methods for solving

the weak form of the equation of motion.

Seismic tomography has greatly advanced our knowledge of the

structure of the Earth’s deep interior, but almost all studies to date

(especially body-wave studies) have assumed isotropic models [or

have used scaling relations to reduce the number of unknown elastic

constants in transversely isotropic (TI) media from 5 to 2]. On the

other hand, it is well known that there is significant anisotropy of

seismic structure in the mantle (e.g. Montagner & Kennett 1996),

and that information on the anisotropic structure is important for

understanding flow and deformation processes in the Earth (e.g.

Karato 1998).

Detailed comparison of observed seismic waveform data (as ob-

served at an array of stations in a narrow azimuth range) and syn-

thetic seismograms is a powerful method for resolving the fine

structure of the Earth’s seismic velocities. For example, the D′′ dis-

continuity (Lay & Helmberger 1983), an ultra-low velocity zone at

the base of the mantle (Garnero et al. 1993), and the inner core tran-

sition zone (Song & Helmberger 1998) were all detected by such

analyses. It is desirable to be able to use complete synthetic seis-

mograms (which include all frequency components and all phases

in the data) in studies of such regions, because we could then rigor-

ously account for the effect of finite wavelength and the possibility

of contamination by phases due to structure outside the region of

interest. The methods presented in this paper allow complete syn-

thetic seismograms to be computed up to, say, 2 Hz, without the

need for ray-theoretical or earth-flattening approximations.

2 D I R E C T S O L U T I O N M E T H O D

F O R T I M E D I A

In this study we use the DSM (Geller & Ohminato 1994) to compute

full-wave synthetics up to 2 Hz. The basic computational theory was

published by Geller & Takeuchi (1995), hereafter cited as GT95, and

Takeuchi et al. (1996), hereafter cited as TGC96, and the works cited

therein. The above papers were limited to isotropic media, but the

synthetics in this paper are extended to the case of TI media. This

extension is relatively straightforward. However, in order to make

accurate and efficient computations up to 2 Hz, several important

technical problems had to be resolved. In particular, it is necessary

to carefully and systematically determine the vertical grid spacing

that must be used for various frequencies and angular orders. Failure

to use a sufficiently fine grid can result in serious inaccuracy, while

use of an overly fine grid will unnecessarily increase the CPU time.

If the calculations are not cut off (i.e. if the grid for all angular orders

always extends to the Earth’s centre for P–SV calculations or to the

CMB for SH calculations), the CPU time can be an order of mag-

nitude larger than necessary. It thus is necessary to systematically

determine the cut-off depth as a function of frequency and angular

order.

As discussed below, the gridding problem and the cut-off depth

problem are now well understood. The most recent publicly avail-

able versions of our codes (available for download at http://www-

solid.eps.s.u-tokyo.ac.jp/∼dsm) now optimally handle these points.

(We omit details, but earlier versions of our codes had problems.)

The authors hope that these codes will be useful in a wide variety

of seismological studies. We present sufficient details here so that

users can understand the various trade-offs between accuracy and

CPU time.

2.1 DSM—basic theory

In this paper, we first discuss the theory for extending optimally ac-

curate DSM operators to TI media. Next we consider the problems

caused by the evanescent regime (the region beneath the turning

depth where the vertical component of the wavenumber vector is

imaginary) and apply the error-estimation theory of GT95 to deter-

mine the grid spacing, maximum angular order and cut-off depth

required to obtain accurate synthetics.

In this paper, subscripts r, θ , φ, denote vector components in

locally Cartesian spherical coordinates. We use Greek subscripts and

superscripts to denote components in the abstract vector space of

trial functions. In this section, for the solid part of the medium these

Greek indices correspond to a quadruplet of indices k, l, m and p for

the index of the radial trial function, the angular order, the azimuthal

order and the spherical harmonic component, respectively. In the

fluid part of the medium the Greek indices correspond to a triplet

of indices k, l, m, defined as above for the solid case. (See Geller &

Ohminato 1994 and Cummins et al. 1997 for details.)

We use vector trial functions Φ(β) to represent the displacement

in the solid part of the medium, and scalar trial functions �(β) to

represent the dependent variable, Q = P/ω, where P is the change

in the pressure, in the fluid part of the medium:

u =
∑

β∈solid

cβΦ(β),

Q =
∑

β∈fluid

cβ�(β). (1)

As shown by Geller & Ohminato (1994), the DSM, as the name

suggests, transforms the weak form of the elastic equation of motion

to the following system of discretized linear equations, which are

then directly solved:

(ω2T − H + ωR)c = −g, (2)

where T is the mass (kinetic energy) matrix, H is the stiffness (poten-

tial energy) matrix, g is the excitation vector, and R, which enforces

continuity conditions at fluid–solid boundaries, is non-zero only for

the spheroidal (P–SV ) case.

The matrix elements and vector elements in eq. (2) are

Tαβ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
V

(
�

(α)
i

)∗
ρ�

(β)
i dV (α, β) ∈ solid∫

V
(�(α))∗�(β)/λ dV (α, β) ∈ fluid

0 otherwise

, (3)

Hαβ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
V

(
�

(α)
i, j

)∗
Ci jkl�

(β)
k,l dV (α, β) ∈ solid∫

V

(
�

(α)
,i

)∗
�

(β)
,i /ρ dV (α, β) ∈ fluid

0 otherwise

, (4)
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Rαβ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
S
(�(α))∗i n(S)

i �(β) d S α ∈ solid and β ∈ fluid∫
S
(�(α))∗n(S)

i �
(β)
i d S α ∈ fluid and β ∈ solid

0 otherwise,

(5)

gα =

⎧⎪⎪⎨⎪⎪⎩
∫

V

(
�

(α)
i

)∗
fi dV α ∈ solid

−
∫

V

(
�

(α)
,i

)∗
fi/(ρω) dV α ∈ fluid

, (6)

where ∗ denotes complex conjugation, ρ is the density, Cijkl is the

elastic tensor in the solid, λ is the elastic modulus in the fluid, and

n(S)
i is the outward unit normal to the solid regions at the fluid–

solid boundaries. Anelastic attenuation is included in Cijkl and λ,

which are in general complex and frequency dependent. Note that

the superscripts on the right-hand side of eqs (3)–(6) refer to the

abstract vector space of trial functions, while the subscripts on the

right-hand side of these equations refer to the physical space.

