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SUMMARY
We previously derived a general criterion for optimally accurate numerical operators
for the calculation of synthetic seismograms in the frequency domain (Geller &
Takeuchi 1995). We then derived modi¢ed operators for the Direct Solution Method
(DSM) (Geller & Ohminato 1994) which satisfy this general criterion, thereby yielding
signi¢cantly more accurate synthetics (for any given numerical grid spacing) without
increasing the computational requirements (Cummins et al. 1994; Takeuchi, Geller &
Cummins 1996; Cummins, Takeuchi & Geller 1997). In this paper, we derive optimally
accurate time-domain ¢nite di¡erence (FD) operators which are second order in space
and time using a similar approach. As our FD operators are local, our algorithm is
well suited to massively parallel computers. Our approach can be extended to other
methods (e.g. pseudo-spectral) for solving the elastic equation of motion. It might also
be possible to extend this approach to equations other than the elastic equation of
motion, including non-linear equations.
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1 INTRODUCTION

Waveform inversion (e.g. Tarantola 1984; Geller & Hara 1993) is a promising approach for determining 3-D Earth structure, as it
directly uses all of the information in the recorded seismograms. Practical applications of waveform inversion require e¤cient
methods for computing synthetic seismograms. It is also important to be able to quantify the accuracy of the synthetics. Reliable
advance estimates of the accuracy that will be attained for a given numerical scheme and grid size are particularly desirable.

Standard techniques of numerical analysis provide estimates of the error of discretized numerical operators rather than the error
of the numerical solutions (i.e. synthetic seismograms) computed using these operators. For example, the error of the three-point
central ¢nite di¡erence (FD) operator for the second derivative is well known to be the second term of the following Taylor series:

1
*z2

[u(z{*z){2u(z)zu(zz*z)]~
d2u
dz2

z
*z2

12
d4u
dz4

z . . . : (1)

The error of synthetic seismograms computed by schemes based on eq. (1) will thus also be proportional to *z2. However, this
information is of little practical value unless the coe¤cient of *z2 is also known.

Geller & Takeuchi (1995), cited hereafter as GT95, developed a method that uses an eigenfunction expansion to make formal
estimates of the error of synthetic seismograms computed using a given numerical scheme. Their results allow numerical operators to
be `tuned' to produce optimally accurate numerical schemes of a given type and order. GT95 obtained the following estimate of the
relative error of synthetics computed using an optimally accurate 1-D second-order FD scheme in the frequency domain:

relative error&
k2z *z2

12
, (2)

where kz is the z-component of the wavenumber. Eq. (2) is almost exact for a homogeneous mediumwith a uniform grid spacing, and
is a good approximation for a heterogeneous medium or a non-uniform grid spacing.

Numerical schemes of a given order are not generically equivalent. The new O(*z2, *t2) FD scheme presented in this paper
attains almost two orders of magnitude greater accuracy than the conventionalO(*z2, *t2) FD scheme, while requiring only twice as
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much CPU time. Many other numerical schemes for computing synthetics, e.g. fourth-order FD in space and second-order FD in
time (Levander 1988) or pseudo-spectral in space and second-order FD in time (Fornberg 1987), have also been presented. Mizutani,
Geller & Takeuchi (1997) used basically the same method that we present in this paper to derive an optimally accurate scheme that is
pseudo-spectral in space and second-order FD in time.

The question which method is the best for a given problem involves not only CPU time, but also memory requirements and
parallelization, and is beyond the scope of this paper. Also, optimally accurate algorithms should be derived for each type of scheme
before comparisons are made.

In this paper we derive modi¢ed time-domain FD operators using the results of GT95. The modi¢ed FD operators lead to an
implicit scheme; that is, the solution of a set of simultaneous linear equations is required at each time step to obtain the displacements
at the next time step. To obviate this time-consuming computation, we approximate the implicit scheme by a two-part explicit
(`predictor^corrector') scheme. We present results for the 1-D case in this paper. Results for 2-D and 3-D cases in Cartesian and
curvilinear coordinates will be presented in future work. The derivations in this paper are not self-contained; results obtained by
GT95 are in general used here without proof.

In our frequency domain calculations of synthetics we routinely include anelastic attenuation in the elastic moduli using a
superposition of standard linear solids (Liu, Anderson & Kanamori 1976). For simplicity we consider a purely elastic medium in this
paper. It appears possible to use an approach similar to that of Emmerich &Korn (1987) to extend our methods to the anelastic case,
but we have not yet veri¢ed this.

In many FD implementations (e.g. Vireux 1986) velocity and stress are the dependent variables, and a coupled system of ¢rst-
order di¡erential equations in space and time is obtained. This system is then solved using the `staggered grid' approach. In contrast,
displacement is the only dependent variable in both the conventional and modi¢ed operators in this paper. As discussed below in
Section 6, it does not appear possible to derive modi¢ed operators for staggered grid schemes.

