3.3.2 強震動予測

目 次

(1) 業務の内容

- (a) 業務題目
- (b) 担当者
- (c) 業務の目的
- (d) 8 ヵ年の年次実施計画(過去年度は、実施業務の要約)
 - 1) 平成 25 年度
 - 2) 平成 26 年度
 - 3) 平成 27 年度
 - 4) 平成 28 年度
 - 5) 平成 29 年度
 - 6) 平成 30 年度
 - 7) 平成 31 年度(令和元年度)
 - 8) 令和2年度
- (e) 平成 31 年度(令和元年度)業務目的
- (2) 平成 31 年度(令和元年度)の成果
 - (a) 業務の要約
 - (b) 業務の成果
 - 1) 微動による堆積平野速度構造調査
 - a) 調査の概要
 - b) 微動アレイ観測
 - c) 微動アレイ解析による Rayleigh 波位相速度の推定
 - d)S波速度構造モデルの推定
 - e) 単点微動観測
 - 2) 堆積平野地盤構造モデルの改訂
 - 3) 地震波形記録の収集
 - 4) 震源断層モデルに基づく強震動予測
 - a) 簡便法による強震動予測
 - b) 詳細法による強震動予測のための震源モデルの設定
 - c) 統計的グリーン関数法による予測地震動の計算
 - (c) 結論ならびに今後の課題
 - (d) 引用文献
 - (e) 成果の論文発表・口頭発表等
 - (f) 特許出願、ソフトウエア開発、仕様・標準等の策定

(3) 令和2年度業務計画案

(a) 業務題目

3.2 強震動予測

(b)	担	当	者

所属機関	役職	氏	名
京都大学防災研究所	教授	岩田	知孝
	准教授	関口	春子
	准教授	浅野	公之
福井大学附属国際原子力工学研究	准教授	大堀	道広
所			
鳥取大学大学院工学研究科	教授	香川	敬生
	助教	野口	竜也
東京工業大学環境・社会理工学院	教授	山中	浩明
	助教	地元	孝輔
東京大学大学院情報学環附属総合	准教授	三宅	弘恵
防災情報研究センター			
国立研究開発法人防災科学技術研	部門長	藤原	広行
究所マルチハザードリスク評価研			
究部門	主任研究員	森川	信之
国立研究開発法人産業技術総合研	主任研究員	堀川	晴央
究所活断層·火山研究部門			

(c) 業務の目的

サブテーマ2で構築された日本海沿岸域の断層形状モデルに基づいて、強震動予測のた めの震源断層モデルに必要なパラメータを検討し、震源モデルの特性化を行う。従来の速 度構造モデルや必要な微動観測などを行い、対象地域の地下速度構造モデルの高度化を進 める。これらの情報を組み合わせて、対象断層帯が活動した場合の強震動予測を行い、地 震動分布の特徴を調べる。

(d) 8 ヵ年の年次実施計画(過去年度は、実施業務の要約)

1) 平成 25 年度:

内陸地震の震源モデル特性化情報を収集した。既往地下速度構造モデル集約情報に基づ き、情報が十分でない石川県の加賀平野南部及び邑知潟平野において、微動アレイ探査及 び単点微動調査を行い、地盤速度構造モデル情報を得た。福井県、石川県の自治体震度計 波形記録の収集を行った。 2) 平成 26 年度:

内陸被害地震の震源モデルの収集を継続し、強震動生成の観点に立った震源モデル特性 化を継続した。既往地下速度構造モデル集約情報に基づいて、富山平野において微動アレ イ探査を行い、地盤速度構造モデル情報を得た。富山県の自治体震度形波形記録を収集し、 福井、石川、富山県の地震波形を用いた地震波サイト増幅特性評価を開始した。

3) 平成 27 年度:

平成 26 年度に引き続き、地震基盤までの堆積層の速度構造情報が不足している富山平 野を現地調査対象領域として設定し、新たに微動アレイ探査を行い、地盤速度構造モデル 情報を得た。北陸地方の強震・震度観測点の地震波形記録を収集し、収集集した地震波形 記録を用いて、スペクトルインバージョン法により各強震観測点のサイト増幅特性を推定 し、既存地下構造モデルの検証を行った。サブサブテーマ 2.5 で得られた富山沖及び砺波 平野の震源断層モデルに基づいて、特性化震源モデルを設定し、強震動予測を実施した。

4) 平成 28 年度:

強震動予測に資する地下速度構造モデルの集約情報に基づき、北陸地方から山陰地方に かけての日本海沿岸域のうち地下速度構造モデル情報の不足している地域のうち、山陰地 方西部の堆積平野を現地調査対象領域として設定し、微動アレイ探査などの地下構造調査 を行った。対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を 分析した。対象地域における震源断層モデルに基づいて、シナリオ地震想定と強震動予測 を行った。

5) 平成 29 年度:

日本海沿岸域の強震動予測に資する地下速度構造モデルの集約を進めるとともに、北海 道道南の地下速度構造情報の不足している地域である函館平野にて微動アレイ観測などの 地下構造調査を行った。日本海沿岸の対象地域の地震波形記録の収集を継続し、観測サイ トの地盤震動特性を分析した。平成 28 年度までにサブサブテーマ 2.5 で構築された震源 断層モデルに基づいて、シナリオ地震想定と強震動予測を行った。

6) 平成 30 年度:

日本海沿岸域の強震動予測に資する地下速度構造モデルの集約を進めるとともに、情報 の不足している青森県西部地域の堆積平野(津軽平野)で微動アレイ観測を行い、地下速 度構造情報を得た。日本海沿岸の対象地域の地震波形記録の収集を継続し、観測サイトの 地盤震動特性を分析した。サブサブテーマ 2.5 で構築された震源断層モデルに基づいて、 シナリオ地震想定と強震動予測を行った。

7) 平成 31 年度 (令和元年度):

青森県日本海側の地下速度構造情報の不足している地域で微動アレイ観測などの地下 構造調査を行うとともに、これまでの調査結果を集約して、日本海沿岸域の強震動予測の ための地下速度構造モデルの検証・改良を継続した。日本海沿岸の対象地域の地震波形記 録の収集を継続し、観測サイトの地盤震動特性を分析した。サブサブテーマ 2.5 で構築さ れた震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行い、地震動分布の特 徴等を調べた。

8) 令和2年度:

令和元年度までの調査成果に基づき、日本海沿岸域の主要な平野での強震動予測のため の地下速度構造モデルを改訂する。サブテーマ 2-5 で構築された海域及び陸域の震源断層 モデルに基づいて、特性化震源モデル等の作成及び強震動予測を行い、地震動分布の特徴 等をとりまとめる。

(e) 平成 31 年度(令和元年度)業務目的

強震動予測の高度化には、強震動予測のための震源モデル及び地下構造モデルの高度化 が必要である。平成 30 年度に引き続き、地震基盤までの堆積層の S 波速度構造情報が不 足している東北地方北部の青森県西部に位置する津軽平野を現地調査対象領域として設定 し、微動アレイ探査及び単点微動観測を行う。また、これまでの調査結果をもとに、函館 平野の地下速度構造モデルの改良を行う。日本海沿岸の対象地域における地震波形記録の 収集を継続し、観測サイトの地盤震動特性を分析する。サブサブテーマ 2.5 で構築された 北海道周辺の震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行う。

(2) 平成 31 年度(令和元年度)の成果

(a) 業務の要約

地震基盤までの堆積層の速度構造情報が不足している青森県西部の津軽平野を現地調 査対象領域として設定し、微動アレイ観測を2地点で実施した。微動アレイ観測により得 られた上下動微動波形記録に SPAC 法を適用して位相速度を求め、Rayleigh 波基本モー ドの分散曲線をフィッティングすることにより、S 波速度構造を推定した。津軽平野内の 基盤形状等の空間変化に関する情報を得るため、津軽平野全域の計 60 地点において、単 点微動観測を実施した。平成 29~30 年度の調査結果等をもとに、函館平野の速度構造モ デルの改良を行った。また、対象地域の強震・震度観測点の地震波形記録を収集し、地震 動の特徴を分析した。サブサブテーマ 2.5 から提案された北海道地方の震源断層モデルに 基づいて、特性化震源モデルを設定し、簡便法及び詳細法による強震動予測を実施した。

(b) 業務の成果

1) 微動による堆積平野速度構造調査

a)調査の概要

強震動予測を実施するためには、適切な震源モデルに加え、地表から地震基盤までの堆 積層の詳細なS波速度構造モデルが不可欠である。日本海地震・津波調査プロジェクトの 年次進行計画及び既存の地下速度構造調査に関する文献調査を踏まえ、平成30年度に引 き続き、東北地方青森県西部の津軽平野を堆積平野速度構造調査の対象とした。津軽平野 は岩木川流域に発達した堆積盆地であり、先新第三系の基盤岩の上に、新第三紀中新世か ら第四紀にかけての堆積層が存在する。また、平野内の広い範囲に完新統の十三湖層が最 大層厚 40 m 程度で分布する ¹⁾。五所川原市から平川市にかけての津軽平野と津軽山地の 境界には、逆断層の津軽山地西縁断層帯が存在する ²⁾。このような堆積層が厚く分布する 平野内では、周辺で発生する大地震によって強い揺れに見舞われる可能性がある。しかし、 津軽平野においては、地震基盤までの S 波速度構造に関する情報が既往の調査研究では得 られていなかった。このため、平成 30 年度に津軽平野南部の弘前市、平川市、南津軽郡藤 崎町、北津軽郡板柳町、五所川原市の計 5 地点において、微動アレイ探査を実施した。今 年度は、津軽平野における速度構造情報を拡充するため、津軽平野北部のつがる市及び南 東部の黒石市の 2 地点において微動アレイ探査を実施した。また、津軽平野内の基盤形状 等の空間変化に関する情報を得るため、津軽平野全域の計 60 地点において、単点微動観 測を実施した(図 1)。

図1 微動アレイ(ING及びKRI)及び単点微動観測(赤三角印)実施地点 (基図は地理院地図)

b) 微動アレイ観測

津軽平野の2地点(つがる市1地点、黒石市1地点)において微動アレイ観測を実施 した(図1、表1)。各地点では、最大アレイ半径 *R*maxの異なる観測を3セットずつ実施 した(図2~3)。準備段階で、昨年度の日本海地震・津波調査プロジェクトの調査結果や 国立研究開発法人防災科学技術研究所の運営する地震ハザードステーション(J-SHIS)の 深部地盤モデル V2³⁾(以下、J-SHIS V2 モデル)の情報を参照してアレイサイズ等を設 定した。最大アレイ半径は1,180~1,280 mと設定した。現場観測は令和元年11月26日 及び27日の日中に実施した。表1に各アレイ観測の諸元をまとめた。各アレイ観測では 固有周期5秒の3成分速度計LE-3D/5s(Lennartz-Electronic製)を用いた。データ収録 装置LS-8800(A/D変換24 bit、白山工業製)により、サンプリング周波数100 Hzで微 動波形を収録した。時刻較正は収録装置毎にGPS時計により行った。観測開始前には、ハ ドルテストを行って、地震計間のコヒーレンスを確認し、地震計特性が適切であることを 確認した。

	中心付近の地名	71	アレイ	アレイ中心点			
地点			半径	緯度	経度	観測日時	
		1	(m)	(度)	(度)		
ING		S	20, 60	40.88019	140.39669	2019/11/26 14:30-15:20	
	つがる市稲垣町	Μ	145, 290	40.87956	140.39419	2019/11/26 9:25-10:55	
		L	640, 1280	40.87875	140.39183	2019/11/26 11:55-13:55	
		S	20, 60	40.66417	140.57972	2019/11/27 14:10-14:55	
KRI	黒石市大字黒石	Μ	147.5, 295	40.66444	140.58059	2019/11/27 9:40-10:40	
		L	590, 1180	40.65989	140.58286	2019/11/27 11:30-13:30	

表1 微動アレイ観測の諸元(緯度経度は世界測地系)

図 2 ING アレイの観測地点(左上:L アレイ、右上:M アレイ、左下:S アレイ)

