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Abstract. In a previous paper, [Cummins et al., 1994,
hereafter referred to as DSMI], we presented theoretical
and computational results for calculating complete SH
(toroidal) synthetic seismograms for spherically sym-
metric, isotropic, media. We now extend our treat-
ment to the P-SV (spheroidal) part of the wavefield. No
asymptotic approximations are used, and the synthet-
ics, which include both body and surface waves, can be
computed for a broad range of frequencies. Examples of
synthetic profiles are presented for a 600km deep source
in the IASP91 model for the period range 4-5000s. Such
synthetics can contribute greatly to the determination
of earth structure from analyses of broadband seismo-
grams.

Theory

Following the general DSM (Direct Solution Method)
treatment for a fluid-solid medium [Geller and Ohmi-
nato, 1994, hereafter referred to as GOJ, the dependent
variable in the fluid part of the medium is a scalar which
is proportional to pressure, while the dependent vari-
able in the solid part of the medium is the displace-
ment. Continuity of displacement and traction at the
fluid-solid boundaries is enfofced by an additional ma-
trix operator. The Earth’s self-gravitation and rotation
are not included in our calculations.

As in DSMI, we use lower case roman subscripts 4,
j, k, to denote cartesian vector components, and sub-
scripts 7, 8, ¢, to denote the components of vectors
in spherical coordinates. Greek subscripts and super-
scripts (e.g., & — (k, £, m,p)) refer to the abstract vec-
tor space of trial functions, where k, £, m, and p = 1
or 2 correspond to the radial trial function, the angu-
lar order, the azimuthal order, and the vector spherical
harmonic (S! or S§2), respectively.

We use vector trial functions (%) to represent the
displacement in the solid part of the medium, and scalar
trial functions ®(* to represent the dependent variable,
@ = P/w, where P is the change in the pressure, in the
fluid part of the medium:
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(1)

For the scalar trial functions « is a pointer to the triplet
of indices (a — (k, £, m)).
The vector trial functions in the solid are

u= Z ca®®, Q= Z o ®(@),

[+7

@(keml) — Xk(,,.) (nm , 0’ 0) (2)
F(ktm2) Xi(r) 0. Wem 1 ¥im
L > 98 ’sing 9o )’

while the scalar trial functions in the fluid regions are:

3)

Yim(0,4) is a (fully normalized) surface spherical har-
monic [e.g., Press et al., 1986, p.181] of angular order
£ and azimuthal order m, k is the index for the radial
dependence of the basis functions, and L = 1/£({ + 1).

We choose linear splines as the radially dependent
part of the trial functions. Their explicit form is

&™) = Xy (r)Yem.

(r—rp=1)/(rk = Th=1) Th-1 <7< T}
(’"k+1 - T)/(’”k+1 - Tk)

0 otherwise,

Xk(T) = T ST < Tetl

(4)
where 71 < 79+ < ry. For each distinct region (e.g.,
the inner core, outer core, and mantle), the second line
in (4) is ignored for the uppermost layer, while the first
line in (4) is ignored for the lowermost layer.

Due to the degeneracy of the problem, the matrix ele-
ments depend only on £ and are independent of m. The
following discussion therefore considers the matrix ele-
ments and DSM equation of motion for some particular
£ and m; for simplicity we henceforth omit the indices ¢
and m. We thus denote the elements of the matrices as
Typt kp and Hyrp gp for the solid part of the medium,
and Tyx and Hyy for the fluid part of the medium.

For a spherically symmetric fluid-solid medium the
DSM equation of motion is (GO, Section 4):

(w?T —H+ wR)c = —g. (5)
The matrix R enforces continuity of displacement and
traction at fluid-solid boundaries.

We define the following intermediate integrals for the
solid part of the medium:
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I, = / pr2 Xy Xpdr I}, = / AXp Xydr
IZ, = / MXpXpdr I3, = / A2 Xy Xpdr
If, = / pXp Xpdr 2, = / pr X Xpdr
If, = /urzxk/Xkdr ,

(6)

where the dot denotes differentiation with respect to 7.
The integrals in (6) and (9), below, are non-zero only if
k- k| < 1.

