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Abstract. In previous papers [Cummins et al., 1994ab]
(hereafter referred to as DSMI and DSMII respectively),
we presented accurate methods for computing complete
synthetic seismograms for SH and P-SV respectively in
a spherical earth model. The SH calculations used com-
putationally efficient modified matrix operators, but the
P-SV synthetics were computationally intensive. Geller
and Takeuchi [1995] (hereafter referred to as GT95) pre-
sented a general theory for deriving modified operators
and gave the explicit form of the modified operators for
the P-SV case in cylindrical or cartesian coordinates.
In this paper we extend GT95’s results to derive mod-
ified operators for the P-SV case in spherical coordi-
nates. The use of the modified operators reduces the
CPU time by a factor of about 5 without a loss of ac-
curacy. 10 CPU min on a SPARC-20 workstation with
one CPU are required to compute a profile of synthetic
seismograms from DC to 20 sec period.

Theory

To invert waveform data for 3-D earth structure, it
is necessary to be able to compute synthetic seismo-
grams and their partial derivatives accurately and effi-
ciently. The Direct Solution Method (DSM) [Geller et
al., 1990; Hara et al., 1991; Geller and Ohminato, 1994]
is well-suited to such computations. The present paper
presents results only for the laterally homogeneous case,
but extension of our results to the 3-D case is straight-
forward [e.g., Cummins et al., 1994c].

We begin by summarizing the results of DSMII for
the P-SV case. The subscript k corresponds to the node
and the subscripts p = 1 or 2 correspond to vertical and
horizontal components respectively. £ is the angular or-
der ¢, m is the azimuthal order m, and L = \/{({ + 1)
Due to the degeneracy of the problem, the matrix ele-
ments depend only on £ and are independent of m. We
denote the matrix elements by Tkp/ kp and Hyp kp for
the solid part of the medium, and Ty and Hyy for the
fluid part of the medium.
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The DSM equation of motion is:

(Ww?T — H+wR)c = —g, (1)

where R enforces continuity conditions at fluid-solid
boundaries.

We choose linear splines as the radially dependent
part of the trial functions. Their explicit form is

(r—re—1)/(rk —7Th—1) THo1 <7 <7
(Tk+1 = 7))/ (k1 — Tk)

0 otherwise,

Xk.(r) = T ST < Tht1

(2)
where rg < ry--- < 7Tn-
We define the following intermediate integrals, which
we call submatrices, for the solid part of the medium:

I, = f pr’ Xy Xpdr I}, = / AX o Xpdr
Ly = / M X Xpdr I3y = / Ar? X Xy dr
I, = /,uXk/Xkdr Iy = /uererdr

Ilfci’k :/[I,TZXk/Xkd'I‘ 5

3)

where the dot denotes differentiation with respect to r.
The integrals in (3) and (6), below, are non-zero only
if [k — k| < 1. Using the above expressions, the matrix
elements for the solid part of the medium are

Te 1 = Troke = I,
Tiike =Thrakn =0

(4)

and

Hk’l,kl = 4IIIC’k+2(II%/k+II%k')
+I} + (P + I8, + 215,

Hioage = LI+ (2L = DI}, (5)
—(Lig + L) + L

Hyige = —L(2Ly, + 1%, + 315, - I},)

Hizgr = =Ly + Iy + 3Ty — IR

The rows and columns are ordered with p and p’

changing most rapidly. This leads to both H and T
being block tridiagonal, with each block having dimen-
sion 2 x 2 (Figure 1).

We define the following intermediate integrals for the
fluid part of the medium:
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= /7’2Xlek//\dT wz--— /Xk'Xk/PdT
J (6)
I = | v X Xy /pdr
J
The matrix elements for the fluid part of the medium

are
Twr =I5 , Hpw= LTI, +IF2, (7)

where T and H are tridiagonal

At the ICB unner Core DOllIl(l&I'y) the indices are

kicp for the node in the solid medium and kICB for
+ha nadae in +ha Auid whila far tha OMR (Cara . Mantla

vuc noaGe in e uulu, Wiiii€ 10T i€ UMD \VUL\, .L\J.Odll/].b

Boundary) we have k3, for the fluid and kJ,, 5 for
the solid. The only non-zero elements of R are:

2
- = - =T
err*n vkrr*n Rkyﬂn»k!cnl ICB 18\
Ry— 1kt = R+ 4= 1 =—ToumB o
CMB '"'CMB CMB'"CMB
where 7;cp and rcpp are the radius at the ICB and

CMB respectively.

