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Abstract. We present a new technique, based on the
Direct Solution Method (DSM) [Geller et al., 1990;
Hara et al., 1991; Geller and Ohminato, 1994], for cal-
culating SH (toroidal) synthetic seismograms for spher-
ically symmetric, isotropic, media. No asymptotic ap-
proximations are used and the synthetics, which fully
include both body and surface waves, can.be computed
for a broad range of frequencies. Our algorithm accu-
rately handles sources that require discontinuities in the
vertically dependent part of the displacement. We use
matrix operators that minimize the numerical error of
the solutions. An example synthetic profile is presented
for a 600km deep source in the IASP91 model for the
period range 4-5000s.

Introduction

The inversion of seismic waveform data for global
three-dimensional (3-D) Earth structure has been al-
most entirely restricted to long period surface wave
data. Body wave data allow higher resolution of the
fine structure of the earth’s interior. However, due to
computational limitations, intermediate quantities such
as travel times or cross-correlation delay times, rather
than the body wave waveforms themselves, have almost
always been used as the data in Earth structure studies.

The ability to model the entire seismic waveform as
recorded by broadband, high dynamic range, seismo-
graphs [ Wielandt and Steim, 1986] should lead to better
models of Earth structure. However, algorithms which
are suitable not only for modeling but also for inverting
such waveform data are required.

Existing methods for computing synthetic seismo-
grams at teleseismic distances generally produce only
a certain portion of the seismic waveform, e.g., free os-
cillations, surface waves, or body waves. Long period
body wave seismograms are frequently computed using
the reflectivity method and an earth flattening trans-
formation [e.g., Miiller and Kind, 1976]. Some efforts
are now being made to compute complete synthetic seis-
mograms by modal superposition; however, as noted by
Geller and Ohminato [1994], modal superposition is ill-
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suited to the computation of complete synthetics due
to the large number of modes that must be summed.

In this paper we present a method for calculating syn-
thetic SH (toroidal) seismograms for a spherically sym-
metric, isotropic, Earth model. The extension to the
P-SV (spheroidal) case for spherically symmetric media
will be presented in a companion paper. Our method
can be extended to the laterally heterogeneous case in
a straightforward manner [Cummins et al., 1992].

Theory

In this paper, lower case roman subscripts i, j, k,
denote cartesian vector components, and subscripts r,
0, ¢; denote spherical vector components. We use Greek
subscripts and superscripts to denote components in the
abstract vector space of trial functions. In this paper
these Greek indices correspond to a triplet of indices k,
£, and m for the index of the radial trial function, the
angular order, and the azimuthal order, respectively.

The DSM is a Galerkin weak form realization of
the Method of Weighted Residuals (MWR) [Geller and
Ohminato, 1994]. We use vector trial functions whose
complex conjugates serve as the weight functions. The
displacement is represented as a linear combination of
the trial functions:

N .
U; = Z ca,q)ga).
a=1

As shown by Geller and Ohminato [1994], the DSM
transforms the weak form of the elastic equation of mo-
tion to the following system of linear equations,

(w?T - H)c = —g;

1)

(2)

where T is the mass (kinetic energy) matrix, H is the
stiffness (potential energy) matrix, and g is the excita-
tion vector. :

The vector trial functions for the toroidal case are

L  sinf 04 ’ o0 )’

where Yo (6, ¢) is a (fully normalized) surface spherical
harmonic having angular order £ and azimuthal order
m, k is the index for the radial dependence of the basis
functions, and L = 1/£(£+1). See Press et al. [1986,

¢(kem) =
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p.181] for a complete description of the spherical har-
monics and associated Legendre polynomials. _
We choose linear splines as the radially dependent
part of the trial functions. Their explicit form is
(r—re-1)/(rk = Tk=1) TR-1 <T ST
(rh41 = 1)/ (k1 = Tk) Tk ST < Thy1

0 otherwise,

Wi(r) =

4)
where r1 < 9.+ < ry. The first and second lines of
(4) are ignored for k£ = 1 and k = N, respectively.

For these trial functions, the toroidal part of (2) is
block diagonal; each block corresponds to a pair of in-
dices £ and m and is decoupled from all other blocks.
(For the 3-D case the various angular and azimuthal
orders are coupled, as are toroidal and spheroidal trial
functions, resulting in much larger systems of equations;
see Geller and Ohminato [1994, Appendix A].)