2 FINITE DIFFERENCE OPERATORS

The strong form of the time-domain equation of motion for the 1-D case is as follows:

o
L2u
Lt2

{
L
Lz

k
Lu
Lz

� �
~f , (3)

where u is the displacement, o is the density, k the elastic modulus and f the external force. Following the normal FD approach, we
discretize the unknown displacement u, which is a function of space and time, as follows:

cnN~u(n*z, N*t) : (4)

The FD equation of motion is as follows:

(AmMnN{KmMnN )cnN~fmM , (5)

where A is an FD operator for o(L2u/Lt2), K is an FD operator for L/Lz[k(Lu/Lz)] and f is the discretized external force term.
Summation over repeated indices is implied throughout this paper.

A and K in eq. (5) are time-domain FD operators. We now compute their Fourier transforms, which are denoted by B and L
respectively. In the frequency domain, the displacement is discretized as follows:

dn~
�?

{?
exp ({iut)u(n*z, t) dt . (6)

The FD equation of motion in the frequency domain (the transform of eq. 5) is as follows:

(Bmn{Lmn)dn~f 'm: (7)

As eq. (7) and eq. (2.1) of GT95 have essentially the same form, we can use the theory in Section 2 of GT95 to obtain formal error
estimates for d. The only di¡erence is that the errors of the operators are now u-dependent as well as k-dependent, because of
numerical dispersion in time as well as space.

3 OPERATORS FOR THE 1-D PROBLEM

3.1 Homogeneous 1-D problem

We begin by considering a homogeneous 1-D problem with a constant temporal grid interval *t and a constant spatial grid interval
*z. In this paper the superscript 0 denotes the conventional operators rather than the exact operators. The conventional FD
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operators A0 and K0 are as follows:

with the format

Throughout this paper blank spaces in the FD stencils denote zeros.
A0 and K0 have the numerical dispersion of normal three-point second-derivative operators. The operator error for the

conventional operators is thus as follows:

(dA0
mMnN{dK0

mMnN )cnN~
*t2

12
o

L4u
Lt4

 !
{

*z2

12
k

L4u
Lz4

 !�����
t~tM ,z~zm

, (10)

where

dA0
mMnN~A0

mMnN{Aexact
mMnN , (11)

dK0
mMnN~K0

mMnN{Kexact
mMnN . (12)

Note that throughout this paper the error expressions are given to O(*t2) and O(*z2), with higher-order terms omitted.
We de¢ne B0, L0, Bexact, Lexact, äB0, and äL0 to be the Fourier transforms of A0, K0, Aexact, Kexact, äA0, and äK0 respectively.

These operators are related as follows:

dB0
mn~B0

mn{Bexact
mn , (13)

dL0
mn~L0

mn{Lexact
mn : (14)

Transforming eq. (10) into the frequency domain, we obtain

dB0
mn{dL0

mn

ÿ �
dn~

u2*t2

12
ou2u{

*z2

12
d2

dz2
k
d2u
dz2

� �����
z~zm

: (15)

The quantity on the rhs of eq. (15) is the `basic error' of the operators (see GT95). When the operand is an eigenfunction and the
frequency approaches the corresponding eigenfrequency, the basic error given by eq. (15) will not in general equal zero. Thus the
conventional operators do not in general satisfy eq. (2.20) of GT95, and are therefore not optimally accurate.

To satisfy eq. (2.20) of GT95, the basic error should be zero when u is an eigenfunction and u is equal to the corresponding
eigenfrequency. We therefore must derive modi¢ed operators Lmn and Bmn for which, rather than eq. (15), the basic error is instead
given by

dBmn{dLmn� �dn~ u2*t2

12
{

*z2

12
d2

dz2

� �
ou2uzk

d2u
dz2

� �����
z~zm

: (16)

As the quantity inside the square brackets in eq. (16) is the lhs of the exact equation of motion, it is zero for every eigenfunction when
u is equal to the corresponding eigenfrequency, thus the basic error is zero. By taking the inverse Fourier transform, the time-domain

A0~
o

*t2
� �

|

tz*t 1

t {2

t{*t 1

z{*z z zz*z

,

K0~
k

*z2
� �

|

tz*t

t 1 {2 1

t{*t

z{*z z zz*z

,

(8)

A~

tz*t AmM(m{1)(Mz1) AmMm(Mz1) AmM(mz1)(Mz1)

t AmM(m{1)M AmMmM AmM(mz1)M

t{*t AmM(m{1)(M{1) AmMm(M{1) AmM(mz1)(M{1)

z{*z z zz*z

. (9)
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representation of eq. (16) is obtained:

(dAmMnN{dKmMnN )cnN~ o
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, (17)

where A and K are the modi¢ed operators and äA and äK are their errors. It is easier to construct the numerical operators using the
rhs of the ¢rst line of eq. (17), but the meaning of eq. (17) is more clearly shown by the second line. The latter shows clearly that the
basic error of the modi¢ed operators is given by derivatives of the homogeneous equation of motion (the term in square brackets).
Thus when u(z, t)~um(z) exp (iumt), where um(z) is the eigenfunction of a mode with eigenfrequency um, the bracketed term
(and hence its derivatives) will be zero.