Modified Operators

GT95 derived a general criterion for obtaining mod-
ified operators that greatly decrease the error of the
solutions of eq. (1) without increasing the CPU time.
FTQR pvncnnfur‘ nnr\r‘ A npnra+n f{\}

ifie Q rtocian
10G1Nea LTS I0

ca and
cartesian ana

cylindrical coordinates. We now extend their results to
the P-SV case in spherical coordinates. I® and I8 in eq.
(3) and I"2 in eq. (6) are essentially 2nd derivative oper-
ators whose accuracy cannot be improved without using
either a finer mesh or a higher order approximation. We
use the results of GT95 to derive modified operators for
the other integrals in eqgs. (3) and (6) so that the error
of the synthetic seismograms is minimized.

The various terms in eq. (5) fall into two categories.
I® and I8, LI? and LI°, and L?I' and L2I* are all of
comparable magnitude. On the other hand, terms such
as the I' or I? terms in the first line of eq. (5) become
comparatively negligible as £ increases; it is not neces-
sary to replace such terms by a modified operator.

The elements denoted by open circles in Figure 1 are
zero for the unmodified operators, but are non-zero for
the modified operators. However, the CPU time re-
quired to solve eq. (1) does not increase, as the modified
and unmodified operators both have the same band-
width.

We do not modify R. The modified operators T' and
H' are defined as follows.

/ _ _ 70’
Tl;fl,kl = Tk’Z,kZ = Ik’k
Ty ko = Th2 k1 =0

(9)

Hiyp = 4Ilf-/k+2(-71%'k+fl%k')l
I+ (L2 + 4) I, + 215,
Hinpe = LI+ (2L = DI},

10
—(Lo, + Tigs) + Iy (10)

—L(2L} + I} + 314, — I2)
—L(2Tj, + Ty + 3L%y, — Iy

!
Hk’l,kz

I
Hig 1
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The submatrices, ) O i are defined above in eq. (3).
0! Y
lg,k, I,L,k, lk,k, lk,k, and lk’k are the newly defined mod-
ified submatrlces
T nd T4 o a a4t
J.k/k, Jk,k, ana lk/k LULICDPUIIU llU UPUI.G;I:ULD uviiauv
appear in the SH problem. Ig,k is the same as T,Z‘,‘c’d

which is given in eq. (17) of DSMI. Note that W}, of eq.
(17) corresponds to Xk in DSMII and this paper. Ik'k

is the same as 17\ of DSMT nd
15 T Salii€ as .u(a)k,k in €q. \J.l, O1 1/Ooivii, ana L)k 15

defined by replacing u by A in Ik,k.

We consider a smoothly varying portion of the medium
(with no discontinuities) and constant grid spacing, Ar.
For the case of a discontinuity in elastic properties or
Ar, we define the modified operators by “overlapping”
(see Figure 1).

Following GT95, we derive the modified opera.tors for
12 and I by dividing th anti Y into ty

aia v oy uiv'1u1115 vie qdauuucn AT a.uu T INTC TWO

parts. The major part is defined to vary stepwise, and
the rpmmmnu‘ part is the residual. We use the unmod-

ified operators to calculate the matrix elements for the
residual portions of Ar and pr, and define modified op-
erators for the step-wise varying parts. We consider a
region in which Ar is constant. We define the interme-

diate variables, (Ar)St€P and (Ar)T®sid as follows.