2.2 Transversely isotropic medium

Traveltime tomography for an isotropic model is greatly simplified

because the group velocity, U , (which determines seismic travel-

times) is equal to the phase velocity, c, and neither depends on

propagation direction. (This is of course the definition of isotropy.)

On the other hand, both the group velocity and phase velocity for

an anisotropic medium are functionals of the wavenumber k; both

depend on the propagation direction, and the two velocities are in

general not equal (e.g. Helbig 1994). For a wave in Cartesian coor-

dinates we have

px = kx

ω
, py = ky

ω
, pz = kz

ω
, (7)

as the three components of the slowness vector and the components

of the group velocity are given by

Ux = ∂ω

∂kx
, Uy = ∂ω

∂ky
, Uz = ∂ω

∂kz
. (8)

Explicit expressions in spherical coordinates for the above quan-

tities for a laterally homogeneous TI medium are given by Wood-

house (1981). The non-linearity of these expressions and their partial

derivatives with respect to the elastic constants, and the dependence

of the group velocity on propagation direction, means that inversion

of traveltime data for the elastic constants of a global TI anisotropic

model is considerably more difficult than inversion for an isotropic

model. On the other hand, inversion of seismic waveform data is a

promising approach for determining the Earth’s anisotropic struc-

ture (e.g. Gung et al. 2003).

TI, the simplest anisotropy, is symmetric about the vertical axis.

In spherical coordinates the constitutive equation is given by⎛⎜⎜⎜⎜⎜⎜⎝

σθθ

σφφ

σrr

σφr

σrθ

σθφ

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

A H F
H A F
F F C

L
L

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

εθθ

εφφ

εrr

2εφr

2εrθ

2εθφ

⎞⎟⎟⎟⎟⎟⎟⎠
,

(9)

where σ and ε are the stress and strain tensors, respectively, the

blank spaces in the matrix denote zeros, and A, C, F, L, N are the

independent five elastic constants in TI, as defined by Love (1927).

The dependent elastic constant H is given by

H = A − 2N . (10)

In the isotropic case the elastic constants are as follows:

λ + 2μ = A = C

μ = L = N

λ = F = H, (11)

where μ and λ are the Lamé constants.

2.3 Trial functions

All computations are carried out in spherical coordinates. The trial

functions used in the expansions of the wavefield are given by eq. (1).

Here we show the explicit form of the vector trial functions for the

solid part of the medium. We use linear spline functions Xk(r ) for the

vertically dependent part of the trial functions and vector spherical

harmonics S1
lm, S2

lm and T lm, defined as follows, for the laterally

dependent part of the trial functions:

S1
lm(θ, φ) = (Ylm(θ, φ), 0, 0),

S2
lm(θ, φ) =

(
0,

1

L
∂Ylm(θ, φ)

∂θ
,

1

L sin θ

∂Ylm(θ, φ)

∂φ

)
,

T lm(θ, φ) =
(

0,
1

L sin θ

∂Ylm(θ, φ)

∂φ
, − 1

L
∂Ylm(θ, φ)

∂θ

)
, (12)

where Ylm (θ , φ) is a (fully normalized) surface spherical harmonic

and L = √
l(l + 1). See (p. 181 Press et al. 1986) for a complete de-

scription of the spherical harmonics and associated Legendre poly-

nomials.

The explicit form of the trial functions is as follows:

Φ(klm1)(r, θ, φ) = Xk(r )S1
lm(θ, φ),

Φ(klm2)(r, θ, φ) = Xk(r )S2
lm(θ, φ),

Φ(klm3)(r, θ, φ) = Xk(r )T lm(θ, φ). (13)

The scalar trial functions in the fluid regions are

�(klm)(r, θ, φ) = Xk(r )Ylm(θ, φ). (14)

We choose linear splines as the radially dependent part of the trial

functions. Their explicit form is

Xk(r ) =

⎧⎪⎨⎪⎩
(r − rk−1)/(rk − rk−1) rk−1 < r ≤ rk

(rk+1 − r )/(rk+1 − rk) rk ≤ r < rk+1

0 otherwise

, (15)

where r 1 < r 2 · · · < rN . The first and second lines of (eq. 15) are

ignored for k = 1 and k = N , respectively.

2.4 Matrix elements

Due to the degeneracy of the spherically symmetric problem, the

matrix elements depend only on l and are independent of m. The

following discussion, therefore, considers the matrix elements and

DSM equation of motion for some particular l and m; for simplicity

we henceforth omit the indices l and m. We thus denote the elements

of the matrices as T k′ p′kp and H k′ p′kp for the solid part of the medium,

and T k′k and H k′k for the fluid part of the medium. p = 1 and p =
2 correspond to the spheroidal case, and p = 3 corresponds to the

toroidal case.
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We define the following intermediate integrals for the solid part

of the medium:

I 0
k′k =

∫
drρr 2 Xk′ Xk I 1

k′k =
∫

drCr 2 Ẋk′ Ẋk

I 2
k′k =

∫
dr Lr 2 Ẋk′ Ẋk I 3

k′k =
∫

dr Fr Xk′ Ẋk

I 4
k′k =

∫
dr Lr Ẋk′ Xk I 5

k′k =
∫

dr AXk′ Xk

I 6
k′k =

∫
dr L Xk′ Xk I 7

k′k =
∫

dr N Xk′ Xk, (16)

where the integrals (eq. 16) are non-zero only if |k − k′| ≤ 1, ρ is

the density and dots indicate differentiation with respect to r.