Omitting the details of the derivation, the modi¢ed operators that yield errors of the form of eq. (17) are as follows:

Note that if we sum horizontally for A and sum vertically for K we obtain the conventional operators in eq. (8). An intuitive
explanation of eq. (18) is that we smear out the discretized second time-derivative operator in space, and smear out the discretized
second spatial-derivative operator in time, so that the numerical dispersion (error of the phase velocity) of the discretized equation of
motion is zero to second order in *t2 and *z2.

We omit discussion of the boundary error in this paper because, as shown in Sections 2 and 3 of GT95, the boundary error does
not have an important e¡ect on the error of the numerical solution.

3.2 Heterogeneous 1-D problem

The conventional and modi¢ed time-domain operators for an inhomogeneous medium can be derived using the procedures given in
Section 3, eqs (3.48)^(3.52), of GT95. A ¢rst-order discontinuity in elastic properties is handled by overlapping (see Fig. 3 of GT95).
Details are not given here.

The explicit forms of the conventional operators A0 and K0 for an inhomogeneous medium are as follows:

A~
o

*t2
� �

|

tz*t 1/12 10/12 1/12

t {2/12 {20/12 {2/12

t{*t 1/12 10/12 1/12

z{*z z zz*z

,

K~
k

*z2
� �

|

tz*t 1/12 {2/12 1/12

t 10/12 {20/12 10/12

t{*t 1/12 {2/12 1/12

z{*z z zz*z

.

(18)

A0~
1

*t2

� �
|

tz*t om

t {2om

t{*t om

z{*z z zz*z

,

K0~
1

2*z2

� �
|

tz*t

t (km{1zkm) {(km{1z2kmzkmz1) (kmzkmz1)

t{*t

z{*z z zz*z

,

(19)
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where om and km are respectively the density and rigidity at themth node. The spatial variation of the elastic properties is assumed to
be reasonably smooth. The explicit forms of the modi¢ed operators A and K are as follows:

The de¢nition of A in eq. (20) corresponds to T'right as de¢ned in eq. (3.49) of Geller & Takeuchi (1995).We could also have de¢ned A
using T'left, or any other linear combination cT'rightz(1{c)T'left.

Omitting details (see GT95) the basic error for the modi¢ed operators in eq. (20) is

(dAmMnN{dKmMnN )cnN&
*t2

12
L2

Lt2
o

L2u
Lt2

{
L
Lz

k
Lu
Lz

� �" #
z

*z2

12
L2

Lz2
o

L2u
Lt2

{
L
Lz

k
Lu
Lz

� �" #( )�����
t~tM ,z~zm

. (21)

3.3 Operators for boundaries

For completeness we give the operators for a left-hand boundary with a free-surface natural boundary condition. If this is an internal
boundary rather than a free boundary, the operators are overlapped with those in the adjacent segment (see GT95 for details).
Operators for a right-hand boundary can be readily obtained from those given below. The boundary terms for the conventional
operators for a heterogeneous medium are

The modi¢ed operators for a left-hand boundary for a heterogeneous medium are

A~
1

12*t2

� �
|

tz*t om 10om om

t {2om {20om {2om

t{*t om 10om om

z{*z z zz*z

,

K~
1

24*z2

� �
|

tz*t (km{1zkm) {(km{1z2kmzkmz1) (kmzkmz1)

t 10(km{1zkm) {10(km{1z2kmzkmz1) 10(kmzkmz1)

t{*t (km{1zkm) {(km{1z2kmzkmz1) (kmzkmz1)

z{*z z zz*z

.

(20)

A0~
1

*t2

� �
|

tz*t om/2

t {om

t{*t om/2

z zz*z

,

K0~
1

2*z2

� �
|

tz*t

t {(kmzkmz1) (kmzkmz1)

t{*t

z zz*z

.

(22)

A~
1

12*t2

� �
|

tz*t 5om om

t {10om {2om

t{*t 5om om

z zz*z

,

K~
1

24*z2

� �
|

tz*t {(kmzkmz1) (kmzkmz1)

t {10(kmzkmz1) 10(kmzkmz1)
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z zz*z
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(23)
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4 PREDICTOR^CORRECTOR SCHEME USING THE MODIFIED OPERATORS

The modi¢ed operator (AmMnN{KmMnN ) given by eqs (20) and (23) has multiple non-zero elements for time tz*t. If we use these
modi¢ed operators in a time-marching scheme to solve eq. (5), the FD equation of motion, we obtain an implicit scheme, rather than
the explicit scheme for the conventional operators in eq. (8). To obviate the need to solve a system of simultaneous linear equations at
each time step, we use the modi¢ed operators in an approximate (predictor^corrector) scheme based on the ¢rst-order Born
approximation. A detailed discussion of the implementation is given in the Appendix.

