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Waveform tomography is conducted for SH velocity structures of the entire mantle using approximately 3.5
times the data used for obtaining the previous model, SH18CE. The resultant new model, SH18CEX, exhibits a
cluster of ridge-like low-velocity anomalies in the western part of the Pacific Large Low-Shear-Velocity Prov-
ince (LLSVP). The location of the ridge-like anomalies is in good agreement with the location of the abrupt
change in the topography of the D″ discontinuity. These results suggest that the LLSVP is associated with a
cluster of ridge-like-piles, rather than a single large pile spread over the entire region. The piles probably con-
sist of intrinsically dense material; however, either their volume or density contrast may not be sufficiently
large to develop large-scale domes.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

As is well known, there exist two large low-shear-velocity prov-
inces (LLSVPs) in the lowermost mantle beneath the Pacific and
Africa. Ridge-like structures (low-velocity anomalies that are hori-
zontally long and narrow) were detected in the African LLSVP via
array analyses (e.g., Ni and Helmberger, 2003; Wang and Wen,
2007). Global tomography models also show generally consistent fea-
tures (e.g., Grand, 2002; Takeuchi, 2007). It is important to verify
whether such ridge-like structures are also observed in the Pacific
LLSVP; if so, the ridge-like plume can be considered as the fundamen-
tal morphology of the upwellings.

Several array analyses were conducted in order to obtain regional
structure models for the Pacific LLSVP. For instance, Takeuchi et al.
(2008) suggested that the vertical extent of the low-velocity anoma-
lies is approximately 400 km on the western side, whereas He and
Wen (2009) suggested that it is approximately 740 and 340 km on
the north-western and south-eastern ends, respectively. In these
studies, the structure models were obtained by analyzing the data
for event-station pairs on, or in the vicinity of, a particular great circle
plane. Two-dimensional models were obtained by assuming that the
structure is homogeneous in the direction perpendicular to the plane.

However, according to the global tomography model obtained by
Schubert et al. (2004), the Pacific LLSVP consists of clusters of small-
scale anomalies, and the validity of the aforementioned assumption
is not evident. Furthermore, for some regions, such an assumption is
l rights reserved.
clearly invalid; for example, Fig. 4 of Takeuchi and Obara (2010)
shows a rapid variation in the ScS-S residuals (~8 s variation within
400–500 km) in the direction along which the structures are assumed
to be homogeneous by He and Wen (2009). Therefore, further efforts
to obtain three-dimensional models are required.

Takeuchi (2007) conducted global waveform tomography using
three-dimensional Born kernels and obtained the three-dimensional
SH velocity model, SH18CE. The tomography method adopted by
Takeuchi (2007) utilizes all the phases in the waveform data (includ-
ing ScSn and various major and multi-orbit body phases); thus, the
resolution of the LLSVPs is improved significantly (see Fig. 2 of
Takeuchi, 2007). This method is also advantageous in that it can re-
cover smaller-scale structures by fully considering the finite-
frequency effects (see Figs. 3 and 4 of Panning et al., 2009). In this
study, we improve the resolution by using a larger data set than
that used by Takeuchi (2007) and obtain a three-dimensional SH ve-
locity model of the entire mantle. The obtained model, SH18CEX,
exhibits ridge-like low-velocity anomalies in the western part of the
Pacific LLSVP, where the resolution of the model is high. In addition,
we discuss the plausibility of the obtained features.