Using the above intermediate expressions, the matrix elements

for the solid part of the medium for the spheroidal case (p = 1) or

p = 2 are:

Tk′1k1 = Tk′2k2 = I 0
k′k ,

Tk′1k2 = Tk′2k1 = 0 , (17)

and

Hk′1k1 = I 1
k′k + 2

(
I 3

k′k + I 3
kk′

) + 4I 5
k′k + L2 I 6

k′k − 4I 7
k′k

Hk′2k2 = I 2
k′k − (

I 4
k′k + I 4

kk′
) + L2 I 5

k′k + I 6
k′k − 2I 7

k′k

Hk′1k2 = −L
(
I 3

kk′ − I 4
kk′ + 2I 5

k′k + I 6
k′k − 2I 7

k′k
)

Hk′2k1 = −L
(
I 3

k′k − I 4
k′k + 2I 5

k′k + I 6
k′k − 2I 7

k′k
)

(18)

The explicit form of the matrix elements for the toroidal case

(p = 3) is:

Tk′3k3 = I 0
k′k ,

Hk′3k3 = I 2
k′k − I 4

k′k − I 4
kk′ + I 6

k′k + (L2 − 2)I 7
k′k . (19)

The integrals are taken from the CMB to the Earth’ s surface

or from the Earth’s centre to the inner core boundary (ICB) for

the respective solid regions. (We assume there is no ocean layer at

the surface. If an ocean layer is present at the surface, it would be

handled in the same way as the outer core.)

We define the following intermediate integrals for the fluid part

of the medium:

I F0
k′k =

∫
dr r 2 Ẋk′ Ẋk/λ ,

I F1
k′k =

∫
dr Ẋk′ Ẋk/ρ ,

I F2
k′k =

∫
dr r 2 Ẋk′ Ẋk/ρ. (20)

The matrix elements for the fluid part of the medium are

Tk′k = I F0
k′k , Hk′k = L2 I F1

k′k + I F2
k′k . (21)

At the boundary between the solid and fluid media, there are two

nodes corresponding to the same depth. At the ICB the indices for

these nodes are k−
ICB for the solid medium and k+

ICB for the fluid,

while for the core mantle boundary (CMB) we have k−
CMB for the

fluid and k+
CMB for the solid. As shown by (eqs 50 and 51 Geller

& Ohminato 1994), R enforces the continuity of displacement and

traction at fluid–solid boundaries. The only non-zero elements of R
are:

Rk−
ICB,k+

ICB
= Rk+

ICB,k−
ICB

= r 2
ICB ,

Rk−
CMB,k+

CMB
= Rk+

CMB,k−
CMB

= −r 2
CMB , (22)

where rICB and rCMB are the radius at the ICB and CMB, respectively.

The essential boundary condition ur = u θ = uφ = 0 is imposed at

r = 0.

2.5 Optimally accurate operators

The displacement in the previous section is represented using spher-

ical harmonics for the lateral dependence and linear spline functions

for the vertical dependence of the trial functions. The numerical op-

erators derived using these trial functions are then replaced by op-

timally accurate operators (GT95; TGC96). Following TGC96, the

submatrices in eq. (16) are replaced by the corresponding optimally

accurate matrix operators. This can be done in a straightforward

fashion, because the elastic moduli in eq. (16) of this paper are A,

C, F, L, and N , while the elastic moduli in eq. (3) of TGC96 are λ

and μ, but the functional forms of the various integrals in this paper

are otherwise identical to those of TGC96. Similarly, the functional

form of the toroidal integrals in eq. (19) is also identical to functional

forms used in Cummins et al. (1994).

2.6 Excitation

In the vector spherical harmonics basis, the displacement can be

written as

u(r, θ, φ) =
∑
lm

Ulm(r )S1
lm + Vlm(r )S2

lm + Wlm(r )T lm . (23)

In terms of the trial functions used in this paper we can express

Ulm(r ), Vlm(r ) and Wlm(r ) as follows:

Ulm(r ) =
∑

k

cklm1 Xk(r ) ,

Vlm(r ) =
∑

k

cklm2 Xk(r ) ,

Wlm(r ) =
∑

k

cklm3 Xk(r ), (24)

where the expansion coefficients give the value of Um
l , V m

l , and W m
l

at the nodes:

U m
l (rk) = cklm1,

V m
l (rk) = cklm2,

W m
l (rk) = cklm3. (25)

Hereafter in this section we drop the subscripts l and m on U , V ,

and W . The excitation is obtained from eq. (6). We consider the case

of a point moment tensor on the z-axis (r = rs, φ = 0, θ → 0), for

which the right-hand side of eq. (6) is zero except for |m| ≤ 2. The

excitation vector g can be determined by straightforward application

of eq. (6). However, the body-force equivalents for certain moment

tensor terms are kinematically equivalent to requiring U(r), V (r), or

W (r) to be discontinuous at the source depth (e.g. Takeuchi & Saito

1972, p. 290). This is an essential boundary condition (see Geller &

Ohminato 1994, section 2) that will be violated by a straightforward

application of eq. (6), thereby leading to suboptimal convergence. It

is preferable to incorporate the displacement discontinuities directly

into the definitions of U(r), V (r), and W (r). The discontinuities are

given by (p. 289 Takeuchi & Saito 1972).

D1 = U (r )|r+
s

r−
s

= b1δm02Mrr

/(
r 2

s Cs

)
D2 = V (r )|r+

s

r−
s

= b1δm±1(∓Mrθ + i Mrφ)
/(

r 2
s Ls

)
,

D3 = W (r )|r+
s

r−
s

= b1δm±1(i Mrθ + ±Mrφ)
/(

r 2
s Ls

)
, (26)

where Cs = C(rs), Ls = L(rs) and b1 = √
(2l + 1)/(16π ).
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The remaining source terms involve discontinuities in the radial

traction at the source depth, which is a natural boundary condition.

gk1 = b1δm02[Mθθ + Mφφ − 2Mrr Fs/Cs]Xk(rs)/rs ,

gk2 = b1δm0L[−Mθθ − Mφφ + 2Mrr Fs/Cs]Xk(rs)/rs ,

−b2δm±2(−Mθθ + Mφφ ± i2Mθφ)Xk(rs)/rs ,

gk3 = b2δm±2(∓i Mθθ ± i Mφφ − 2Mθφ)Xk(rs)/rs
(27)

where b2 = √
(2l + 1)(l − 1)(l + 2)/(64π ).