{ D P Axr 19

0 To ST \lu‘rul/a
= Dy, T — Ar[2 <71 <1+ Ar/2 (11)
rn —Arf/2<r<ry

(r)resid = (ar) — (ar)Step, (12)

N\
Mantle 0
(Solid)
Continuity
at CMB
Mantle o
Discontinuity Outer Core  Continulty
\u;uy atiCB
. Inner Core
, (Sold)

Figure 1. The structure of the original and modified
operators. The solid circles are non-zero for both the
original and the modified operators, and the open circles
are non-zero for the modified operators only. However,
the bandwidth of the unmodified and the modified op-
erators are equal (7 for the solid regions and 3 for fluid
regions), so the CPU time required to solve eq. (1) does
not change.
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where
( 2 rk+Ar/2
Ar /rk Ardz  (k=0)
1 ri+Ar/2
Dy = KF/”_M/Q e (13)

(I<k<N-1)

2 Tk
———-/ Ardz
L AT Tk—AT/z

(ur)SteP and (ur)'eSid are defined similarly.
Using (r)SteP, (Ar)Fesid, (ur)Step and (urjresid,
I, ,%,Ik and I E:k are defined as follows:

(k=)

’ 2'ste 'Tesi

I]%’k = Ik'k p + I]%lieSld (14)
’ 5'ste 'resi

Iglk = Ik’k p + I]‘z/’I‘;eSId (15)

I g:ieSid is defined by replacing Ar in the definition of
12, in eq. (6) of DSMII by (Ar)"®Sid. r5/resid i qefined
by replacing pr in the definition of I}, in eq. (6) of

DSMII by (ur)™519, 125%P 214 155%P 4re defined as
follows:

B, = &
step = 12 %

27D, 8Dy, —Dy
-5D; -3D; 9D -D
5D, —3D, 9D D,
—5Dn-3 —3Dny-1 8Dpn-_3
—5DnN 5Dn
(16)
50 _ 1
Ltep = T2 %
5By, -8E, B,
5Ey 3E; —9E, E3
5F4 3FEy —9F3 Ey
5En_a 3En_1 —8En
5EnN_, 7TEn
(17)

where E}, is defined by replacing X in eq. (13) by p.
The modified operators for the liquid part of the
medium are defined in basically the same way as the
modified operators for the SH problem in DSMI. We
therefore do not present explicit results in this paper.

Numerical Example

We present examples of P-SV computations for the
isotropic part of the standard earth model, PREM
[Dziewonski and Anderson, 1981]. Anelastic attenua-
tion is also included in the computations.

We consider the period band 20-5000s (Figure 2).
The sourceis a 600km depth, double-couple point source
with a §-function time history. M,y = My, = 1, and all
other components of the moment tensor are zero. The
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Figure 2. P-SV synthetic seismograms (vertical com-
ponent) using the modified and the original opera-
tors. The source is a 600km depth point double-couple
source, with M9 = My, = 1 and all other components
of the moment tensor zero. The top trace is an essen-
tially exact solution computed using the modified op-
erators with 3600 intervals. The second and the fourth
traces show the numerical solutions using the modified
and the original operators respectively, with 1000 inter-
vals for each case. The third and fifth traces show the
residuals for the second and fourth traces.

top synthetic in Figure 2 was computed using the modi-
fied operators with a very fine grid (3600 intervals), and
we assume it is effectively exact. The second trace in
Figure 2 shows a synthetic calculated using the modi-
fied operators with 1000 intervals, and the fourth trace
shows a synthetic using the original operators with 1000
intervals. Both the second and fourth traces required 10
CPU minutes each, but the former is over 10 times more
accurate. Only one trace is shown here, but a complete
profile can be computed in essentially the same CPU
time.

The third and the bottom traces show the residual
between the numerical synthetics and exact synthetics
for the modified and unmodified operators, respectively.
The numerical error is larger for the S wave portions of
the synthetic, as the vertical wavelength of S waves is
shorter than that of P waves.

The last trace in Figure 2 shows that the synthet-
ics computed using the unmodified operators are sig- -
nificantly out of phase with the exact waveforms, but
a visual comparison of the “old” and “exact” synthet-
ics might have led to the incorrect conclusion that the
“old” synthetic was satisfactory. This underscores the
importance of quantitative verification of the accuracy
of synthetic seismograms, especially if they are to be
used for waveform inversion.