First we predict the wave¢eld at the next time step using the conventional operators A0 and K0 de¢ned in eq. (8):

(A0{K0)c0~f , (24)

where c0n(Nz1), the predicted wave¢eld at time tz*t, is obtained explicitly from eq. (24).
Next we compute äc, the correction to the displacement at time tz*t, using the ¢rst-order Born approximation. In the previous

section we used äA and äK to denote the di¡erence between the numerical and exact operators. However, in this and later sections we
denote the di¡erence between the conventional operators A0, K0 and the modi¢ed operators A, K by äA, äK respectively. To obtain
the correction we thus solve

(A0{K0)äc~ÿ (äAÿ äK)c0 . (25)

As the lhs of eq. (25) uses the conventional operators, we can solve explicitly for the value of äc at time tz*t. Note that dcnN~0 and
dcn(N{1)~0 in eq. (25).

We compute the corrected displacement cn(Nz1) after each time step using c0 computed by eq. (24) and äc computed by
eq. (25):

cn(Nz1)~c0n(Nz1)zdcn(Nz1) . (26)

Finally, before advancing to the next time step we rede¢ne c0:

c0n(Nz1)~cn(Nz1) . (27)

Note that we use the displacements given by eq. (27) as the values for c0nN and c0n(N{1) when we evaluate eq. (24) for the next time step.
äA and äK are obtained by taking the di¡erence of eqs (20) and (19):

äA and äK for the boundary elements are obtained by di¡erencing eqs (23) and (22).

5 STABILITY AND ACCURACY

5.1 Stability

It is well known that the time step, *t, must be less than or equal to the Courant limit, *tcourant, in order to obtain stable solutions
using the conventional operators. In this section we show that the Courant stability limits for the conventional and modi¢ed
operators are equal for a homogeneous medium.

The stability condition for both modi¢ed and conventional operators is the condition that there cannot be any exponentially
growing modes in the FD equation of motion (eq. 5). To derive the stability condition we solve a generalized eigenvalue problem (e.g.
Section 7.7 of Golub & Van Loan 1989).We begin by formulating the stability condition for the conventional operators.We consider
harmonic solutions of eq. (5) with spatial dependence c and temporal dependence exp (iut).We substitute this solution into eq. (5) to

äA~
1

12*t2

� �
|

tz*t om {2om om

t {2om 4om {2om

t{*t om {2om om

z{*z z zz*z

, (28)

äK~
1

24*z2

� �
|

tz*t (km{1zkm) {(km{1z2kmzkmz1) (kmzkmz1)

t {2(km{1zkm) 2(km{1z2kmzkmz1) {2(kmzkmz1)

t{*t (km{1zkm) {(km{1z2kmzkmz1) (kmzkmz1)

z{*z z zz*z

. (29)
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obtain the following:6.5pt

Hc~
2

*t2
(1{ cosu*t)Tc , (30)

where T and H are the spatially dependent parts of A and {K. T and H for a homogeneous medium are as follows:

H~
k

*z2

1 {1

{1 2 {1

. .
. . .

. . .
.

{1 2 {1

{1 1

2666666664

3777777775
, T~o

1/2

1

. .
.

1

1/2

26666666664

37777777775
. (31)

We de¢ne eigenvalues jn and eigenvectors cn (Note that in this section n refers to the eigenvector and eigenvalue rather than to a
particular node.) for T and H as follows:

Hcn~jnTcn , (32)

where 0¦j0 < j1 < � � � < jmax. Comparing eqs (30) and (32) we get

2
*t2

(1{ cosu*t)~jn (33)

or

cosu*t~1{
*t2

2
jn . (34)

Since jn is real and jn§0 for all n, the requirement for real roots is

cosu*t§{1 . (35)

The most severe constraint is imposed by jn~jmax. Combining eqs (34) and (35), we thus require

1{
*t2

2
jmax§{1 (36)

or

*t2¦ 4
jmax

. (37)

The eigenvectors of eq. (32) for the matrices for a homogeneous medium (eq. 31) are

cn~

cos 0

cos (nn)/N

cos (2nn)/N

..

.

cos ((N{1)nn)/N

cos (nn)

0BBBBBBBBBBB@

1CCCCCCCCCCCA
, (38)

where N is the number of grid intervals. The corresponding eigenvalues are given by

jn~
2[1{ cos (nn)/N]b2

*z2
, n~0, . . . , N , (39)

where b~
��������
k/o

p
is the wave velocity. We thus see from eqs (39) and (37) that

jmax~4b2/*z2 . (40)

From eqs (37) and (40) the stability condition is

*t¦*tcourant , (41)

GJI000 14/9/98 12:17:49 3B2 version 5.20
The Charlesworth Group, Huddersfield 01484 517077

ß 1998 RAS, GJI 135, 48^62

54 R. J. Geller and N. Takeuchi



where

*tcourant~
*z
b

. (42)

Thus the Courant stability condition holds rigorously for the conventional operators in a 1-D homogeneous medium with free
boundaries.

We now consider the stability condition for the modi¢ed operators for a homogeneous medium. The spatial operator T'
corresponding to the modi¢ed operator A is given by

T'~o

5/12 1/12

1/12 10/12 1/12

. .
. . .