図 3 KRI アレイの観測地点(左上:L アレイ、右上:M アレイ、左下:S アレイ)

c) 微動アレイ解析による Rayleigh 波位相速度の推定

アレイ直下の地下速度構造の情報と密接に関係する表面波の分散性(位相速度-周波数の関係)を検出する。本業務では、空間自己相関法(以下、SPAC法)⁴⁾を用いて、位相速度を推定した。SPAC法では基本的には円形アレイを展開し、中心点と半径rの円周上に等間隔に設置した各観測点(今回の観測では正三角形の3つの頂点)の相関係数を方位平均した空間自己相関係数を求める。このとき、微動が定常確率過程であるという仮定から、空間自己相関係数は

$$\rho(f,r) = J_0\left(\frac{2\pi f}{c(f)}r\right)$$

と表現される。左辺は観測量(ρ :空間自己相関係数)であり、得られた空間自己相関係数 $\rho(f, r)$ は0次のベッセル関数 J_0 となることを意味している。左辺の観測量に対応するベッ セル関数の変数を見つけることができれば、半径 r における周波数 f での位相速度c(f)が 求まる。

微動アレイ観測で収録した微動の上下動成分を用い、20.48秒間(Sアレイ)または40.96 秒間(M及びLアレイ)を解析区間の単位として20秒ずつ(Sアレイ)または40秒ずつ(M 及びLアレイ)ずらしながら、時間的及び空間的に安定した微動波形が得られている5区間 に対し、SPAC法を適用し、微動中に含まれる表面波(Rayleigh波)位相速度を推定した。 この解析を9セット(計45区間)に対して行い、位相速度の平均値と標準偏差を求めた。フ ーリエスペクトルを求める際のスムージングの幅はアレイサイズに応じて変えた。

図4に各アレイの平均パワースペクトルの例を示す。L及びMアレイについては、約1~2 Hz以下の周波数帯域で、アレイを構成する各点の平均パワースペクトルが類似しており、 相関性の高い信号が取得されていることが確認できる。半径の小さなSアレイでは、より高 周波数まで十分なパワーと類似性を持った信号が得られている。図5に各アレイでSPAC法 により得られた観測位相速度を丸印で示す。Lアレイ、Mアレイ、Sアレイとアレイ種類毎 に丸印の色を変えている。黒実線が本調査で得られた最終的な位相速度を表す。

具体的に、両地点で約0.2 Hzから約4 Hzまでの周波数帯域をカバーする連続性のよい位 相速度を求めることができた。いずれの地点でも、表層から深部地盤までのS波速度構造を 拘束できる情報が得られたと考えている。図6に両地点の位相速度を重ね描きすることで 比較した。約1 Hzより高周波数側では、INGの位相速度はKRIに比べて小さい。地表付近 の堆積物が、INGでは十三湖層であるのに対し、KRIは段丘堆積物と考えられている¹⁾た め、S波速度がやや大きめであることが期待される。反対に、約0.5 Hzより低周波数側で は、KRIの位相速度はINGよりも小さく、基盤深度の違いを反映していると考えられる。

図4 各アレイにおける各観測点の微動の平均パワースペクトルの例。図中の線の色と番 号はアレイを構成する各点の地震計番号に対応する。

図5 各アレイにおける観測位相速度(左:ING、右:KRI)

図6 観測位相速度の比較

d)S波速度構造モデルの推定

表面波位相速度から S 波速度構造モデルを推定した。パラメータの推定手法としては、 遺伝的アルゴリズム (Genetic Algorithm、以下 GA) による速度構造のモデリング手法

(Yamanaka and Ishida, 1996)⁵⁾を用いた。仮定した速度構造モデルから計算される Rayleigh 波基本モードの位相速度と観測位相速度の misfit 関数

$$misfit = \frac{1}{N} \sum_{i}^{N} (O_i - C_i)^2 \left(\frac{\sigma_0}{\sigma_i + w_0}\right)^2$$

ができるだけ小さくなるような速度構造モデルを探索した。ここで、Nはデータの個数、 O_i 、 σ_i 、 C_i はそれぞれ観測位相速度、その標準偏差、理論位相速度、 σ_0 は標準偏差の係数、 w_0 は極端に小さな σ_i の悪影響を防ぐためのパラメータである。実際には、 σ_0 には $\sigma_i + w_0$ の 最大値を、 w_0 には 0.001 (km/s)を与えた。

S 波速度構造モデルの探索に際しては、国立研究開発法人防災科学技術研究所が運営し ている地震ハザードステーション (J-SHIS) で公開されている深部地盤モデル V2³⁾ (以 下、J-SHIS V2 モデル) を参照し、深部地盤を構成する各層のS波速度はJ-SHIS V2 モ デルで与えられている値に固定して、層厚を探索した。また、J-SHIS V2 モデルの工学的 基盤に相当する Vs=0.6 km/s の層の上に、浅部地盤に対応する低速度層を 1~2 層を追加 し、層厚とS波速度の両方を探索の対象とした。地震基盤(半無限層)の Vsは 3.4 km/s とした。探索に際し、GA のパラメータとして、1 世代当たりの個体数を 10、世代数は 5,000 世代とし、乱数の初期値を変えて 10 回試行し、misfit 最小解を最適な速度構造モデルと した。図 7~8 にそれぞれの観測点での観測位相速度とともに最適な速度構造モデルによ る Rayleigh 波基本モードの位相速度分散曲線、推定された S 波速度構造モデルを示す。 misfit が最小の 2 倍までのモデルを図中に灰細線で図示し、速度構造モデル推定の誤差を 定性的に示した。

各観測点ともに推定速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線 は観測位相速度とよく一致しており、観測位相速度を説明できる地下構造モデルが推定さ れた。比較のため、既存の J-SHIS V2 モデルから観測点直下の一次元速度構造モデルを抽 出し、理論分散曲線を計算したものを同図に緑実線で示したが、いずれの地点でも J-SHIS V2 モデルに比べ、大きく改善されている。以下、各地点での推定結果の概要を述べる。

ING (つがる市稲垣町付近、図 7): 震度計の設置されているつがる市役所稲垣支所付近 を中心に展開したアレイである。 $V_S = 3.1 \text{ km/s}$ 層上面は深さ約 1.6 km と推定された。 V_S = 0.6 km/s の層の上に 1 層追加したところ、 $V_S = 0.11 \text{ km/s}$ 、厚さ 24 m と推定された(図 7 (右))。これは完新統の十三湖層に相当すると考えられる。J-SHIS V2 モデルと比べる と、堆積層部分の $V_S = 0.6 \text{ km/s}$ 及び $V_S = 1.1 \text{ km/s}$ の層の層厚がかなり厚く推定された。