Figures 3a and 3b show P-SV record sections com-
puted using the modified operators. We used 18000 in-
tervals (3400 intervals in the inner core, 6400 intervals
in the outer core, and 8200 intervals in the mantle). The
period band considered in this computation is 4-5000s;
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Figure 3. P-SV record section (vertical component) for
the spherically symmetric model PREM. The saurce is
the same as for Figure 2. (a) multiple reverberating P
waves; (b) core phases.

a Butterworth low pass filter with a corner frequency
of 0.15625Hz is applied to avoid a sharp cut-off at the
Nyquist frequency.

Figures 3a and 3b show theoretical arrival times based
on ray theory. The primary confirmation of accuracy is
obtained by comparing the DSM and strong form solu-
tions (details omitted due to space limitations). Note
that as the arrival times are computed independently of
the synthetics, the excellent agreement of the waveforms
and travel times further confirms the accuracy of the
synthetics. We plot only the first arrival of each phase
in Figure 3a, so no triplications appear in the travel
time curves. Figure 3b clearly shows the waveforms for
PKP and PKIKP. About 60 hr on a SPARC-20 work-
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station using one processor was required to compute the
synthetics in Figure 3.

There now seems to be a general consensus that to-
mographic studies of body wave travel times and surface
wave phase velocities have reached a point of diminish-
ing returns [e.g., Nolet et al., 1994]. Synthetic seismo-
grams computed using the modified operators presented
in this paper should be highly useful for inverting for
accurate and high resolution models of 3-D earth struc-
ture using long period body waves and surface waves.

Acknowledgments. We thank Jeff Park and an anony-
mous reviewer for helpful comments. We thank the Japan
Society for the Promotion of Science for the support pro-
vided to N.T. for part of this work. This research was par-
tially supported by a grant from the Japanese Ministry of
Education, Science and Culture (No. 06640542) and by the
ISM Cooperative Research Program (95-ISM-CRP-A-48).

References

Cummins, P. R., R. J. Geller, T. Hatori, and N. Takeuchi,
DSM complete synthetic seismograms: SH, spherically
symmetric, case, Geophys. Res. Lett., 21, 533-536, 1994a.

Cummins, P. R., R. J. Geller, and N. Takeuchi, DSM com-
plete synthetic seismograms: P-SV, spherically symmet-
ric, case, Geophys. Res. Lett., 21, 1663-1666, 1994b.

Cummins, P. R., R. J. Geller, and N. Takeuchi, Complete
seismic wavefield calculations for strong upper mantle
heterogeneity (abstract), EOS Trans. Am. Geophys. Un.
(Fall Mtg. Suppl.), 75, 422, 1994c.

Dziewonski, A. M., and D. L. Anderson, Preliminary refer-
ence Earth model, Phys. Earth Planet. Inter., 25, 297-356,
1981.

Geller, R. J., T. Hara, S. Tsuboi, and T. Ohminato, A new
algorithm for waveform inversion using a laterally hetero-
geneous starting model (abstract in Japanese), Seismol.
Soc. Jpn. Fall Meeting, 296, 1990.

Geller, R. J., and T. Ohminato, Computation of synthetic
seismograms and their partial derivatives for heteroge-
neous media with arbitrary natural boundary conditions
using the Direct Solution Method, Geophys. J. Int., 116,
421-446, 1994.

Geller, R. J., and N. Takeuchi, A new method for computing
highly accurate DSM synthetic seismograms, Geophys. J.
Int., 123, 449-470, 1995.

Hara, T., S. Tsuboi, and R. J. Geller, Inversion for laterally
heterogeneous earth structure using a laterally heteroge-
neous starting model: preliminary results, Geophys. J.
Int., 104, 523-540, 1991.

Nolet, G., S. P. Grand, and B. L. N. Kennett, Seismic hetero-
geneity in the upper mantle, J. Geophys. Res., 99, 23,753-
23,766, 1994.

N. Takeuchi and R. J. Geller, Dept. of Earth and
Planetary Physics, Faculty of Science, Tokyo University,
Yayoi 2-11-16, Bunkyo-ku, Tokyo 113, Japan. (e-mail:
[takeuchi,bob]@global.geoph.s.u-tokyo.ac.jp)

P. R. Cummins, Research School of Earth Sciences,
Australian National University, GPO Box 4, Canberra ACT
0200, Australia. (e-mail: phil@rses.anu.edu.au)

(received October 2, 1995; accepted January 18, 1996.)