The above discussion applies to the case of a source exactly at a

node. However, in most cases the source will be between nodes. For

such cases we use the source representation of Takeuchi & Geller

(2003), which allows us to calculate synthetics with the same accu-

racy as for a source at a node.

3 C O M P U TAT I O N A L I S S U E S

In this section, we first verify the accuracy of the synthetics, using

solutions for deep focus earthquakes, and next compute synthetics

for shallow earthquakes. Finally we consider ways in which the CPU

time can be minimized without degrading the accuracy.

We compute three-component (vertical, radial and transverse)

synthetic seismograms for the anisotropic (TI) PREM earth model

(Dziewonski & Anderson 1981). (Anelastic attenuation is also in-

cluded in the elastic constants using the above methods without

using perturbation approximations.) As shown by Figs 1 and 2, the

accuracy of the synthetic seismograms is improved by a factor of

about 30 without increasing the CPU time by using optimally accu-

rate numerical operators as opposed to conventional operators. This

is the same order of improvement as was obtained by TGC96 for

Figure 1. Toroidal (SH) velocity synthetic seismograms for the anisotropic

PREM model (transverse component) computed up to 0.05 Hz and a max-

imum angular order of 2000 (about four times higher than required for

practical calculations, to eliminate any possibility of errors due to trunca-

tion of the spherical harmonic expansion) using the source representation of

Takeuchi & Geller (2003). The source is a 600-km-deep point double-couple

source, with M rθ = M θr = 1 and all other components of the moment tensor

zero. The time dependence of the moment tensor for all of the calculations

in this paper is a step-function. A low-pass six-pole filter with corners at

0.02 Hz is applied. The top trace is an essentially exact solution computed

using the optimally accurate operators with 25 600 vertical intervals. The

second and the fourth traces show the numerical solutions computed using

optimally accurate (GT95; TGC96) and conventional numerical operators,

respectively, with 3000 vertical intervals for each case. The third and fifth

traces show the residuals for the second and fourth traces. The accuracy of

the synthetics is improved by a factor about 30 by using optimally accurate

operators without increasing the CPU time.

Figure 2. Spheroidal (P–SV ) velocity synthetic seismograms for

anisotropic PREM model (radial component) computed using the source

representation of Takeuchi & Geller (2003). Details are the same as Fig. 1,

except that 51 200 vertical intervals were used to compute the ‘exact’ trace

and 6000 vertical intervals were used for the other traces. A larger number

of vertical intervals (as compared to the toroidal case) is required than for

Fig. 1, because the grid extends to the Earth’s centre.

isotropic media. The synthetics in Figs 1 and 2 are calculated up to

0.05 Hz (20 s period) and a maximum angular order of 2000. The

time dependence of the moment tensor for all of the calculations

in this paper is a step-function. Note that the synthetics in Figs 1

and 2 are not the physical displacement components, as the toroidal

and spheroidal wavefields have not yet been summed (see below).

Although the examples in Figs 1 and 2 are relatively long-period

synthetics, the ratio of performance improvement obtained by using

the optimally accurate operators is independent of the frequency

band. We, therefore, use only optimally accurate operators in the

following computational examples.

The existence of anisotropy in the upper mantle affects long-

period surface waves (Rayleigh and Love waves). For the anisotropic

PREM structure, Rayleigh waves are slower and Love waves are

faster than for isotropic PREM. To study the effects of anisotropic

structure in the upper mantle, we calculated synthetic seismograms

for anisotropic PREM, which includes TI structure between depths

of 24.4 and 220 km. (Figs 3a and b). In these calculations the source

is at a depth of 50 km, where TI structure exists in anisotropic PREM.

As a general rule of thumb if the gridding per wavelength is kept

constant, the CPU time increases as the cube of the maximum fre-

quency, because when the maximum frequency is doubled the num-

ber of frequencies, number of grid points, and maximum angular

order all approximately double. Thus a calculation up to only 1 Hz

requires only about one-eighth of the CPU time for a calculation up

to 2 Hz for the same number of grids per vertical wavelength. In

our calculations for Figs 1–6 we use a HPC, which has a Pentium

4, 3.2 GHz processor with the Intel Fortran Compiler (ifc). In our

calculations for Figs 7–18, we use a HPC which has eight Pentium

4, 3.0 GHz processors with the Intel Fortran Compiler (IFC) us-

ing appropriate gridding for each angular order and a depth cut-off

algorithm.

Synthetic seismograms must be computed with sufficient accu-

racy to allow comparison to observed data. The acceptable error

must be determined by each user for each application, but the range

between 1 per cent error and 0.1 per cent error is probably a typical

requirement. We now consider the effect of the choice of vertical

gridding and maximum angular order on the accuracy and CPU

time of the synthetics. We begin by considering the relation between

vertical gridding and accuracy (Fig. 4). To eliminate possible errors
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Figure 3. Synthetic seismograms (velocity, rather than displacement) for

radial (top) and transverse (bottom) components for isotropic PREM and

anisotropic PREM. A band-pass four-pole filter with corners at 0.01 and

0.02 Hz is applied. The source depth is 50 km and the epicentral distance is

70◦. The anisotropic synthetics are delayed relative to the isotropic synthetics

for Rayleigh waves, and advanced for Love waves, as expected for PREM.

2 s
4 s
8 s

2 s
4 s
8 s

R
.m

.s
. 

er
ro

r 
(%

)

102 105

100

 0.001

n (number of vertical grid intervals)

C
P

U
 t

im
e 

(s
)

10 105

106

1

104

n (number of vertical grid intervals)

102

Figure 4. These figures show the dependence of rms error (left) and CPU time (right) on the number of vertical grid intervals, with the maximum angular

order fixed to 8000. Synthetics were computed up to 8, 4 and 2 s (0.125, 0.25 and 0.5 Hz). The ‘exact’ synthetics used as the reference solution were computed

using 51 200 vertical grid intervals, while the others were computed with fewer intervals.

due to truncation all calculations in Fig. 4 were carried out up to

angular order 8000. The depth truncation and automatic angular or-

der cut-off algorithms (see Fig. 6) were disabled for the calculations

presented in Figs 4 and 5. Fig. 4 shows error and CPU time estimates

for spheroidal synthetics for three passbands. For the passband up

to 2 s period (0.5 Hz), a vertical grid with 6000 nodes gives an error

of 1 per cent and a vertical grid with 16 000 nodes gives an error of

about 0.1 per cent. The respective CPU times are about 12 000 and

34 000 s.