2. Data and method

We invert the transverse component of the broadband waveform
data from IRIS GSN and GEOSCOPE for 679 events (Fig. 1a). The data
set used in this study is a combination of the data set of Takeuchi
(2007) (hereafter, referred to as “Data Set 1”) and the new data set
(hereafter, referred to as “Data Set 2”). Data Set 1 includes only data
for large events (Mw≥6.5), whereas Data Set 2 includes data for smal-
ler events (the smallestMw is 6.0). The event distribution for Data Set
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Fig. 1. (a) Events used for obtaining SH18CEX in this study (left) and SH18CE. (Takeuchi, 2007) (right). (b) Recovered models for checkerboard patterns of the heterogeneities when
we use the data sets for SH18CEX (upper figures) and SH18CE (bottom figures).
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2 covers the area that had no or very few events in Data Set 1 (such as
Hawaii, the East African rift zone, and mid-ocean ridges). We use a
particularly large number of events in the western Pacific region,
thereby improving the resolution of the western part of the Pacific
LLSVP. The entire data set used in this study consists of 54,790 traces
(271,798 time windows), which is approximately 3.5 times the num-
ber of traces used by Takeuchi (2007). With the exception of the data
set used, the methods and parameters employed in this study are ex-
actly the same as those employed by Takeuchi (2007). The basic in-
formation required for further discussion is summarized below.

The periodic ranges of the data set are exactly identical to those of
the data set used by Takeuchi (2007). The data set consists of velocity
waveforms with three different periodic ranges (200–400 s, 100–
200 s, and 50–100 s). The methods for data selection are exactly iden-
tical to those adopted by Takeuchi (2007). We extracted time
windows in which the residuals of the phase and the amplitudes be-
tween the observed and synthetic seismograms are reasonably small.
These data selections were made to avoid the breakdown of the Born
approximations used in the inversion in this study. The resultant data
set for 200–400 s primarily consists of surface waveform data, where-
as the data set for 50–100 s primarily consists of body waveform data.

The model parameters and the damping parameters are also iden-
tical to those of Takeuchi (2007). We used the anisotropic PREM
(Dziewonski and Anderson, 1981) and the Global CMT solutions as
the initial models for the structures and the source parameters, re-
spectively, and we perturbed only the elastic constants (i.e., the
other parameters such as density, quality factors, and source parame-
ters were fixed). We expanded the perturbation of the elastic con-
stants N and L (notations follow those of Love, 1927) in terms of 14
radial functions (13 linear spline functions in the mantle and 1 box-
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car function in the crust) for the vertically dependent part, and spher-
ical harmonics with a maximum angular order of 18 for the horizon-
tally dependent part. We defined the expansion coefficients as the
model parameters. Appropriate scaling relations were assumed be-
tween the perturbation of N and L. The damping method and param-
eters are exactly identical to those of Takeuchi (2007). Therefore, we
can directly compare the new model, SH18CEX, with the previous
model, SH18CE.

3. Obtained model

3.1. Overall features, resolution, and variance improvements

The resolution of SH18CEX is considerably better than that of
SH18CE (Fig. 1b). The resolution of SH18CEX for the western Pacific
region is sufficient to recover the checkerboard pattern of heteroge-
neities whose scale mimics the scale of the structures observed in
Fig. 5. Note that the checkerboard patterns exist in both horizontal
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Fig. 2. Comparison between SH18CEX (upper figures) and SH18CE (lower figures) at variou
model, PREM (Dziewonski and Anderson, 1981), are shown. The green arrows indicate exa
and vertical directions. The S waves bottoming at various depths
should primarily provide the vertical resolution.

The obtained model, SH18CEX, is shown in Figs. 2 and 3. First, we
compare the lower mantle models of SH18CEX and SH18CE via visual
inspection (Fig. 2). We see that the overall patterns, i.e., the long-
wavelength features, of the two models are nearly invariant, but the
significant differences between the models are the relatively small-
scale anomalies observed only in SH18CEX (such as the features indi-
cated by the green arrows in Fig. 2). This can probably be attributed to
the resolution improvement in the new model.

Next, we compute the correlation coefficients between SH18CEX
and SH18CE as a function of depth and degree (Fig. 4). The correlation
coefficients fluctuate among degrees (Fig. 4a) partly because the het-
erogeneities are very small for some degrees. To clearly observe the
overall features of the correlations, we plot the correlation coeffi-
cients for each degree bin (degrees 1–3, degrees 4–6, … , degrees
16–18) (Fig. 4b). The thick black boxes denote the ranges where the
correlation coefficients are less than 0.70. Although we have a few
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Fig. 3. SH18CEX at various depths in the upper mantle.

