2020 OHRCセミナー

実績
4/30 臼井 研究紹介 Self-introduction & Electrical resistivity modeling around the Atotsugawa fault, Asama volcano and the Iheya North Knoll
5/7 森重 研究紹介 Bayesian inversion of surface heat flow in subduction zones
5/21 清水 論文紹介 Zhang et al. (2019) (PDF)
5/28 川勝 論文紹介 Russell et al. (2019) (PDF) その他関連論文 Mark et al. (2019) JGR (PDF)
6/4 竹内 論文紹介 Priestley et al. (2019) (PDF)
6/11 KIM 論文紹介 Rychert et al. (2019) (PDF)
6/25 川野 研究紹介 Persistent Long-Period Signals Recorded by an OBS Array in the Western-Central Pacific: Activity of Ambrym Volcano in Vanuatu
7/2 No seminar
7/9 WAN 論文紹介 Naif, S. (2018) (PDF)
10/22 馬場 Feasibility test of EM survey for HEB project: Part I
11/12 竹尾 Seismic observations and S-wave velocity structure of Showa-Shinzan lava dome in Usu Volcano, Northern Japan
11/26 悪原 Lithosphere-asthenosphere boundary beneath the Sea of Japan back-arc basin
12/3 一瀬 Three dimensional shear wave structure in the upper mantle beneath the oldest Pacific plate
12/24 永井 表面波波形合わせによる海洋上部マントルのVp/Vs構造推定の試み
1/7 川野 Seismic structure of the lithosphere-asthenosphere system beneath the oldest seafloor revealed by the broadband dispersion analysis of the Oldest-1 (Pacific Array) data
1/14 KIM Teleseismic receiver function imaging of the amphibious NE Japan subduction zone
3/4 丸山 Observability of seismic radial anisotropy parameters by the analysis of surface waves and receiver functions based on the MCMC analysis

論文候補
ALL PDF files
2020.05.23 Added Korenaga (2020) (No.16) and Mark et al. (2019) (No.17).

  1. Karato, S. and Park, J. (2019) On the origin of the upper mantle seismic discontinuities, Lithospheric discontinuities, AGU monograph. pp. 5-34. (PDF)
  2. Evans, R.L., Sarafian, E., and Sarafian, A.R. (2019) The Evolution of the oceanic lithosphere: An electromagnetic perspective, Lithospheric discontinuities, AGU monograph. pp. 35-53. (PDF)
  3. Montagner, J.P. and Burgos, G. (2019) Lithospheric and asthenospheric structure below oceans from anisotropic tomography, Lithospheric discontinuities, AGU monograph. pp. 55-69. (PDF)
  4. Rychert, C.A., Harmon, N., and Tharimena, S. (2019) Seismic imaging of the base of the ocean plates, Lithospheric discontinuities, AGU monograph. pp. 71-87. (PDF)
  5. Priestley, K., McKenzie, D., and Ho, T. (2019) A lithosphere-asthenosphere boundary - a global model derived from multimode surface-wave tomography and petrology, Lithospheric discontinuities, AGU monograph. pp. 111-123. (PDF)
  6. Beghein, C., Xing, Z., and Goes, S. (2019) Thermal nature and resolution of the lithosphere-asthenosphere boundary under the Pacific from surface waves, Geophys. J. Int., 216, 1441--1465, doi:10.1093/gji/ggy490. (PDF)
  7. Zhang, H., Egbert, G.D., Chave, A.D., Huang, Q., Kelbert, A., and Erofeeva, S.Y. (2019) Constraints on the resistivity of the oceanic lithosphere and asthenosphere from seafloor ocean tidal electromagnetic measurements, Geophys. J. Int., 219, 464--478, doi:10.1093/gji/ggz315. (PDF)
  8. Karato, S. (2019) Some remarks on hydrogen-assited electrical conductivity in olivine and other minerals, Prog. Earth Planet. Sci., 6:55, doi:10.1186/s40645-019-0301-2. (PDF)
  9. Selway, K., O'Donnell, J.P., and Ozaydin, S. (2019) Upper mantle melt distribution from petrologically constrained magnetotellurics, Geochem. Geophys. Geosyst., 20, doi:10.1029/2019GC008227. (PDF)
  10. Selway, K. and O'Donnell, J.P. (2019) A small, unextractable melt fraction as the cause for the low velocity zone, Earth Planet. Sci. Lett., 517, 117--124, doi:10.1016/j.epsl.2019.04.012. (PDF)
  11. Eddy, C., Ekstrom, G., and Nettles, M. (2019) Age dependence and anisotropy of surface-wave phase velocities in the Pacific, Geophys. J. Int., 216, 640--658, doi:10.1093/gji/ggy438. (PDF)
  12. Russell, J.B., Gaherty, J.B., Lin, P.Y.P., Lizarralde, D., Collins, J.A., Hirth, G., and Evans, R.L. (2019) High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy, J. Geophys. Res. Solid Earth, 124, 631-657, doi:10.1029/2018JB016598. (PDF)
  13. Richards, F.D., Hoggard, M.J., Cowton, L.R., and White, N.J. (2018) Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements, J. Geophys. Res. Solid Earth, 123, 9136--9161, doi:10.1029/2018JB015998. (PDF)
  14. Rychert, C.A. and Harmon, N. (2018) Predictions and observations for the oceanic lithosphere from S-to-P receiver functions and SS precursors, Geophys. Res. Lett., 45, 5398--5406, doi: 10.1029/2018GL077675. (PDF)
  15. Naif, S. (2018) An upper bound on the electrical conductivity of hydrated oceanic mantle at the onset of dehydration melting, Earth Planet. Sci. Lett., 482, 357-366, doi:10.1016/j.epsl.2017.11.024. (PDF)
  16. Korenaga, J. (2020) Plate tectonics and surface environment_ Role of the oceanic upper mantle, Earth-Science Reviews , 205, 103185,doi:10.1016/j.earscirev.2020.103185. (PDF)
  17. Mark, H. F. et al. (2019) Azimuthal Seismic Anisotropy of 70‐Ma Pacific‐Plate Upper Mantle, J. Geophys. Res. ,124, 1889–1909,doi:10.1029/2018JB016451. (PDF)