Using the above intermediate expressions, the matrix
elements for the solid part of the medium are

Tt k1 = Thro ke = Iy,

Tyika =Thog1 =0 (7)
and

Hynp = AL +2(13, + 1)

+I3, + (L2 + )1}, + 218,
Hiape = LI+ (20 - )T, 8)

—(Ii + Ity ) + Ly (
Hkll,k2 = —L(?I%/k + I;k’ + 3I4lk - Iékl)
Hkl2’k1 = —L(2Ik’k+Ik'k+3Ik’k _Ik’k)'

The rows and columns of the portions of the matrices
corresponding to the solid are ordered with p changing
most rapidly (see Table A3 of GO). This leads to both H
and T being block tridiagonal, with each block having
dimension 2 x 2 (Figure 1).

We define the following intermediate integrals for the
fluid part of the medium:

IR = / P Xp Xi/Xdr IEL = / X X /pdr

IF2

. 9)
k'k =/7’2Xlek/pd1'

The matrix elements for the fluid part of the medium
are

\ ..../

Figure 1. Structure of w?T — H + wR.
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Tor = IES , Hp, = LIf + 153, (10)

Note that T and H are tridiagonal matrices for the fluid
part of the medium.

At the boundary between the solid and fluid media
there are two nodes corresponding to the same depth.
At the ICB (Inner Core Boundary) the indices for these
nodes are kj. g for the solid medium and k}"C g for the
fluid, while for the CMB (Core-Mantle Boundary) we
have kg, p for the fluid and kJ,,p for the solid. As
shown by GO (egs. 50-51) R enforces the continuity
of displacement and traction at fluid-solid boundaries.
The only non-zero elements of R are:

R, =rice

+ -
kICB’kICB]' 2
= —TCcMB>

- +
ICBl’kICB

(11)

-— + -—
kCMBLkgMB ,"CMB‘kC'M.B:l

where r7cp and ropp are the radius at the ICB and
CMB respectively. Extending the above results to a
medium with more than one fluid region is straightfor-
ward. The essential boundary condition u, = ug =
ug = 0 is imposed at r = 0.

Excitation

The displacement scalars U(r) and V(r) in the solid
parts of the medium (sometimes denoted by y{ and y§
respectively) are defined as follows:

U(r) = e Xi(r) V()= craXi(r). (12)
k k

In this section we assume the source is a point source
at a node in the mantle. The body force equivalent
for a point moment tensor is sometimes kinematically
equivalent to requiring the displacement scalars to be
discontinuous at the source depth r = r,. Since the
definition of U(r) and V(r) in (12) forces them to be
continuous (as they are a superposition of continuous
trial functions), convergence of the DSM solution of (5)
for this case is suboptimal. We therefore directly incor-
porate the discontinuity into the definition of U(r) and
V(r) in a manner analogous to that used in DSMI for
W (r). For a point moment tensor on the z-axis (r = 7,
¢ =0, 8 — 0), the discontinuity in U and V is given by .
[Takeuchi and Saito, 1972, p. 289)

D =
D,

rt
U2 = b16mo2Myr/[r3(Xs + 2p15)]
7‘+ .
V(r)l.2 = b16ma1 (FMro + iMig)/[r3ps]
(13)
where A\; = A(rg), ps = p(rs), and by = ((2¢ +
1)/16m)!/2. We define continuous functions U’ and V",

U(r)=U(r)— DiH(r —r5)
V!(r)y=V(r) — DyH(r — 1),

(14)
(15)

where H(r—r) is a Heaviside step function. We expand
U’ and V' in terms of the trial functions.