. . .
.

1/12 10/12 1/12

1/12 5/12

266666666664

377777777775
. (43)

The generalized eigenvalue problem for H and T' is given by

Hcn~j'nT'cn , (44)

where cn is given by eq. (38). We use the generalized eigenvalue problem for T' and T as an intermediate result:

T'cn~cnTcn , (45)

where

cn~
5
6
z

1
6
cos

nn
N

� �
(46)

and cn is given by eq. (38). Using eqs (39) and (44)^(46), we have

j'n~
jn
cn

~
2[1{ cos (nn/N)]b2=*z2

[5z cos (nn/N)]/6
. (47)

We now consider harmonic solutions of eq. (5) for a homogeneous medium.We obtain

5
6
z

1
6
cosu*t

� �
Hcn~

2
*t2

(1{ cosu*t)T'cn . (48)

Comparing eqs (44) and (48), we have

j'n~
2(1{ cosu*t)

*t2(5z6 cosu*t)/6
. (49)

Solving for cosu*t, we obtain

cosu*t~
2{5j'n*t2/6
2zj'n*t2/6

. (50)

We require cosu*tj j¦1 for all values of j'n. The most severe constraint is imposed by j'max. From eq. (47) we have

j'max~
6b2

*z2
. (51)

Substituting eq. (51) into eq. (50) we have

cosu*t~
2{5b2*t2/*z2

2zb2*t2/*z2
. (52)

As the condition for stability is cosu*tj j¦{1, we obtain from eq. (52)

*t¦ *z
b

. (53)

Thus both the modi¢ed and conventional operators must satisfy the same stability condition.
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jmax can be determined for heterogeneous media by numerically ¢nding the maximum eigenvalue of eq. (32) using the Sturm
sequence property (Peters & Wilkinson 1969). We can then obtain the stability condition for the inhomogeneous case following the
same procedures. In general, the stability condition for an inhomogeneous medium is

*t¦ *z
b

� �
min

(1z�) (54)

for both conventional and modi¢ed operators, where � is a ¢nite but relatively small number whose amplitude and sign depend on the
exact nature of the problem. We omit further details.

5.2 Accuracy

The analytic eigenvalues for a homogeneous 1-D medium are the squares of the eigenfrequencies,

jexactn ~
nnb
L

� �2

, (55)

where L~N*z is the length of the medium. If we expand cos (nn/N) in aTaylor series, we obtain the following from eqs (39) and (47)
respectively:

jn~jexactn

�
1{

n2n2

12N2 zO
��

nn
N

�4��
, (56)

j'n~jexactn

�
1zO

�
nn
N

� �4��
. (57)

Note that nn/N~k*z, where k is the wavenumber. Thus we see that the eigenfrequencies for the modi¢ed operators have an error of
O(k4*z4), while the eigenfrequencies for the conventional operators have an error ofO(k2*z2). This is an expected result, because, as
discussed by GT95, setting the basic error of the modi¢ed operators to zero is equivalent to requiring the error of the eigenfrequencies
of the modi¢ed operators to be zero to O(*z2), excepting possible minor O(*z2) boundary errors.

6 STAGGERED GRID APPROACHES

For the 1-D problem in a homogeneous medium the ¢rst-order staggered grid approach of Vireux (1986) consists of solving the two
following coupled ¢rst-order equations:

Lp
Lt

~k
Lo
Lz

, (58)

o
Lo
Lt

{
Lp
Lz

~{f , (59)

where p is stress and o is velocity. Eq. (58) is approximated by the ¢nite di¡erence scheme

p(z, tz*t/2){p(z, t{*t/2)
*t

~k
o(zz*z/2, t){o(z{*z/2, t)

*z
: (60)

A Taylor series expansion of eq. (58) yields (neglecting higher-order terms)

Lp
Lt

z
*t2

24
L2

Lt2
Lp
Lt

� �
~k

Lo
Lz

z
*z2

24
L2

Lz2
Lo
Lz

� �" #
: (61)

However, to satisfy the general criterion for optimally accurate operators (GT95) we want modi¢ed operators that will instead yield
the Taylor series:

Lp
Lt

z
*t2

24
L2

Lt2
Lp
Lt

{k
Lo
Lz

� �
~k

Lo
Lz

z
*z2

24
L2

Lz2
k

Lo
Lz

{
Lp
Lt

� �
. (62)
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It is easy to derive formally operators that have the error required by eq. (62):

where the modi¢ed scheme for eq. (58) is

Pp~Qo . (64)

Unfortunately, the modi¢ed operator Q requires knowledge of o(z, tz*t), which we do not yet have, in order to determine
p(z, tz*t/2), based on knowledge of o(z+*z/2, t) and p(z, t{*t/2). Thus the modi¢ed operators formally exist (as given by eq. 63)
but their use would lead to an apparently intractable implicit scheme.