KRI (黒石市大字黒石付近、図 8): ブーゲー異常分布で負の重力異常が見られる地域で 展開したアレイである。観測位相速度の特徴を踏まえ、 $V_{\rm S} = 0.6$ km/s の層の上に 2 層追 加した。追加した 2 層の $V_{\rm S}$ は、0.23 km/s 及び 0.41 km/s と推定された。 $V_{\rm S} = 3.1$ km/s 層上面の深さは約 2.4 km と推定された。微動アレイにより求められた位相速度は J-SHIS V2 モデルによる理論分散曲線よりもかなり遅いため、各層の上面深さは全体的に J-SHIS V2 モデルよりも深く推定された。解のばらつきを見る限り、モデルはよく拘束されている と考えられる。 以下、平成30年度と平成31年度(令和元年度)の結果を総合的に検討した。図9はS 波速度(Vs)が2.1 km/sの層または2.7 km/sの層の上面深度とブーゲー異常分布(仮定 密度2.3 g/cm³)の比較である。ブーゲー異常データは、国立研究開発法人産業技術総合研 究所地質調査総合センターの日本重力データベースDVD版の収録のグリッドモデルを用 いた。7地点の中で基盤深度の最も浅いGSWは高重力異常に対応している。大局的には、 津軽平野南部は北部に比べて低重力異常である。このことは、津軽平野北部の2地点と南 部の5地点でのVs=2.7 km/s層の上面深度とも対応している。しかし、津軽平野南部で の詳細な基盤深度と基盤深度と重力異常との関係は明瞭ではない。このため、単点微動に よるH/Vスペクトル比の卓越周期の空間変化などの手法を併用して、空間的により詳細に 検討することとした。

最表層のS波速度は、岩木川沿いの氾濫原に位置するING、GSW、IYG、FJSでは0.075 ~0.13 km/s と小さなS波速度を持っているのに対し、KRI、HRK、HRSでは約0.2 km/s と相対的には大きめのS波速度であった。 $V_S = 0.6$ km/s層の上面深度は、津軽平野北部 のING及び津軽平野南西部のFJSとHRSで浅く、GSW、IYG、HRKでは0.1 km以上 であった。また、おそらく新第三系の一部に相当すると考えられる $V_S = 1.4$ km/s層の上 面深度は、津軽平野南部のHRKとHRSで相対的に浅く(約0.6~0.8 km)、KRI、FJS、 IYG、GSW、INGでは1.1~1.4 kmであった。これらの傾向は、基盤深度の傾向とは異な っており、各層の形成年代毎での津軽平野の堆積盆の形成過程を反映して、層厚の空間分 布の特徴が異なっているのではないかと考えられる。

図7 ING(つがる市稲垣町)における速度構造推定結果。観測位相速度及び標準偏差(○ 印)、推定速度構造モデル(最適解:赤実線、misfitが最適解の2倍以内のモデル:灰細 線)、J-SHIS V2モデル(緑実線)。(左)微動アレイによる観測位相速度と理論Rayleigh 波基本モードの位相速度分散曲線の比較。(中)S波速度構造モデル。(右)地表から深さ 0.5 kmまでの範囲を拡大して図示したS波速度構造モデル及びモデルパラメータ。

図8 KRI(黒石市大字黒石)における速度構造推定結果。凡例は図7に同じ。

図 9 ブーゲー異常(仮定密度 2.3 g/cm³)と基盤深度の比較(左: V_S = 3.3 km/s 上面との比較、右: V_S = 2.7 km/s 上面との比較)。水色のコンターが産業技術総合研究所地質調査総合センターの日本重力データベース DVD版⁶⁾によるブーゲー重力異常分布を表す。色付き丸印は微動アレイ探査地点で、色は上面深度に対応する。

e) 単点微動観測

微動アレイ探査による結果を補間し、津軽平野全体の基盤形状の空間変化に関する情報 を取得するため、津軽平野内を縦断・横断する測線を複数設定し、計 60 地点で単点微動観 測を実施した。測線は、つがる市車力町から北津軽郡中泊町中里にかけて津軽平野北部を 東西に横断する A 測線、西津軽郡鰺ヶ沢町から五所川原市にかけて津軽平野中部を横断す る B 測線、弘前市から青森市浪岡地区にかけて津軽平野南部を横断する C 測線、つがる市 から平川市にかけて津軽平野を南北に縦断する D 測線及び青森市浪岡と黒石市を結ぶ E 測線の計 5 測線を設定した。各観測地点では、微動アレイ探査と同じく固有周期 5 秒の 3 成分速度計 LE-3D/5s(Lennartz-Electronic 製)及びデータ収録装置 LS-8800(A/D 変換 24 bit、白山工業製)を用いた。3 成分の微動波形をサンプリング周波数 100 Hz で 30 分 以上連続収録した。表 2 に単点微動観測を実施した地点の一覧、図 1 に単点微動観測実施 地点の地図、写真 1 に単点微動観測の実施状況例を示す。

単点微動観測で得られた3成分の微動波形記録を用い、H/Vスペクトル比を計算し、その空間変化を調査した。観測点毎に目視で交通ノイズ等の含まれる時間区間を除外し、微動が比較的定常状態にあると判断した81.92秒の解析区間を10区間選んだ。選出した各解析区間の微動波形をフーリエ変換し、各成分のフーリエスペクトルを計算した。フーリエ振幅スペクトルをバンド幅0.073242 HzのParzenウィンドウで平滑化した。各成分の10区間のフーリエ振幅スペクトルを重合することにより、その地点、成分の平均フーリエ振幅スペクトルを求めた。これらの平均フーリエ振幅スペクトルの水平動/上下動の比(以下、H/Vスペクトル比)を計算した。水平動は、水平2成分の幾何平均として定義した。なお、C10及びE01観測点では、観測装置の不具合のため、EW成分の記録に異常が見られた。これらの観測点では、NS/UDの比をH/Vスペクトル比のかわりに使用した。なお、平成30年度及び平成31年度(令和元年度)の微動アレイ観測点のLアレイ(L1、L5、L6、L7)の記録についても同様の手順で解析した。

図 10 に、各観測点で求められた H/V スペクトル比のピーク周波数を地図上に示した。 この地図には、国立研究開発法人産業技術総合研究所の日本重力データベースによるブー ゲー重力異常(仮定密度 2.3 g/cm³)のコンターをあわせてプロットしている。図 11 には、 各地点で得られた H/V スペクトル比を示す。ピーク周波数を読み取る際は、深部地盤構造 (地震基盤の深度)に関係する情報を抽出するため、0.05~1 Hz 程度の範囲内で、周囲の 観測点との連続性も注意しつつ、ピークを読み取った。ただし、現地のノイズ状況や微動 の特性等の理由により、H/V スペクトル比に明瞭なピークを判別できなかった地点につい てはプロットしていない。なお、H/V スペクトル比の結果の解釈の際は、観測に使用した 地震計の固有周期が 5 秒(固有周波数 0.2 Hz)であるため、0.2 Hz 以下では地震計の感度 が低下していることに留意する必要がある。