Next we consider the effect of maximum angular order on the so-

lution error. Fig. 5 shows examples in which spheroidal expansions

truncated at various angular orders are compared to a reference so-

lution. All solutions used a vertical grid with 51 200 intervals to

essentially eliminate errors due to vertical discretization. As shown

in Fig. 5, truncation of the expansion at overly low angular orders

leads to large errors, but once a critical threshold is passed the solu-

tion rapidly becomes highly accurate. Fig. 5 shows that the accuracy

threshold for the initial P-wave is marginally lower than that for the

complete synthetic, but that the difference is not significant.

We seek a physical interpretation of the angular order accuracy

threshold. We denote the angular order where the drop in rms er-

ror occurs as ld . Fig. 5 shows that ld approximately depends on

frequency, f (in Hz), as follows:

ld ≈ (7.5 × 103 Hz−1) f. (28)

The phase velocity is asymptotically given by:

c ≈ ωr

l + 1
2

= 2π f r

l + 1
2

, (29)

where r is the Earth’s radius at the depth being considered. We

obtain a phase velocity of about 5.2 km s−1 corresponding to ld ,

which means that this is the slowest phase velocity component with

significant amplitude in the high-frequency synthetics. Because the

source is at a depth of 600 km, the excitation of high-frequency
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Figure 5. The dependence of rms error (left) and CPU time (right) on maximum angular order. The number of vertical grid intervals is fixed to 51 200.

Variance reduction is shown for both the whole synthetic seismogram and also for only the portion including the initial P wave. Synthetics were computed for

bands up to 8, 4 and 2 s (0.125, 0.25 and 0.5 Hz) using 51 200 vertical intervals. The ‘exact’ solutions for each band were computed including angular orders

up to 8000.

Rayleigh and Love waves is essentially nil. In contrast, as discussed

below, the accuracy threshold ld for a shallow source is much higher

than that shown in Fig. 5 or given by eq. (28).

The purpose of Figs 4 and 5 is to study the effect of grid spac-

ing and maximum angular order on accuracy. However, in practical

computations minimization of CPU time is also an important con-

sideration. Our program uses an automatic angular order cut-off

algorithm, so that unnecessary calculations are not made. In ac-

tual calculations our program solves eq. (2) for each angular order

and frequency. Our program stops computing for a given frequency

when the amplitude of the expansion coefficient decays beneath

a user-specified fraction of the maximum amplitude for that fre-

quency. In order to reduce the CPU time required to compute the
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Figure 6. The dependence of rms error (left) and CPU time (right) on maximum angular order with (dashed line) and without (solid line) a depth cut-off and

an angular order cut-off. Synthetics were computed for the band up to 4 s (0.25 Hz) with 51 200 vertical intervals (solid line) and with a grid spacing sufficiently

small to yield a relative error of 10−2, on the basis of eq. (31). These values were fixed in the calculation shown by the solid line but were reduced as appropriate

by angular order and depth cut-off algorithms in the calculation shown by the dashed line. In the latter calculation the angular order cut-off was the lesser of

the value on the horizontal axis and that given by eq. (28).

matrix elements and to make the code simpler, our program only

configures the vertical grid once, choosing a grid spacing which is

sufficient for the worst case. As the angular order increases the turn-

ing depth (depth at which the wavefield’s depth dependence changes

from trigonometric to exponential) becomes steadily shallower. We

use a depth cut-off algorithm (see below) to introduce a free sur-

face boundary condition at an appropriate depth below the turning

depth, thereby reducing the dimension of the matrix being solved in

eq. (2). The above two cut-offs were disabled when producing Figs 4

and 5, but Fig. 6 shows that the CPU time is reduced by a factor of

about 3.5 by using both the depth and angular order cut-offs. The

depth and angular order cut-off are also used for shallow events (see

below).
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Figure 7. Maximum angular order required for computation of accurate

spheroidal synthetic seismograms (for a receiver at the Earth’s surface) at

each frequency. The cut-off criteria is an amplitude of 10−5 of the maxi-

mum amplitude for that frequency. Accurate computation of synthetics for

shallow earthquakes requires a larger maximum angular order for low fre-

quencies, due to near-field terms. Also, for all frequencies synthetics for

shallow events require computation up to higher angular orders than for

deep focus earthquakes.

Fig. 7 raises important issues for workers who use modal super-

position. For shallow sources (5 km depth) and low frequencies it

is necessary to carry the spherical harmonic expansion to very high

angular orders to obtain convergence. If modal summation were to

be used it would be necessary to include modes up to this angular or-

der in the summation (not necessarily only the fundamental mode,

but also overtones, possibly to relatively high overtone number).

The fundamental mode for l = 20 000 has an eigenfrequency on the

order of 1 Hz, and the overtones will have even higher frequencies.

It is not obvious to what overtone number one would have to sum to

obtain convergence for l = 20 000 for the shallow event, but even

if only the fundamental mode were needed this would mean having

to sum modes whose eigenfrequency is on the order of 1 Hz to get

accurate solutions for the displacement field at frequencies of, say,

0.01 Hz.

If the normal modes are a complete set then a summation of all

of the modes will yield a complete synthetic seismogram. However,

it appears to be widely believed (including by one reviewer of this

paper) that complete synthetics up to some given frequency can be

obtained by summing only those modes whose eigenfrequency is

Figure 8. Decay of the amplitude of the depth-dependent part of the wavefield at a period of 100 s as a function of vertical distance from the source depth for

(left) a source depth of 600 km and (right) a source depth of 5 km. The same basic behaviour is observed in both cases, but for the deep source the amplitude

decays to a negligible value at the Earth’s surface.

less than the specified frequency. Fig. 7 demonstrates that this belief

is fallacious. Let us now consider the reasons.