Luo & Schuster (1990) present an approach they call the `parsimonious staggered grid di¡erencing scheme'. Their starting point
is a conventional staggered grid scheme, but they rearrange the equations to eliminate stress as a dependent variable. This
rearrangement essentially consists of integrating the discretized strong form of the equation of motion by parts to obtain
the discretized weak form of the equation of motion. (See Geller & Ohminato 1994 for a general discussion of the weak form and
strong form.) Luo & Schuster's (1990) derivation seems unnecessarily complicated as the same result (essentially equivalent to the
conventional scheme in this paper) could have been directly obtained from the weak form of the equation of motion.

7 NUMERICAL EXAMPLES

In this section we present numerical examples to show the e¡ectiveness of the modi¢ed operators. Some subtle points arise because,
as we show below, the error for solutions computed using the conventional operators strongly depends on *t/*z, as the error terms
for *t and *z have opposite signs. First we consider the basic error of the solutions obtained using the conventional operators for a
homogeneous medium. The normal modes satisfy the equation of motion, eq. (3), for f~0. We therefore have, in the frequency
domain,

ou2
pupzk

d2up
dz2

~0 , (65)

where up is the eigenfunction of the pth mode and up is the corresponding eigenfrequency. From eq. (15) the basic error for the
conventional operators can be written as follows in the frequency domain:

(dBmn{dLmn)dn~
u2

p*t
2

12
ou2

pupz
k2p*z

2

12
k
d2up
dz2

�����
z~zm

, (66)

where kp is the wavenumber of the mode and

u2
p~b2k2p , (67)

where b2~k/o. Using eqs (65) and (67) in eq. (66), we obtain

(dBmn{dLmn)dn~k
d2up
dz2

k2pb
2

12
*z2

b2 {*t2
� �" #

~k
d2up
dz2

k2pb
2

12
(*t2courant{*t2)

" #
. (68)

Eq. (68) shows that the accuracy of the synthetics computed using the conventional operators for a given value of *z depends
strongly on the choice of *t. At the Courant limit, *tcourant~*z/b, the rhs of eq. (68) is zero. Thus at the Courant limit the
conventional operators for a homogeneous medium satisfy the general criterion for optimally accurate operators.

Pp~
1
*t

|

tz*t/2 1/12 10/12 1/12

t{*t/2 {1/12 {10/12 {1/12

z{*z z zz*z

,

Qv~
k
*z

|

tz*t {1/12 1/12

t {10/12 10/12

t{*t {1/12 1/12

z{*z/2 zz*z/2

,

(63)
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We now consider the conventional operators for an inhomogeneous medium. It can be shown that the conventional operators
approximately satisfy the general criterion for optimally accurate operators when

u2*t2

12
&

k2m *zm{1z*zm� �=2� �2
12

(69)

for all grid points m, where km is the wavenumber at z~zm and *zm is the grid interval between the mth and (m+1)th grid points. On
the other hand, the Courant condition for an inhomogeneous medium is

*t¦(1z�)
*zm{1z*zm� �=2

bm
, (70)

for all m, where bm is the wave velocity at z~zm. To obtain accurate synthetics, both eqs (69) and (70) must be satis¢ed. This can be
achieved only if variable grid spacing is chosen so that the number of nodes per wavelength is approximately constant everywhere,
and *t is chosen to be slightly less than the Courant limit.

We now present numerical examples. First, we study the accuracy as a function of the time step normalized by the Courant limit.
We consider a homogeneous medium (Fig. 1a) and a two-layered medium (Fig. 1b).We calculate synthetics with a duration of 750 s.

Figure 1. (a,b) Density and velocity structure used in the numerical examples for Fig. 2. (c) Density and velocity structure used in the numerical
example for Fig. 3.

Figure 2. Error of the waveforms obtained by the conventional (black diamonds) and modi¢ed (grey squares) operators. The time step is normalized
by the Courant stability limit. (a) Errors for a homogeneous medium with a homogeneous grid. (b) Errors for a two-layered medium with a homo-
geneous grid. (c) errors for a two-layered medium with an inhomogeneous grid chosen so that the number of nodes per wavelength is constant
throughout the medium. The dependence of the errors for the conventional operators for (a) and (c) matches the *t2courant{*t2

ÿ �
dependence

predicted by eq. (68).
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The source is a single force with a Ricker wavelet time history whose central frequency is 10 s. The source is at z~500 km and the
receiver is at z~300 km. For the homogeneous mediumwe use a spatial grid with *z~1 km. For the two-layered mediumwe use two
spatial grids: (1) a homogeneous grid with *z~1 km, and (2) an inhomogeneous grid with *z~0:5 km in the upper layer and
*z~1 km in the lower layer. The latter grid has a constant number of nodes per wavelength.

Fig. 2 shows the error of the synthetics obtained using the conventional (black diamonds) and modi¢ed (grey squares) operators.
Fig. 2(a) shows the error (rms residual) for the homogeneous medium (Fig. 1a) with a homogeneous grid. Fig. 2(b) shows the error for
the two-layered medium (Fig. 1b) with a homogeneous grid. Fig. 2(c) shows the error for the two-layered medium (Fig. 1b) with an
inhomogeneous grid (chosen so that b*z~constant). The error for all of the cases considered in this paper is computed using the
numerical solution for an extremely ¢ne grid as the reference solution.