津軽平野北部の A 測線に沿っては、車力町の海岸付近(A00~A01)では、0.2~0.25 Hz 程度であり、中央部(A03~A06 付近)で 0.3~0.4 Hz、測線東端(A08~A09)では 0.4 Hz 以上となり、基盤深度が浅くなることを示唆している。平野中央部では、B 測線の西端

(B01~B02) では 0.25 Hz 前後であるのに対し、東に向かうに従って、ピーク周波数は 徐々に低くなっている。B14 までは、概ね 0.2 Hz 以下のピーク周波数をもつ傾向にある。 B16 以東では徐々にピーク周波数が上昇している。同様に、平野南部の C 測線でも同様に 東に向かうにつれてピーク周波数が低くなり、C09 や C10 では 0.1 Hz 程度まで下がる。 E 測線や KRI アレイの観測点でのピーク周波数も同様に低く、この付近に負の重力異常が 見られることと対応している。このことから、この付近(津軽平野南東部)では、基盤深 度が最も深くなっていると考えられる。南北方向の D 測線では、D01~ING-L5 ではピー ク周波数が 0.3~0.4 Hz であるのに対し、ING-L1~07 にかけては、0.2~0.3 Hz となる。 さらに南下するとピーク周波数は 0.2 Hz 未満となる。以上の結果から、津軽平野北部に比 べ、南部では基盤が深く、堆積盆地の中心は津軽平野南部にあると考えられる。黒石市~ 青森市浪岡地区周辺の平野と山地の境界は津軽山地西縁断層帯南部の黒石断層(東側隆起 の逆断層)である²⁾。黒石市~青森市浪岡周辺では、黒石断層に沿って、断層の西側(下 盤側)で基盤が最も深く沈降していることを示唆する結果が得られた。

図 10 単点微動観測による H/V スペクトル比のピーク周波数とブーゲー異常(仮定密度 2.3 g/cm³)の比較。コンターは産業技術総合研究所地質調査総合センターの重力データ ベース DVD 版 ⁶⁾によるブーゲー重力異常分布を表す。色付き丸印は単点微動観測地点、 色は H/V スペクトル比ピーク周波数に対応する。背景地図は地理院地図による。

コード	地点名	緯度	経度	観測日時
A00	つがる市富萢町屏風山	40.9728	140.3144	11/25 9:46-10:40
	(マグアビーチ)			
A01	つがる市車力町屏風山	40.9511	140.3133	11/25 11:55-12:25
A02	つがる市車力町屏風山	40.9521	140.3366	11/25 11:40-12:36
A03	つがる市車力町花林	40.9483	140.3595	11/25 10:23-11:25
	(つがる市車力出張所)			
A04	つがる市下車力町西田	40.9479	140.3773	11/25 11:15-12:46
A05	中泊町大字大字田茂木字鳴見	40.9527	140.3969	11/25 10:00-10:30
A06	中泊町大字福浦字若野浦	40.9565	140.4143	11/25 10:25-10:55
A07	中泊町大字中里字宝森	40.9667	140.4316	11/25 11:47-12:17
	(中泊町中央公民館)			
A08	中泊町大字中里字紅葉坂	40.9603	140.4332	11/25 10:55-11:25
	(中泊町役場)			
A09	中泊町大字宮野沢字蛍澤	40.9595	140.4585	11/25 12:06-12:36
	(中泊町運動公園)			
B01	鯵ヶ沢町大字舞戸町字小夜	40.7777	140.2061	11/25 09:18-09:48
	(西海小学校)			
B02	鯵ヶ沢町大字本町	40.7802	140.2086	11/25 10:02-10:32
	(鯵ヶ沢町役場)			
B03	鯵ヶ沢町大字舞戸町字北禿	40.7813	140.2253	11/25 10:11-10:41
	(日本海拠点館)			
B04	鯵ヶ沢町大字南浮田町字早田	40.7821	140.2537	11/25 10:54-11:24
B05	鯵ヶ沢町大字北浮田町字外馬屋	40.7813	140.2690	11/25 11:03-11:33
	(鳴沢公民館)			
B06	つがる市森田町大館広ケ平	40.7872	140.2980	11/25 11:46-12:42
B07	鯵ヶ沢町大字建石町字島田	40.7619	140.3121	11/25 13:04-13:34
	(旧建石小学校)			
B08	つがる市森田町大舘千歳	40.7822	140.3155	11/25 11:57-12:37
B09	つがる市森田町森田月見野	40.7810	140.3343	11/25 13:47-14:17
	(森田公民館)			
B10	つがる市森田町中田福浦	40.7898	140.3586	11/25 14:07-14:37
B11	つがる市森田町下相野野田	40.7997	140.3725	11/25:14:32-15:02
B12	つがる市木造若緑	40.8089	140.3800	11/25:15:15-15:45
	(つがる市役所)			
B14	つがる市柏上古川八重崎	40.8070	140.4138	11/26:15:55-16:25
B15	五所川原市栄町	40.7995	140.4430	11/24:16:30-17:00
	(気象庁五所川原市栄町)			