58 N. Takeuchi / Earth and Planetary Science Letters 319-320 (2012) 55–64
exceptions, we can confirm that the primary ranges with lower corre-
lation coefficients are higher degree components (degrees 16–18) in
the lower mantle, showing that the small-scale features in the lower
mantle are the primary differences between the models SH18CEX
and SH18CE. The lowermost mantle is the region with lower coeffi-
cients for a larger degree range (degrees 10–18), and we will discuss
their small-scale features in the next subsection.

The newly identified small-scale features appear to be constrained
primarily by the body waveforms in Data Set 2. Table 1 summarizes
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Fig. 4. (a) Correlation coefficients between SH18CEX and SH18CE as a function of degree (h
dicated by solid lines. (b) The same as (a) but showing the correlation coefficients for degr
correlation coefficients less than 0.70.
the variance improvements due to SH18CE and SH18CEX. The vari-
ance improvement is defined by
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where uobs
(i) is the i-th time window of the observed seismograms, and

uinit
(i) and ufinal

(i) are the i-th time window of the synthetic seismograms
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orizontal axis) and depth (vertical axis). The discontinuities at 400 and 670 km are in-
ee bins (degrees 1–3, 4–6, … , 15–18). The thick black boxes denote the regions with



Table 1
Comparison of variance improvements.

Data Set 1 Data Set 2

SH18CE SH18CEX SH18CE SH18CEX

200–400 s 42% 44% 30% 32%
100–200 s 41% 42% 33% 37%
50–100 s 34% 31% 23% 31%

Data Set 2 (Mw≥6.5) Data Set 2 (Mwb6.5)

SH18CE SH18CEX SH18CE SH18CEX

200–400 s 36% 38% 20% 21%
100–200 s 34% 38% 32% 36%
50–100 s 21% 30% 24% 32%
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for the initial and the final model (either SH18CE or SH18CEX), re-
spectively. The evaluation of the variance improvements for Data
Set 2 required extensive computational resources; hence, we used
an approximation. We selected the data for 220 out of 488 events of
Data Set 2, and we computed the variance improvements for the se-
lected 220 events. We assumed that these improvements are identi-
cal to those for all 488 events of Data Set 2. Note that the event
selection was based only on the event date (events between 01/
2006 and 09/2007 were selected), and no other selection rules were
applied.
-4.2 4.2 % -1.7

-3.4 3.4 % -1.9

CMB 2390

T
his S

tudy
P

revious M
odel

A'

A

B'

B

Fig. 5. Comparison between SH18CEX (upper figures) and SH18CE (lower figures) in the we
shown in Fig. 6. The green dot denotes the relatively high-velocity region discussed in the
SH18CEX exhibits improvements comparable with those of
SH18CE for the periodic ranges of 200–400 s and 100–200 s
(Table 1, top). For the periodic range of 50–100 s, SH18CEX also ex-
hibits comparable improvements for the existing data (34% for
SH18CE and 31% for SH18CEX); on the other hand, it exhibits greater
improvements for the incremental data (23% for SH18CE and 31% for
SH18CEX) (Table 1, top). Improvements for the incremental data
themselves are not surprising because they are included only in the
inversion for SH18CEX, but note the larger improvements for the pe-
riodic range of 50–100 s compared with the other ranges. Considering
that the data set of 50–100 s primarily consists of body waveforms,
the results suggest that the incremental constraints on the Earth's
structures are primarily attributable to the body waveforms in the in-
cremental data set.

For the periodic range of 200–400 s, the improvements for Data
set 1 are greater than those for Data Set 2 (e.g., 44% and 32%, respec-
tively, for SH18CEX) (Table 1, top). This is probably due to the fact
that the signal-to-noise ratios of Data Set 2 are not adequate for lon-
ger periods because Data Set 2 includes data for smaller events. In-
deed, for the periodic range of 200–400 s, variance improvements
for larger events (Mw≥6.5) are significantly larger than those for
the data for smaller events (Mwb6.5) (38% and 21%, respectively,
for SH18CEX) (Table 1, bottom). However, note that this does not
hold for the periodic range of 50–100 s (30% and 32%, respectively,
for SH18CEX) (Table 1, bottom), which suggests that such problems
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are not encountered in this periodic range. Therefore, we can con-
clude that the small-scale features in the lower mantle would be bet-
ter constrained by the incremental data set.