U'(r) =) chaXi(r) VI(r) =) chaXi(r).
k k (16)



CUMMINS ET AL.: DSM COMPLETE SYNTHETIC SEISMOGRAMS: P-SV 1665

g+ =10 T =100 Gkp = 2 Dy Aty (18)
, } klpl
(=3 = .
5 - We then find the expansion coefficients for ¢’ by solving
= e . 2 ! ’
w - (Ww'T-H-wR)c' =—-g (19)
X e ; . ,
S -+ Finally, having found ¢’, we use (14) and (15) to find U
- and V.
3 4 ! In contrast, for the remaining elements of the moment
50 100 50 100 tensor, U and V are continuous at r = 75, but the
Period (s) Period (s) tractions (y5 and y7) are discontinuous. We find c for
Figure 2. Error of DSM solutions. these cases by solving by eq. (5) using the following
force vector:
We now define a matrix gr1 = b16m02(Meo + Moy
2t , —Mr2Xs/(As + 2#8))[Uk(r)/7']r—m
| A=u'T -H, (A7) gy = b18moL(—Map — My (20)
where T/ and H' are defined in the same way as T and + M 206 [(As + 2085)) [Vie(r) [7]r=r,
H in (7) and (8), except that the integrals in (6) are —bzbmz2(Moy — Moo
evaluated only from 75 to the earth’s surface. (Note i’2M9¢)[Vk(7)/ Tlr=r.
that we are assuming the source is in the mantle.) We
next define where by = ((2¢ + 1)(£ — 1)(£ + 2)/(64m))/2.
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Figure 3. (a) Synthetic vertical (r) component record section for a 600 km deep source for the TASP91 model.
(b) Same as (a), except that the synthetics are for radial (§) component seismograms.
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Numerical Example

The Earth model used is IASP91 [Kennett and En-
gdahl, 1991], with density and Q structure based on
PREM [Dziewonski and Anderson, 1981]. Physical dis-
persion is included. The point moment tensor source
has a é-function time history and corresponds to slip
along a horizontal fault in the ¢ = 0 direction. The
source is at a node at 600 km depth, and the number
of layers in the inner core, outer core, and mantle are
350, 600, and 800, respectively.

The error of the DSM solutions decreases with in-
creasing period for a fixed layer thickness. This is illus-
trated in Figure 2, which shows the error of the DSM
solutions (obtained by comparison to solutions obtained
by numerical integration of the strong form of the equa-
tion of motion [ Takeuchi and Saito, 1972]).

Figure 3(a, b) shows record sections of r- and - com-
ponent (i.e., vertical and radial) synthetic seismograms
for the above Earth model and source. The synthet-
ics are computed for a receiver profile in the ¢ = (°
direction. A low-pass filter with a corner frequency of
0.125 Hz is used to avoid a sharp cut-off at the 0.25 Hz
Nyquist frequency.

The arrival times of major body-wave phases from
ray-theoretical travel time curves [Sambridge and Ken-
nett, 1990] are superposed on the record sections. These
arrival times agree extremely well with the body-wave
arrivals. The direct P and S waves, as well as bound-
ary interaction phases (SS, SSS, ScS) and converted
waves (SP, SKS) arrive at the times predicted for model
IASP91. Note in particular the PKP triplication near
150°, which involves phases travelling through the inner
and outer cores. ,

Shear-coupled PL is prominent in Figures 3a and
3b. This is a long period, dispersive wave train which
emerges just after S, SS, and SSS [e.g., Oliver and Ma-
jor, 1960; and Poupinet and Wright, 1981]. It is excited
due to the coupling of an S body wave (S, SS, or SSS)
incident on the crust from below to the fundamental
leaking mode of Rayleigh waves in the crustal waveg-
uide [Baag and Langston, 1985].

The calculation, which is not yet fully optimized, was
carried to a Nyquist frequency of 0.25 Hz, and required
about 300 hr on a Sparc-10 workstation. The CPU time
required for a Nyquist frequency of 50 mHz (a Nyquist
period of 20s) was about 5 hr.
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