表 2 単点微動観測実施地点

コード	地点名	緯度	経度	観測日時
B16	五所川原市大字一野坪字麻ノ葉	40.8237	140.4708	11/25:16:18-16:48
	(一野坪八幡宮)			
B17	五所川原市大字飯詰字福泉	40.8303	140.4885	11/25:16:08-16:38
	(飯詰八幡宮)			
B19	五所川原市大字飯詰字石田	40.8396	140.5174	11/25:16:20-16:50
	(飯詰ダム)			
C01	弘前市大字五所字野沢	40.5859	140.3970	11/28:09:29-10:00
	(弘前市役所相馬庁舎)			
C02	弘前市大字湯口字一ノ細川	40.5894	140.4142	11/28:09:48-10:30
C03	弘前市大字賀田一丁目	40.6164	140.4216	11/28:12:20-12:50
	(弘前市役所岩木庁舎)			
C04	弘前市大字悪戸字鳴瀬	40.5992	140.4343	11/28:10:43-11:13
	(悪戸河川敷簡易運動場)			
C05	弘前市大字和田町	40.6114	140.4551	11/28:10:57-11:27
	(気象庁弘前市和田町)			
C06	弘前市大字向外瀬字岩木	40.6223	140.4714	11/28:15:08-15:38
	(せせらぎ広場)			
C07	弘前市大字清野袋字岡部	40.6347	140.4825	11/28:14:43-15:13
	(加藤川河川敷運動広場)			
C08	藤崎町大字水木字村元	40.6745	140.5405	11/28:13:51-14:21
	(常磐ふるさと資料館)			
C09	青森市浪岡大字下十川字扇田	40.6950	140.5632	11/28:12:10-12:40
C10	青森市浪岡大字女鹿沢字東富田	40.7043	140.5778	11/28:11:48-12:18
	(女鹿沢児童公園)			
C11	青森市浪岡大字浪岡字稲村	40.7110	140.5953	11/28:10:47-11:17
	(青森市役所浪岡庁舎)			
C12	青森市浪岡大字五本松字羽黒平	40.7259	140.6215	11/28:10:15-10:45
	(美人川公園)			
C13	青森市浪岡大字王余魚沢北村元	40.7256	140.6562	11/28:09:50-10:20
D01	つがる市牛潟町大富崎	40.9274	140.3701	11/25:13:05-13:40
D02	つがる市稲垣町福富下派立	40.9130	140.3863	11/25:13:30-14:00
D03	つがる市稲垣町福富中派立	40.8970	140.3933	11/25:14:20-15:02
D04	五所川原市金木町朝日山	40.9029	140.4562	11/25:13:40-14:10
	(五所川原市金木庁舎)			
D05	つがる市木造出野里泉田	40.8565	140.3966	11/25:14:41-15:15
D06	つがる市木造豊田網代	40.8423	140.4023	11/25:15:33-16:05
D07	つがる市木造川除川瀬	40.8272	140.4151	11/25:15:53-16:54

コード	地点名	緯度	経度	観測日時
D08	つがる市柏桑野木田福井	40.7854	140.4111	11/25:16:33-17:13
	(つがる市柏分庁舎)			
D09	鶴田町大字鶴田字早瀬	40.7583	140.4283	11/26:15:54-16:24
	(鶴田町役場)			
D10	鶴田町大字鶴泊字梅林	40.7361	140.4376	11/28:09:30-10:00
	(鶴泊駅)			
D11	板柳町大字掛落林字前田	40.7182	140.4392	11/28:10:18-10:48
D12	藤崎町大字林崎字平岡	40.6750	140.4806	11/28:11:12-11:42
	(林崎駅)			
D13	田舎館村大字川部字村元	40.6455	140.5246	11/28:12:04-12:34
D14	田舎館村大字田舎舘字中辻	40.6314	140.5506	11/28:12:57-13:27
	(田舎館村役場)			
D15	平川市舘山板橋	40.5979	140.5355	11/28:14:13-14:43
D16	平川市大光寺二早稲田	40.5908	140.5492	11/28:13:38-14:18
D17	平川市柏木町藤山	40.5843	140.5669	11/28:13:27-13:57
	(平川市役所)			
E01	青森市浪岡大字女鹿沢字稲本	40.6975	140.5957	11/28:13:40-14:10
E02	黑石市大字飛内北	40.6816	140.5953	11/28:13:55-14:25
E03	黒石市大字市ノ町	40.6427	140.5946	11/28:15:10-15:40
	(黒石市役所)			

写真1 B01地点における単点微動観測の実施状況

図 11 単点微動観測による H/V スペクトル比(赤: NS/UD、青: EW/UD、黒: H/V)。逆 三角印は読み取ったピーク周波数位置を表す。

図 11 続き

図 11 続き

図 11 続き

図 11 続き

図 11 続き

2) 堆積平野地盤構造モデルの改訂

平成 29 年度に微動アレイ調査、平成 30 年度に反射法地震探査(サブサブテーマ 2.3) が実施された函館平野を対象に深部地盤構造モデルの改訂を継続した。函館平野の深部地 盤構造モデルの改訂にあたり、国立研究開発法人防災科学技術研究所地震ハザードステー ション(J-SHIS)の全国深部地盤モデル V2³⁾を初期モデルとした。初期モデルに対して、 函館平野内の測線で実施された既往の反射法地震探査の結果 ^{7,8)} と微動アレイ探査の 1 次 元速度構造モデル ⁹⁾(微動アレイモデル)による速度層境界深度をコントロールポイント として取り込んだ(図 12)。

平成 30 年度渡島半島測線に沿った、S 波速度層の境界深度は、本プロジェクト平成 30 年度成果報告書(サブサブテーマ 2.3)に記載されている反射法地震探査測線の地質学的 解釈断面図と平成 29 年度成果報告書(サブサブテーマ 3.2)に記載されている微動アレイ 探査の結果を比較参照し、設定した(図 13)。具体的には、S 波速度(Vs) 600 m/s の下 面を第四系の下面、1,100 m/s の下面を新第三紀の茂辺地川層と戸田川層の境界、1,400 m/s の下面を戸田川層の下面、1,700 m/s 層の下面を新第三系と先第三系の境界として解釈し た。

整理したコントロールポイントを反映するように初期モデルの更新を行った(図14)。 コントロールポイントと初期モデルの差が大きい場合、局所的な範囲でモデルの修正を行 うと、不自然な構造となる。初期モデルは大局的には函館平野を中心とした盆地構造とみ なせる。そこで盆地全体を更新するよう、コントロールポイントの分布、初期モデルの形 状、地形分布(図12)を総合的に判断し、図14に赤枠で示す範囲を修正対象領域とした。

以下に、深部地盤モデルの具体的な更新方法を示す。

- 1. 初期モデルデータの切り出し・グリッド化(図14a, b)
- 2. 更新メッシュに含まれる初期モデルデータの除外(図14c, d)
- 3. 整理されたコントロールポイントの追加(図14e)
- 4. 再補間・再補間データから更新メッシュにおける下面深度を読み取り・J-SHIS メッシュの置き換え(図14f)