In an anelastic model the frequency dependence of each mode

is characterized by a resonance function, (ω2 − ω2
m)−1. As Q be-

comes lower (i.e. as the imaginary part of ωm becomes larger)

the resonance peaks will become increasingly smeared out in fre-

quency, so modes whose eigenfrequency is significantly higher than

the frequency of interest can still make a non-negligible contri-

bution, particularly if they interfere constructively, which is more

likely to be the case when the source depth is near the receiver

depth.

A careful study of the convergence of modal summation methods

seems timely, and we hope that such a study will be conducted in

the near future. Our guess is the correspondence between maximum

frequency and maximum eigenfrequency will prove reasonable for

the surface wave portion of the synthetics, especially at teleseismic

distances, but will be found wanting for body waves, and may prove

to be severely in error for the near-field part of the signal. In any case

the DSM is solving a forced, rather than free, oscillation problem, so

convergence is obtained as long as a sufficiently high angular order

is used in the spherical harmonic expansion.

3.1 Synthetics for shallow events

The above examples are all for a deep (600 km) event. We now

consider spheroidal synthetics for shallower events. For the case of

deep earthquakes there is a more or less linear relation between the

maximum angular order (i.e. the angular order that must be used as

the upper limit in eq. 23 to obtain a sufficiently accurate synthetic)

and the frequency. On the other hand, Fig. 7 shows that as the source

depth becomes shallower, a linear relation (albeit with a higher max-

imum angular order) is still observed at high frequencies, but the

maximum angular order also increases greatly at low frequencies.

The reason for this behaviour is shown in Fig. 8. At a period of

100 s high angular order components of the wavefield (essentially

near-field terms) with significant amplitudes exist in the vicinity

of the source depth for both deep and shallow earthquakes. These

terms contribute to the observable wavefield at the Earth’s surface

for shallow events, while for deep events they decay to a negligible

value at the Earth’s surface. Note, however, that if data from a deep

earthquake were to be used in inversion for earth structure near the

source depth, it might be necessary to use a much higher maximum

angular order that is required for computing the wavefield at the

Earth’s surface, since the partial derivatives (Geller & Hara 1993)
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depend on the cross-correlation of the forward wavefield with the

back-propagated wavefield at the location of the target.

3.2 Grid spacing and cut-off depth

As discussed above, the maximum angular order is one key pa-

rameter controlling the trade-off between accuracy and CPU time.

However, in the calculations for any particular angular order, the

two parameters that control the trade-off between accuracy and CPU

time are the vertical grid spacing and the cut-off depth. We now dis-

cuss the considerations governing the choice of these parameters.

The appropriate values of the grid spacing and cut-off depth can

be obtained using approximations based on familiar results for plane

waves or cylindrical waves in an isotropic medium, as well as the

well-known asymptotic relation (from eq. 29) between angular order

and the horizontal component of the wavenumber vector:

kx ≈ l + 1
2

r
. (30)

Our program automatically calculates the required grid spacing

based on the desired relative error specified by the user. The rel-

ative error of the numerical solution is basically proportional to

|k2
z�z2|/12 (see eq. 2.21 of GT95), where k z is the vertical compo-

nent of the wavenumber vector and �z is the vertically grid spacing.

The grid spacing required to produce a given relative error is thus

approximately given by:

|�z|2 = 12

|kz |2 × (desired relative error). (31)

The vertical components of the wavenumbers for P and S waves

are given, respectively, by:

k2
zα = ω2

α2
− k2

x and k2
zβ = ω2

β2
− k2

x , (32)

Figure 9. These figures show the contribution of the evanescent wave component to solution error. The rms errors were computed by comparing solutions

truncated at the angular order shown on the horizontal axis to the ‘exact’ solution. The ‘exact’ solutions used as the reference were computed including up

to angular orders 25 000 (for 32 s and 1 Hz) and 32 000 (for 2 Hz). The shaded regions indicate that the error estimates are somewhat questionable as the

maximum angular order of the ‘exact’ solutions is approached. Note that even synthetics at teleseismic distances have substantial errors if the computation is

truncated at too small an angular order.

where

α =
√

λ + 2μ

ρ
, β =

√
μ

ρ
. (33)

When k2
z > 0 (i.e. when k z is real) the vertical dependence of

the wavefield is given by trigonometric functions whereas when

k2
z < 0 it is given by exponential functions. The latter case is called

the evanescent regime. The functional dependence is slightly more

complicated for a spherical model, but is asymptotically the same.

The wavefield below the turning depth of body waves consists of

evanescent waves. As the angular order l increases, the turning depth

becomes progressively shallower. When the turning depth reaches

the Earth’s surface, then the wavefield at all depths will be in the

evanescent regime. Even in cases where the source is located in the

evanescent region (for some particular value of l) it is necessary

to include such terms in the expansion (eq. 23) when they make a

significant contribution to the numerical solution at depths of interest

(usually, but not always, this will be the Earth’s surface).

Fig. 8 shows that, although the amplitudes in the evanescent

regime decay exponentially with increasing vertical distance from

the source in either direction, the contribution of the evanescent

terms at long periods can still be significant at the Earth’s surface for

shallow sources. This is the reason that the maximum angular order

required for the shallowest source (shown in Fig. 7) increases with

decreasing frequency. Truncating the spherical harmonic expansion

at too low an angular order will result in inaccurate synthetics.

Because the amplitude of the solution below the turning depth de-

cays exponentially (Fig. 9), it frequently will be unnecessary for the

computational grid to extend to the Earth’s centre for the spheroidal

case or to the CMB for the toroidal case. In many cases we can

cut off the computational grid by inserting a free surface boundary

condition at an appropriate depth below the turning depth, which

will significantly improve efficiency. We discuss the considerations

governing the choice of the cut-off depth below.
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Figure 10. Examples of velocity synthetic seismograms (vertical compo-

nent) for body and surface waves. The source is a 5-km-deep point double-

couple source, with M rθ = M θr = 1 and all other components of the moment

tensor zero, and the epicentral distance is 60◦. A low-pass four-pole filter

with corners at 0.1 Hz is applied. (top) An essentially exact solution com-

puted including angular orders up to 20 000; (middle) a solution computed

including angular orders up to 5000; (bottom) the residual for the middle

trace relative to the top trace. (b) An enlargement of the boxed region of (a)

which includes the body wave arrivals.