The matrices T and H depend only on £, but the
excitation vector, g, depends on both £ and m. The
decoupled system of equations obtained from (2) for
each £ and m can be written as:

(T -HO +HO - (12 - DH®)c=-g, (5)

where ¢ and g are now vectors for a particular £ and m.
The explicit form of the matrix elements is:

Tpp = /drpr2WkIWk
HS,L = /drpr2Wk/Wk
HY), = / dr pr (Wi Wi + Wi We) K
5O = / dr p Wi Wi,

where p is the rigidity, p is the density, and the dot
indicates differentiation with respect to r. The integrals
are taken from the CMB to the Earth’s surface.

The vertically dependent part of the solution (some-
times denoted by y{) is given by

W(r) = Z Wi (r).

k

(7)

Excitation

For a point moment tensor on the z-axis (r = r;,
¢ = 0,80 — 0), the r.h.s. of (5) is zero except for m = %1
or m = %2, for which, respectively,

S

where by = ((2¢ + 1)/(167))'/2 and by = ((2¢0+ 1)(f -
1)(¢ + 2)/(64x))!/2. Satisfactory solutions for the m =
+2 case are obtained by solving (5) using (8), as the
discontinuity of the traction, ,u(W -W/r),atr =rsis
a natural boundary condition.

by (i Mo & Myy) [Wk —W, /r]

r=r, 8

bz(l‘Fngg + iM¢¢ - 2M9¢) [Wk/r]

r=rg’
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The body force for the m = %1 case is kinematically
equivalent to requiring W(r) to be discontinuous at the
source depth [e.g., Takeuch: and Saito, 1972, p.290):

D=W(rd)=W(ry) = bi(iMro £ Myg)/[r3pi(rs)]. (9)

But, since (6) (implicitly) requires W(r) to be a contin-
uous function of depth, the convergence for the m = +1
case is suboptimal [Strang and Fiz, 1973).

To obtain more accurate solutions for the m = 1
case we eliminate the body force (8) and instead require
W(r) to satisfy the essential boundary condition (9).
We introduce a new dependent variable, X(r), which is
a continuous function of depth:

X(r)=W(r)—DH(r —rs),

where H(r—r,) is a Heaviside step _fuhction. We expand
X(r) in terms of the trial functions:

X(r)= Z c;ch(r).
k

(10)

(11)

We define a new matrix operator, A:
A = T — HY + HD (12 - 1)HS), (12)

where the matrices on the r.h.s. of (12) are defined the
same way as in (6), except that the integrals are taken
only from 7, to the Earth’s surface, rather than from
the CMB to the Earth’s surface. We also define a force
vector g’, whose elements are given by

N
g;c = DZAkp.

p=1

(13)

We find the expansion coefficients for X(r) by solving
(&T ~HO 4+ HO® - (12 - 1)H<3)) ¢ =—g'. (14)

Finally, having found X (r), we obtain W(r) from (10).
Modified Operators

For a flat-layered medium, the error due to using lin-
ear splines as the trial and weight functions can be min-
imized by modifying the definition of the matrix ele-
ments [Toda et al., 1992]. In this paper we treat the
terms which are dominant for large £ by analogy to the
flat-layered case. We define the “lumped mass,” p;, and
the “lumped rigidity,” wi,

N N
L= Emié(r - T’i) y M= Z 5‘,’(5(7’ - ri)a (15)
i=1

i=1
where
rl"z r7;1+A1 (p, p)rdr i=1
-2 prr .
(mi, 51’) = Tn ,.;,V_AN(/J, /A)1’2d7' i=N
72 ,:':i"” (p, p)rdr otherwise

- (16)
and A; = (r; — 74-1)/2. We define modified operators
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Figure 1. Error for DSM solutions (with V = 800) for
the IASP91 model.

! = /dr (0 + p)r* Wi Wy
SYmod (17)
H®med = /dr 3 (1 + ) Wi W

We use the modified operators (17) in 85) in place of
the original operators defined in (6). H!) and H® are
not modified. Note that Marfurt [1984] and Korn [1987]
also proposed modified operators similar to those given
in (17), but their derivations were based on minimizing
numerical dispersion rather than minimizing the error
of the numerical solution.