空間的な補間方法は、オープンソフトウェアGeneric Mapping Tools ¹⁰ に含まれる surfaceコマンドによるスプライン補間を用いた。surfaceコマンドはすべての入力値を滑 らかにつなぐ曲面でグリッドデータを作成する。テンションは、補間によって作成する曲 面の空間的な滑らかさを定める変数で、0から1の間の値をとる。テンションが0の場合は 曲率最小の条件の下にデータにフィットするよう補間され、1の場合は平面的になる。今回 はテンション0を採用した。

各境界面の修正量によっては、他の境界面と交差する場合がある。更新モデルにおいて 上下の地層と比較を行い、修正により深くなったため下位の境界面と交差した場合は、初 期モデルの境界面を更新モデルに接合させた。逆に浅くなる場合は、初期モデルでは存在 しなかった見かけの層が生成される場合がある。この場合は、見かけの層の境界面を上位 の境界面に接合させた。

図 15~18 に、初期モデルと更新モデルとを並べて示す。図 19~22 に初期モデルと更新 モデルの断面図を示す。断面は図 12 に示す A-A' 測線から D-D' 測線の 4 断面である。

図 12 函館平野周辺で取り込んだコントロールポイントの位置。青丸印は微動アレイ探査 地点、赤色丸印は反射法地震探査情報参考地点をそれぞれ表す。A-A'~D-D' は図 21~ 24 に S 波速度構造モデルを示す断面の位置を示す。基図は国立研究開発法人産業技術 総合研究所地質調査総合センターによる 20 万分の1日本シームレス地質図 V2 ¹¹。

図 13 サブサブテーマ 2.3 による反射法地震探査(平成 30 年度渡島半島測線)に沿った 深度方向の断面図。楕円印及び色付太線は、各コントロールポイントで読み取った速度 層の下面深度を示す。楕円印を赤色線で囲んだ点は、モデル修正範囲の外の点。

図14 函館平野の深部地盤モデル更新フロー

図15 Vs=600 m/s下面標高。星印はコントロールポイントを示す。黒線の枠はモデルの 修正範囲を示す。

図16 Vs=1,100 m/s下面標高。凡例は図21に同じ。

Vs1700 下面標高

図17 Vs=1,400 m/s下面標高。凡例は図21に同じ。

図18 Vs=1,700 m/s下面標高。凡例は図21に同じ。

 図19 A-A' モデル断面。青色はVs=600 m/s層、水色はVs=1,100 m/s層、オレンジは Vs=1,400 m/s層、緑色はVs=1,700 m/s層の下面をそれぞれ表す。星印はコントロール ポイント、数値はS波速度(m/s)を示す。断面位置は図20を参照。

図20 B-B' モデル断面。凡例は図21に同じ。

図21 C-C' モデル断面。凡例は図21に同じ。

図22 D-D' モデル断面。凡例は図21に同じ。

今回提案した深部地盤モデルの更新により、どの程度モデルが改善されたのかを理論重 力異常から評価した。初期モデルおよび更新したモデルの各格子で構成される角柱の理論 重力異常をPlouf (1976)の手法¹²⁾により計算した。各層の密度の設定をJ-SHIS V2モデル の設定に従い表3の通りとした。計算領域は打ち切りによる影響を小さくするために広め の領域とした。検討対象地域のブーゲー異常図を図23(a)に示す。国立研究開発法人産業技 術総合研究所地質調査総合センター日本重力データベースDVD版⁶⁾を用いた。一般的にブ ーゲー異常を求める際は、地下構造による影響に着目するために、地形と重力異常との相 関が低くなる補正密度が用いられる。実際に求められる補正密度は風化等の影響で基盤相 当のおよそ2.6 g/cm³よりも低くなる場合が多い¹³⁾。ここでは補正密度が2.3 g/cm³のデータ を用いた。

初期モデル、平成 30 年度成果によるモデル、今年度成果による更新モデルから計算さ れた理論重力をそれぞれ図 23(b)、(c)、(d)に示す。いずれも函館平野から南南西側に続く 低重力異常域が認められるが、観測重力異常では低重力域の中心は函館平野の南西部(海 岸付近)に位置しており、低重力域の幅も狭く、北北西~南南東方向に伸びている。今年 度に新たに更新したモデル(図 23(d))の方が、低重力域の中心が観測重力異常に近く、モ デルが改善されていると言える。

S 波速度 (m/s)	密度
5 仮述度(III/S)	(g/cm^3)
600	1.90
1,100	2.15
1,400	2.25
1,700	2.30
2,100	2.40
2,700	2.50
3,100	2.60
3,300	2.70
3,400	2.75

表 3 密度設定一覧

図23 (a) 日本重力データベースDVD版⁶⁾ によるブーゲー異常データ(仮定密度2.3 g/cm³)。灰色丸印は同データベースに含まれている重力測定点。(b) J-SHIS V2モデル³⁾ による理論重力異常。(c) 平成30年度成果報告書に掲載したモデルによる理論重力異常。(d) 本年度の更新モデルによる理論重力異常。

最後に、本業務で改良した函館平野の三次元深部地盤構造モデルを検証するため、中規 模地震の地震動シミュレーションを実施した。今回の検証では、2016 年 6 月 16 日 14 時 21 分に内浦湾(南茅部沖)で発生した M_{JMA} 5.3 の地震(図 24)を対象とした。地震動の 計算はくい違い格子を用いた空間 4 次、時間 2 次精度の速度-応力型三次元差分法¹⁴⁾に よって実施した。計算対象領域は、本業務で震源と函館平野を含む東西 100 km×南北 96 km の領域とした。鉛直方向は地表から GL-29.9 km までを計算領域に含む。この領域を 水平方向及び鉛直方向ともに 50 m 間隔の格子で離散化した。つまり、格子数は東西方向 2,001×南北方向 1,921×鉛直方向 600、計 23 億 635 万 2600 格子である。減衰は Graves (1996)の方法¹⁵⁾で非弾性減衰の効果を導入し、参照周期は J-SHIS に従い周期1 秒とし た。この深部地盤構造モデルに含まれる最も遅いS 波速度は 600 m/s であるため、差分法 計算の有効周期は約0.5秒以上である。地表面には自由境界条件、モデルの側面及び底面 には PML (Perfectly Matched Layer) 境界条件 ^{16,17}) を与えた。PML の層厚は 10 格子 とした。震源は、気象庁一元化カタログによる震央位置を震央とし、国立研究開発法人防 災科学技術研究所広帯域地震観測網 F-net にて求められているモーメントテンソル解を 点震源として与えた(図 24)。地震モーメントは 6.83×10¹⁶ Nm、点震源の深さは 5 km で ある。震源時間関数は単純な cosine 型の関数とし、ライズタイムは 1.7 秒と仮定した。 タイムステップ間隔を 0.0025 秒とし、発震時から 60 秒間(24,000 ステップ)の地震動を 計算した。地盤構造モデルの違いによる計算結果の比較のため、国立研究開発法人防災科 学技術研究所地震ハザードステーション(J-SHIS)で公開されている深部地盤モデル V2 ³⁾を用いた計算も行った。国立研究開発法人防災科学技術研究所の強震観測網(K-NET) 及び基盤強震観測網(KiK-net)、気象庁計測震度計の公開強震波形記録のほか、平成29年 度に日本海地震・津波調査プロジェクトで収集した北海道震度情報ネットワークシステム の観測記録をシミュレーション波形との比較検討に使用した。図 25 は、観測波形とシミ ュレーション波形(速度波形、周期1秒以上)の比較である。既存の J-SHIS V2 モデルに 比べ、本業務で新たに更新したモデルは、波形の振幅や位相の再現性が改善されている。