In the travelling wave case k z is at a maximum for l = 0 and

decreases steadily as l increases until it reaches a value of 0 at the

turning depth. |k z | will steadily increase with further increases in

l, even though k2
z < 0. In many cases the largest value of |k z | will

be the maximum value for the evanescent regime (at the maximum

value of l used in the calculation) rather than the value for l = 0,

and in such cases this will govern the choice of �z.

We now present examples showing the contribution of the evanes-

cent wave components to synthetics in the frequency and time do-

mains. We consider a source 5 km below the Earth’s surface and

compute synthetics at the Earth’s surface. When we compute syn-

thetics for each frequency, we sum the solutions from l = 0 to the

maximum angular order to obtain the synthetics. As the frequency

increases, the convergence of the solution becomes more rapid once

the evanescent regime is entered (Fig. 9).

Fig. 9 shows that regardless of the epicentral distance we have to

compute synthetics up to a high angular order to accurately model

the near-field terms. This will be generally true whenever spherical

harmonics are used as the basis (i.e. for both the methods of this

paper and modal superposition methods). From eq. (29) we find

that for the 32 s case in Fig. 9, c = 0.07 km s −1 for l = 18 000.

This suggests that using the phase velocity as the guide to when

the expansion can be safely truncated is not an appropriate criterion

when near-field terms contribute significantly to the solution.

Figure 11. Examples of velocity synthetic seismograms (vertical compo-

nent) for body and surface waves. The source is a 5-km-deep point double-

couple source, with M rθ = M θr = 1 and all other components of the mo-

ment tensor zero and the epicentral distance is 60◦. A low-pass four-pole

filter with corners at 0.1 Hz is applied. The top trace is an essentially exact

solution computed including angular order up to 20 000. The second, third

and fourth traces are computed using angular order up to 2500, 1200 and

600, respectively.

The far-field components of the solutions for high angular orders

contribute to surface waves whose phase velocity is slow (Fig. 10

and eq. 29). If the synthetics are not computed up to a sufficiently

high angular order, the surface waves in the synthetics will not be

accurate.

Although it might appear that the error caused by truncation at

too low an angular order will not significant affect body waves,

this is not the case. Truncation at too low an angular order causes

ringing because the truncation is essentially equivalent to employing

a boxcar filter (Fig. 11). The effect of this error on the body waves

will depend both on the time interval between the body waves and

the surface waves and on the angular order at which the computation

is truncated.

The amplitude of the vertically dependent part of the solution

decays exponentially below the turning depth. As the angular order

Figure 12. The amplitude of the expansion coefficients of toroidal dis-

placement (the coefficient Wlm (r ) in eq. 23) as a function of depth for a

source depth of 5 km. Solutions were computed for several angular orders.

Horizontal line indicates the cut-off criterion (an amplitude of 10−10 of the

maximum amplitude).
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Figure 13. Three-component record section (velocity, rather than displacement) for the isotropic PREM model including anelastic attenuation and the sum of

both the toroidal and spheroidal contributions to each horizontal component, with a maximum frequency of 2 Hz. The source is a 5-km-deep point double-couple

source, with M rθ = M θr = 1 and all other components of the moment tensor zero. (a) Vertical component; (b) radial component and (c) transverse component.

All traces are unfiltered. Each trace is individually normalized to have the same maximum value. We can find sharp onsets of initial waves at teleseismic

distance, reverberation phases and higher mode surface waves before the fundamental mode arrivals, which can be readily distinguished as the epicentral

distance increases.

increases, the turning depth is shallower and the amplitude of the

solutions decays more rapidly below the turning depth (Fig. 12).

To reduce CPU time without significantly lessening the accuracy,

we compute solutions only for the regions shallower than a cut-off

depth, at which we impose a free-surface boundary condition. We

choose the cut-off depth (Fig. 12) to be the depth below the turning

depth at which the amplitude has decayed to 10−10 of the maximum

amplitude. The use of a cut-off depth allows us to significantly re-

duce the CPU time without any appreciable loss in accuracy.

4 B ROA D - B A N D E X A M P L E S :

S Y N T H E T I C S A N D P RO F I L E S

We compute three-component (vertical, radial, transverse) syn-

thetic seismograms (Fig. 13) for the earth model, isotropic PREM

(Dziewonski & Anderson 1981). (We used isotropic PREM for

Fig. 13 so these results could be compared to calculations for other

methods.) (Anelastic attenuation is also included.) We show record

section synthetics computed up to 2 Hz. The CPU time required for

the synthetics in Fig. 13 is about 3 months (12 weeks) using 8 pro-

cessors. To compute synthetics up to 2 s, 2 weeks are required using

our HPC. The detail of Figs 13, 14, 15, 16 and 18 can be clearly

seen in the online version of the article.

The program uses the same grid for all frequencies. This makes

the coding simpler and eliminates the need for computing matrix

elements for several different grids, but means that the grid is finer

than necessary for some frequencies. The maximum angular order

will always occur at one of the endpoints of the period range because

the dependence of maximum angular order on frequency is convex

upward (Fig. 7). By examining the maximum angular order at both

endpoints in advance of the computation we can thus determine the

grid spacing required to achieve the required accuracy throughout

the period range.

We now show several numerical examples to demonstrate the

applicability of our methods to realistic problems. The waveforms

of phases which sample several geodynamically interesting regions

in the Earth are often complicated due to the presence of overlap-

ping arrivals, which makes it hard to pick the arrival times. On the

other hand, even for overlapping phases the waveform itself can

be analysed by comparing synthetics and data For example, PKP

branches sample the core well but their arrivals are very compli-

cated (Fig. 14). As is well known, phases whose turning depths

are in the mantle transition zone are also very complicated due to

triplications caused by sharp velocity gradients (Fig. 15). For such

complex but interesting regions, it may be advantageous to be able

to directly analyse waveform data (e.g. either by waveform inversion
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Figure 13 (Continued.)