We compare solutions obtained by our method to so-
lutions obtained by numerical integration of the strong
form of the equation of motion [Takeuchi and Saito,
1972]. An extremely fine grid was used for the latter,
which may therefore be regarded as exact. The square
of the absolute value of the difference is integrated over
radius and the result is divided by the integral of the
squared absolute value of the strong form solution to
compute the error shown in Figure 1. The moment ten-
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sor source has a §-function time history and corresponds
to slip along a horizontal fault in the ¢ = 0 direction;
it thus excites only m = +1 waves. We placed the
source at a depth of 600km to minimize the excitation
of surface waves; the grid spacing was chosen so that
the source depth was a node. The use of the modified
operators (17) reduces the error by about two orders
of magnitude over that for the original operators (6).
Note that (14) rather than (5) was used for both the
original and modified operators.

Numerical Example

Figure 2 is a record section of ¢-component (trans-
verse component) synthetics for the spherically sym-
metric Earth model IASP91 [Kennett and Engdahl,
1991], with a density and Q structure which are based
on the Earth model PREM [Dziewonski and Anderson,
1981]. Physical dispersion is included by treating the
TASP91 velocities as referring to a fiducial period of 1s,
and using the dispersion relation for a standard linear
solid. The source is the same as for Figure 1. The syn-
thetics are computed for a receiver profile in the ¢ = 90°
direction by solving (5) for all significant values of £ and
m, summing, and then using the inverse FFT to obtain
the solutions in the time domain. A four-pole Butter-
worth low-pass filter with a corner frequency of 0.125
Hz has been used to avoid a sharp frequency cut-off at
the 0.25 Hz Nyquist frequency.

The direct waves as well as those generated by inter-
actions with the free surface and CMB are easily identi-
fied by comparison with the arrival times calculated for
the TASP91 model using the method of Sambridge and
Kennett [1990], which are superposed on the waveforms
in Figure 2. The travel time curves plotted include the
direct wave and the first three free surface reflections
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Figure 2. Synthetic transverse component (SH) record section for a 600 km deep source calculated for the
TASP91 model. Q structure is that of PREM and the sampling rate is 2s. No instrument response is included,
but a low-pass, 4-pole Butterworth filter with a corner at 0.125 Hz is applied.
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Table 1. Computational requirements

N Freq Ny CPU Cum Linaz
(mHz) (s) (s)

800 25 128 1266 1266 256
1600 50 128 4235 5501 439
2400 75 128 9665 15166 625
3200 100 128 17118 32284 805
4800 150 256 69796 102080 1150
6400 200 256 125542 227622 1484
8000 250 256 196598 424220 1822

Number of layers (V), maximum frequency (Freq), num-
ber of frequencies for each band (Ny), computation time
(CPU), cumulative computation time (Cum), and angular
order at which the calculation was truncated (fmaz). A
Sparc-10 workstation was used.

(i-e., sS-SS, sSS-SSS, sSSS-SSSS) as well as ScS, sScS,
and ScS,. Since considerable energy is radiated down-
ward by the source, core-mantle boundary interactions
are quite prominent. The excellent agreement between
the synthetics and the travel times, which were calcu-
lated completely independently, provides further confir-
mation of the accuracy of the synthetics.

The calculated waveforms show that, as expected, po-
larity is preserved on interaction with the free surface
(e.g., S and ScS have the same polarity). sS has polarity
opposite to that of S because the upgoing “s” takes off
from a different lobe of the radiation pattern. As noted
by Choy and Richards [1975], the SS waveform should
be the Hilbert transform of S, and this is evident in Fig-
ure 2. Finally, note that diffracted S-arrivals are clearly
present in the shadow zone beyond 100°.

Se60S is basically the same as SS, but the intermediate
reflection is from the underside of the 660 km disconti-
nuity rather than the Earth’s surface. Travel time data
from such upper mantle reflections provide important
data on the fine structure of the mantle [Shearer, 1993].
Note that SggoS is clearly visible in Figure 2.

The computation time required to produce the syn-
thetics of Figure 2 is given in Table 1. The calcula-
tion, which is not yet fully optimized, was carried to a
Nyquist frequency of 0.25 Hz. The CPU time required
for a Nyquist frequency of 50 mHz (a Nyquist period of
20s) was about 1.5 hr on a Sparc-10 workstation.
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