3.2. Small-scale features in the western pacific region

We investigate the small-scale features observed in SH18CEX. We
focus on the western Pacific region, where the resolution of SH18CEX
was confirmed to be high in Fig. 1b. The enlarged figures (Fig. 5, top)
indicate that the strong low-velocity anomalies are horizontally long
and narrow in the vicinity of the core-mantle boundary (CMB). These
ridge-like anomalies surround the relatively high-velocity region
(represented by the green dot in Fig. 5), suggesting that the observed
strong low-velocity anomalies are associated with the return flow of
the downwelling at the center. Such features are not well observed
in SH18CE (Fig. 5, bottom).

Part of the strong anomalies (those intersected by the line A–A′ in
Fig. 5) extend to the shallower region. The vertical cross sections
(Fig. 6, top) show that the extent of the anomalies is wide in the
NW–SE direction, narrow in the NE–SW direction, and high upwards.
These features are similar to those observed in the African LLSVP (e.g.,
Ni and Helmberger, 2003; Wang and Wen, 2007).

We can confirm some similarities between SH18CEX and several
recent models. Fig. 6 shows a comparison of SH18CEX, HMSL-S06
(Houser et al., 2008) and S40RTS (Ritsema et al., 2011). In each sec-
tion of A–A′ (Fig. 6, left), we can confirm tall and wide low-velocity
anomalies; however, the anomalies in HMSL-S06 and S40RTS appear
to be slightly less tall and slightly less wide, respectively, as compared
to those in SH18CEX. In each section of B–B′ (Fig. 6, right), we can
confirm two piles of low-velocity anomalies. The right pile is taller
than the left in each model; however, the pile in SH18CEX appears
to be the tallest. Therefore, we can say that the ridge-like anomalies
are more pronounced in the model obtained in this study.

The observed ridge-like anomalies are not likely to be caused by
resolution smearing. Fig. 7 shows the resolution kernels for the
input anomalies having a point-wise distribution in the horizontal di-
rection. The extents of the input anomalies in the vertical direction
are different between Fig. 7a and b. The kernels are more or less iso-
tropic in the horizontal direction, and few elongations are observed.
Moreover, the smearing in the vertical direction is small. Therefore,
we can conclude that the ridge-like anomalies are not due to the
smearing effects.

4. Consistency with the travel time data

We confirm the plausibility of the obtained model by checking its
consistency with the observed travel time data. We plot the distribu-
tion of the ScS-S travel time residuals observed by using Japanese
broadband seismic arrays (Fig. 8a). 3469 residuals were measured be-
tween 45.3° and 80.7° using bandpass-filtered velocity seismograms
with corner periods of 3.3 and 100 s. It should be noted that these re-
siduals are independent of the data set used in the waveform tomog-
raphy in that: (i) the former is data from the regional array, whereas
the latter is data from global networks, (ii) the former is relatively
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short-period data (around 3.3 s), whereas the latter is longer-period
data (around 50 s), and (iii) the former is relative travel time data,
whereas the latter only contains information regarding absolute trav-
el times.

As in Fig. 4 of Takeuchi and Obara (2010) the measurements in
this study indicate an 8 s variation in the residuals within a region
of around 400–500 km (at the green line labeled P in Fig. 8a of this
paper). Although the fluctuations are large, we also observe a varia-
tion of around 5 s in the residuals (at the green line labeled Q in
Fig. 8a); the residuals of north-eastern part are approximately 5 s
larger than those of the south-western part. These results intuitively
suggest the existence of large velocity gradients in the NE–SW
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direction. Other regions with relatively abrupt changes in the resid-
uals (R and S in Fig. 8a) suggest the existence of velocity gradients
in the NW–SE direction. These features are generally consistent
with those reported previously (e.g., Fig. 1 of Schubert et al., 2004);
however, the features in Fig. 8a appear to be clearer. This is probably
because the results in Fig. 8a are obtained from a single regional array.