As theoretically predicted, the error for the conventional operators is much worse in general than that for the modi¢ed
operators, but approaches that for the modi¢ed operators if and only if *t is close to the Courant limit everywhere in the medium.
Note that the errors for the conventional operators in both Figs 2(a) and (c) show the *t2courant{*t2

ÿ �
dependence predicted by

eq. (68). On the other hand, the error of the solutions obtained using the modi¢ed operators is essentially uniform regardless of the
choice of *t and spatial grid.

The reader might conclude that the conventional operators with a spatially varying grid interval chosen to give an essentially
constant number of nodes per wavelength and a time step close to the Courant limit are su¤cient for accurate computation of
synthetics, but in general this is not the case. For 2-D or 3-D problems waves propagate in various directions, and both P and S waves
exist. No spatial grid for the conventional operators will yield optimally accurate solutions for such problems. On the other hand, the
modi¢ed operators will yield optimally accurate solutions in general. Fig. 2(b) (uniform gridding for a heterogeneous medium) is
thus probably most representative of the advantage of the modi¢ed operators for real problems. Explicit results for 2-D and 3-D
cases will be presented in future papers.

Table 1. CPU time required on Super-SPARC (60 MHz, 1 CPU) and error for
conventional and modi¢ed operators.

CPU time Error
Convent: Mod Ratio Convent: Mod Ratio

500 grids 1 s 2 s 0:5 22% 0:32% 69
5000 steps
1000 grids 5 s 10 s 0:5 5:6% 0:054% 104
10000 steps
10000 grids 455 s 921 s 0:49
100000 steps

Figure 3. Comparison of waveforms obtained by the modi¢ed and conventional schemes. (a) Waveforms (top) obtained by the conventional scheme
and (second trace) their residuals relative to the (almost exact) reference solution (rms error=22 per cent). (b) Waveforms (top) obtained using the
modi¢ed operators, (second trace) residuals relative to the reference solution (rms error=0.32 per cent), and (third trace) residual magni¢ed by a
factor of 50. (c) Waveforms for (almost exact) reference solution.
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We now compare the error and the CPU time for solutions obtained using the modi¢ed and conventional operators for the
heterogeneous medium shown in Fig. 1(c). The results are shown in Table 1. The length of the medium is 1000 km as shown in
Fig. 1(c), and the length of the time series is 500 s for each case. We use homogeneous temporal and spatial gridding. Thus, for
example for the case of 500 nodes and 5000 time steps, *z~2 km and *t~0:1 s. For each case the ratio of the spatial and temporal
grid intervals is *t=*z~0:05 s km{1, whereas the Courant condition is roughly *t=*z¦0:01 s km{1. Thus *t=*tcourant&0:5.

As shown in the Appendix, the modi¢ed operators require twice the number of £oating point multiplications and three times the
number of £oating point additions. As multiplication operations require more CPU time than addition operations, the theoretically
predicted CPU time for the new method is about twice that of the conventional method. The actual CPU times (Table 1) follow this
prediction. On the other hand the new method yields waveforms that are about 60^100 times more accurate than the conventional
method. Fig. 3 shows a comparison of the accuracy of the waveforms for the case of 500 nodes and 5000 time steps. As expected
based on the results in Section 2 of GT95, the modi¢ed operators yield accurate phase velocities, whereas the conventional operators
cause large frequency-dependent phase errors.We can see that the modi¢ed operators are especially e¡ective for later phases for this
reason. The improvement factor is 69 for this time-series, but would be larger for longer time-series.

Fig. 3 raises an important general point. A visual comparison of the synthetic for the conventional operator (a) and the reference
solution (c) might lead to the erroneous conclusion that there was `good agreement', because all of the expected arrivals are present at
about the right arrival times. But, as shown by the residual (the second trace of a), the rms residual is actually 22 per cent. The large
rms error is due to the error in phase in the synthetics for the conventional operators. The human eye is unfortunately not well suited
to evaluating such phase errors. Thus a quantitative evaluation of the rms error is an essential step in the evaluation of any method
for computing synthetic seismograms.

In summary, the modi¢ed operators require about twice the CPU time, but reduce the error by a factor of about 60^100 for
reasonable choices of *t and *z. This means that by using the modi¢ed operators either (1) the required CPU time can be reduced by
a factor of about 40 to obtain waveforms with the same accuracy, or (2) the error can be reduced by a factor of about 40 if the CPU
time is kept constant.