Figure 14. Examples of core phases (Pd and PKP) of synthetics. The source

is a 5-km-deep point double-couple source, with M rθ = M θr = 1 and all

other components of the moment tensor zero. (a) Cross-section of core phases

for epicentral distances between 100◦ and 180◦; (b) synthetics of core phase

for an epicentral distance of 152◦.

or trial-and-error forward modelling) using the methods of this

paper.

While it is well known that spheroidal and toroidal wavefields are

coupled in the near field, spheroidal and toroidal wavefields are de-

coupled in the far field if asymptotic approximations are used. How-

ever, there in fact are spheroidal signals in the transverse component

and toroidal signals in the radial component when calculations are

made using the exact expressions for spherical harmonic functions

rather than asymptotic approximations. As our method solves the

elastic equation of motion for spherical coordinates without using

Figure 15. Examples of triplications in P waves sampling the transition

zone for anisotropic PREM. The source is a 5 km deep point double-couple

source, with M rθ = M θr = 1 and all other components of the moment

tensor zero. Traveltimes (computed independently) agree excellently with

the synthetics.

Figure 16. Record section for the transverse component just before and

after the arrivals of Sd. The source is a 5-km-deep point double-couple

source, with M rθ = M θr = 1 and all other components of the moment tensor

zero. Note that synthetics for the transverse component should include both

toroidal and spheroidal contributions. The traces on the right are the same

as those on the left but are amplified by a factor of 100 so that the spheroidal

arrivals before Sd are clearly visible.

such approximations, we can accurately compute the spheroidal sig-

nals in the transverse component that arrive before the arrivals of

diffracted S waves, which are the initial phase the in toroidal wave-

field (Fig. 16).

Seismic waves propagating in the Earth are attenuated by intrin-

sic anelasticity. We showed above that essentially all the energy

of waves for the far field is below 2 Hz for PREM. On the other

hand, computations up to only 2 Hz are insufficient to fully calcu-

late the near-field wavefield. Unfiltered synthetics up to 2 Hz for

the near field, for an epicentral distance of 1◦, show ringing and

do not have a clear onset of the initial phase (Fig. 17a), while the

unfiltered synthetics up to 2 Hz for the far field show a sharp onset

(Fig. 17c). This indicates that near-field waves have significant en-

ergy in the frequency band higher than 2 Hz. If ‘complete’ ground

motion synthetics for the near field are necessary, computation up

to frequencies higher than 2 Hz is required. In many cases, it will

be unnecessary to compute up to such high frequencies, and we can

apply filters to the synthetics that simulate seismometers (Fig. 17b).
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5 s

(a) near-field unfiltered

(b) near-field filtered

(c) far-field unfiltered

tP = 18.2 s

tP = 18.2 s

tP = 778.9 s

Figure 17. Examples of the initial phases of velocity synthetic seismograms

(vertical component) for isotropic PREM for a point moment tensor source

at a depth of 5 km with a δ-function source time function, with M rθ = M θr =
1 and all other components of the moment tensor zero. (a) 2 Hz unfiltered

synthetic for an epicentral distance of 1◦, (b) synthetic for an epicentral

distance of 1◦, after applying a low-pass four-pole filter with a corner at 1

Hz and (c) 2 Hz unfiltered synthetic for an epicentral distance of 90◦.

Note that synthetics in Fig. 17(c) are unfiltered. As a δ-function

source time function is used, truncation of the calculation at a given

frequency is equivalent to applying an acausal filter to the synthet-

ics. This is why truncation at a frequency at which waves have a

significant amplitude causes ringing (Fig. 17a). In order to obtain a

Figure 18. φ-component (transverse component) record sections (velocity, rather than displacement) for isotropic PREM model including anelastic attenuation.

The source is a 5-km-deep point double-couple source, with M rθ = M θr = 1 and all other components of the moment tensor zero. (left) Spheroidal contribution;

(centre) toroidal contribution; (right) one-tenth of the sum of the spheroidal and toroidal contributions (scaled down in order to prevent the amplitude from

being saturated). Non-physical waves can be seen in the left and centre record sections. as shown by the yellow lines. These non-physical waves are eliminated

when we sum the spheroidal and toroidal components. Non-physical waves are not found in the vertical component of spheroidal synthetics.

sharp onset, we should calculate synthetics up to a sufficiently high

frequency.

As discussed in the previous section, for the TI laterally homo-

geneous case we decompose eq. (2) into separate systems for each

angular order. We then further decompose these systems into sep-

arate sets of linear equations for the toroidal (SH) and spheroidal

(P–SV ) displacement. After these displacement fields are separately

computed, we then sum them to obtain the synthetics. As shown by

eq. (12), both the spheroidal and toroidal wavefields have non-zero

θ - and φ-components, so it is necessary to sum both to obtain ac-

curate synthetics for the horizontal components of displacement

(Fig. 18).

If we look at only the spheroidal or toroidal wavefields we find

non-physical waves that have apparent velocity, which is infinite

(Fig. 18: left and centre). These non-physical waves vanish when

both spheroidal and toroidal contributions are summed (Fig. 18:

right). Although the properties of the non-physical waves are not

fully understood, the important point is that these artefacts are elim-

inated by summing the toroidal and spheroidal contributions to the

horizontal displacement.

5 D I S C U S S I O N

The methods presented in this paper can also be used in wave-

form inversion calculations for 1-D and 3-D earth models (Geller &

Hara 1993). To invert for 3-D structure we would treat the laterally

heterogeneous part of the structure as a perturbation to the later-

ally homogeneous part of the model and use the Born expansion

(Takeuchi et al. 2000; Igel et al. 2000). If we use only the first-term

(the first-order Born expansion) accuracy is limited, but by taking

the expansion to third or fourth order, accuracy can be greatly im-

proved. Note that the details of how to apply the DSM to laterally

heterogeneous models are thoroughly discussed by Cummins et al.
(1997) for the isotropic case, and their methods can also be used for

the anisotropic case.
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