The low-velocity anomalies in SH18CEX effectively explain the ob-
served distribution of the ScS-S residuals (Fig. 8b, left; see also Fig. 8d,
left). By introducing a ridge-like structure, we can explain the abrupt
change in the residuals at P, Q, and R in Fig. 8a and c. We can also ex-
plain the abrupt change at S by other low-velocity anomalies in the
lowermost mantle. In contrast, SH18CE does not explain the observa-
tions (Fig. 8b, right and 8d, right). Larger residuals are observed in the
region surrounded by the lines P, Q, and R (Fig. 8a and c), whereas the
model SH18CE predicts smaller residuals (Fig. 8b, right and 8d, right).
The results strongly suggest that the low-velocity anomalies in
SH18CEX are more plausible than those in SH18CE.

The obtained low-velocity structures have good correlations with
the D″ topography observed by Takeuchi and Obara (2010), who an-
alyzed ScS-SdS times for the Fiji-Tonga events. The sampling region
extends across the ridge-like structure (Fig. 9a). The ScS-S residuals
observed by Takeuchi and Obara (2010) were indeed large at the cen-
ter of the ridge-like structure, and they linearly decreased with in-
creasing distance from the center (Fig. 9b, left). The D″ discontinuity
was deep at the center, became slightly shallower at the side, and
abruptly became very shallow beyond the side of the ridge-like struc-
ture (Fig. 9b, right). The abrupt jump in the discontinuity suggests
that the ridge-like structure is probably associated with a chemically
distinct pile (Fig. 9c), as discussed by Takeuchi and Obara (2010).

5. Discussion and implications

In several previous studies, the LLSVPs have been interpreted as
isolated piles of intrinsically dense materials (e.g., Ni and
Helmberger, 2003; Ni et al., 2002; Wang and Wen, 2007). However,
such piles are often expected to have larger-scale structures (e.g.,
Tackley, 1998; Tackley, 2002; McNamara and Zhong, 2005), which
seems to contradict the cluster of small plumes observed in this
study. In contrast, Schubert et al. (2004) proposed that LLSVPs are
clusters of isochemical thermal plumes, which seems to contradict
the abrupt change in the topography of the D″ discontinuity observed
in this study. One solution for these contradictions may be as follows:
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the piles consist of intrinsically dense materials; however, either the
volume or the density contrast of the dense materials is small.
Under these circumstances, the thermo-chemical plumes are
expected to be similar to the isochemical thermal plumes (see, for ex-
ample, the discussions by Bull et al., 2009).

The morphology of the plumes has long been debated, even for
simple Rayleigh–Bénard convections. Bercovici et al. (1989), for ex-
ample, suggested that the upwellings in the earth-like spherical shells
are conduit-like, whereas Houseman (1990) and Yanagisawa and
Yamagishi (2005) suggested that the upwellings are sheet-like. The
most fundamental difference between these studies is the Rayleigh
numbers that were considered. The existence of ridge-like structures
suggests that the convection in the lower mantle is as vigorous as that
for large Rayleigh numbers (more than, say, 1000 times the critical
Rayleigh number).

In the new model, SH18CEX, we see ridge-like structures in both
the African LLSVP and the Pacific LLSVP (Fig. 2, top). The structures
in the African LLSVP are similar to those obtained by Schubert et al.
(2004). The results suggest that both the Pacific and the African
LLSVPs consist of clusters of chemically distinct piles. It is notable
that piles are not spread over the entire region of the LLSVPs, but
confined only to the ridge regions. The recent high-P,T elasticity
simulation of deep mantle minerals suggests that small volume frac-
tions of mid-ocean ridge basalt (MORB) in the lowermost mantle
are sufficient for explaining the amplitude of Vs and Vϕ anomalies
observed in tomographic studies (Tsuchiya, 2011). The ridge-like
pile clusters seem to be compatible with this mineralogical
interpretation.
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