Finally, we present an eigenvalue calculation.We numerically solve the eigenvalue problems de¢ned by eqs (32) and (45) for the
inhomogeneous structure in Fig. 1(c). The computed values of � as de¢ned in eq. (54) are shown in Table 2.We thus con¢rm that the
stability condition given by eq. (54) is correct for both the modi¢ed and conventional operators. As a further check, we conducted

calculations for values of *t slightly greater and slightly less than
*z
b

� �
min

(1z�).We con¢rmed that stable solutions were obtained

for a heterogeneous medium for
*z
b

� �
min

¦*t¦ *z
b

� �
min

(1z�), but that exponential instability occurred when *t >
*z
b

� �
min

(1z�).

Numerical experiments (not presented here) for optimally accurate schemes for other problems (e.g. 2-D P^SV) have shown that �j j
is small, but that its sign is sometimes negative.

8 DISCUSSION

The error of FD or other numerical schemes has generally been evaluated by considering the numerical dispersion (error of phase
velocities) as a function of the number of grid points per wavelength (e.g. Alford, Kelly & Boore 1974). It is frequently assumed that
the errors due to spatial and temporal discretization can be considered separately (see e.g. Fig. 4 of Fornberg 1987), but this is not the
case. The key point of this paper is that the net error of the synthetics due to the combined e¡ects of temporal and spatial dis-
cretization must be considered as a single quantity. This error can be minimized by tuning the operators so that the errors due to
spatial and temporal discretization come as close as possible to cancelling each other.

Second-order (in space and time) FD schemes have been deemed inferior both to FD schemes which are fourth order in space
and second order in time and to schemes which are pseudo-spectral in space and second order in time (e.g. Fornberg 1987). This
evaluation seems correct for conventional second-order FD schemes. However, modi¢ed second-order FD schemes of the type
presented in this paper may be preferable for many applications.
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Table 2. Computed values of � (de¢ned in eq. 54).

Conventional Modified

500 grids 0:0027 0:0030
1000 grids 0:0017 0:0019
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APPENDIX A: IMPLEMENTATION OF ALGORITHMS

We give the explicit form and required £oating point operation counts for the conventional and modi¢ed operators for the general
inhomogeneous problem. For simplicity, we consider homogeneous gridding (constant *t and *z). A ¢rst-order discontinuity in
elastic properties or spatial grid interval is handled by overlapping (see Fig. 3 of GT95).

A1 Conventional operators

The explicit scheme for the 1-D heterogeneous problem using the conventional operators (eqs 19 and 24) is as follows:

cNz1
n ~{cN{1

n

z
kn{1zkn

2on

*t2

*z2

� �
cNn{1

z 2{
kn{1z2knzknz1

2on

*t2

*z2

� �
cNn

z
knzknz1

2on

*t2

*z2

� �
cNnz1

z
*t2

on
FN
n

� �
, (A1)

where cNn and FN
n are the displacement and the body force at z~n*z and t~N*t respectively, and on and kn are the density and

rigidity at z~n*z respectively. cNz1
n is the unknown displacement at tz*t to be determined; the other quantities in eq. (A1) are all

known. Note that we write cNn in this Appendix, whereas we used cnN in the body of the paper. The coe¤cients in parentheses in
eq. (A1) are computed once for each node n and stored. As we can use convolution for more complex sources, it is su¤cient to
compute a Green's function for a delta-function source time history for a point source; FN

n is thus zero except forN~0, and for some
particular value of n. Thus the required £oating operation counts for the conventional operators are as follows (neglecting the source
term in the following discussion) for computing the new displacement at one node for one time step:

3 MULS, 3 ADDS .

A2 Modi¢ed operators

The modi¢ed operators in eq. (20) are used in a predictor^corrector scheme. The explicit algorithm for the predictor step is given in
eq. (A1). Note that we drop the superscript 0 used in eqs (24)^(26). The explicit discretized equation for the correction step (eq. 25) is
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as follows (note that dcNn ~dcN{1
n ~0):
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n ~ {
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nz1 {2cNnz1zcN{1

nz1

� �
: (A2)

The coe¤cients in parentheses in eq. (A2) can be computed once for each node and stored. Furthermore, the ¢rst two bracketed terms
in eq. (A2) will have been previously computed in the loops for adjacent nodes (the n{2 and n{1th nodes) and can be reused. Only the
last bracketed term need be computed at this point. As 2cNnz1 can be computed by addition (cNnz1zcNnz1), we count this as an addition
operation, rather than a multiplication. Thus the operation count for the corrector scheme is three multiplications and ¢ve additions.

Finally, after computing dcNz1
n for all nodes, and before proceeding to the next time step, we combine eqs (A2) and (A1) to get

the net displacement:

cNz1
n /cNz1

n zdcNz1
n , (A3)

where we use / to denote a replacement rather than a mathematical equality.
Combining the three multiplications and three additions for the predictor scheme (eq.A1), three multiplications and ¢ve

additions for the corrector scheme (eq.A2) and one addition for the update (eq.A3), the total operation count for the new predictor^
corrector method is as follows:

6 MULS, 9 ADDS .

Thus the operation count for the new scheme is about double that of the conventional scheme. A slight further optimization
could be made by evaluating AzA using specialized software for incrementing the exponent of a £oating point number, or by
bit shifting.
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