図24 函館平野の強震観測点と2016年6月16日内浦湾の地震のモーメントテンソル解。 矩形は差分法計算領域。

図 25 観測波形とシミュレーション波形の比較。黒:観測波形、赤: J-SHIS V2 モデルに よるシミュレーション波形、紫:本年度更新モデルによるシミュレーション波形。

3) 地震波形記録の収集

各都道府県では、全国展開されている国立研究開発法人防災科学技術研究所の強震観測 網(K-NET)、基盤強震観測網(KiK-net)、気象庁の計測震度計観測点に加えて、各地方 自治体の震度情報ネットワークシステムによる計測震度計観測点が設置され、震度情報の 発表や防災対応に活用されている。本年度は、青森県震度情報ネットワークシステムの地 震波形記録を収集し、整理した。波形データの収集に際しては、青森県危機管理局防災危 機管理課の協力を得た。

青森県震度情報ネットワークシステムでは、同ネットワークを構成する計 67 地点のう ち、気象庁や防災科学技術研究所の観測施設を利用している 11 地点を除く計 56 地点に計 測震度計が設置されている。今回は、平成 22 年 9 月から令和元年 8 月までの期間に観測 された約 10 年間分の記録を収集することができた。震度計は高見沢サイバネティックス 製 STR-361 である。加速度波形データは強震 WIN32 形式のフォーマットで収録されてい る。図 26 に地震波形記録を収集した震度観測点の地図を示す。

図 26 青森県震度情報ネットワークシステムの観測点分布

青森県震度情報ネットワークシステムから収集した記録の例として、平成28年6月16 日14時21分に内浦湾で発生した地震(*M*JMA5.3、深さ11km)の速度波形のEW成分を 図27に示す。オリジナルの加速度波形を積分し、速度波形としたものに、0.05~10Hzの 帯域通過フィルターを適用した波形を図示した。横軸は気象庁による発震時刻からの経過 時間(単位:秒)である。この図では、日本海側の津軽平野周辺の震度観測点20地点の記 録を示した。同図では、北から順に並べている。特に、津軽平野南部の震度観測点におい て、最大振幅が平野周縁部の観測点よりも大きく、地震動継続時間も長くなっている。

20)16/	06/	16	14	:21	Ĩ.,	E	N-0	CO	MP		2	0.0	5 10.	.00		
00.00	10.0	15.0	20.0	25.0	30.0	35.0	Time 1 40.0	45.0	Orig 50.0	55.0	me (s 60.0	65.0	70.0	75.0	80.0	85.0	90
() cm/s	AC	MP	44_		-wh	www	unun	MMM		~~~~~							
600.00	AC	MP	11_			Warn	ununa										
÷.	AC	MP	43		••••••	-	in althour	uuu.	manter	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~		~~~~		
	AC	MP	23			-MA	han	Min	man	when	m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~		
	AC	MP	10		*****	-1.11	Ulman	dalla	Maria	mm	mm	~~~	·····		~		
	AC	MP	22	~~~~	·····		han	Anno	Mm	m	mm	www	h	ww	m		
	AC	MP	19		~~~~	mm	whall	MAN	Mm	bral	rim.	www	Mar	Mun	~~^^		
	AC	MP	21			~~~~	~/MW	num	AMAN	mm	hunde	~M	M	mm	m		
	AC	MP	20				ייז הרינייייייי	viwww	white	mm	mm	www	~~~~	ww	m		
	AC	MP	02		~~-		mig	hu Al Mu	AM ANN	hmh	MMM	Mmr	~~~~ ~~~~~	MMA	\sim	᠕᠕ᠺ	hm
	AC	MP	41			~~~~~		1 VIII	www.	www	hvvr	wWW	m	., 1. March	l-MM	~~~	~
	AC	MP	38		~~~	~~~~~	h	Mary N	ham	whm	NMM	MMM	mM	um M	$\sqrt{2}$	hm	~~
	AC	MP	40		~~	~~~~~	mannand	-1MWA	MMM		n mm	r . M	Ŵ	Mm	~~~~~	$\sim\sim\sim$	\sim
	AC	MP	80		~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hill	MM	mm	M	hm	hh	$\mathcal{M}_{\mathcal{M}}$	~~~	\sim	~
	AC	MP	25		~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-Alim	Mmh	Num	mMM	Mw	ww	νmΜ	\mathcal{M}	ηMM	Ŵ
	AC	MP	24		~~~~	MW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-hun	www	www	~~~	~w	ww	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~
	AC	MP	04		~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- M M	Minn	www	whym	huvu	M	\mathcal{M}	vw~~	~~~	\sim
	AC	MP	05			~~~~~		~~~W	~~~~	www	mm	nn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	\sim	~
	AC	MP	39				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	!!! \/	hanno	www	~~~~~	~~~~~					
	AC	MP	26			~~~~~~		V*	when	mm	www	~~~~	~~~~~	~~~~	~~~~~	~~~~	_

図27 青森県震度情報ネットワークシステムから収集した波形記録例(平成28年6月16日 14時21分内浦湾の地震、東西動成分速度波形)
4) 震源断層モデルに基づく強震動予測

a) 簡便法による強震動予測

平成 30 年度にサブサブテーマ 2.5 から提案された北海道地方の震源断層モデルを対象 に、地震動予測式を用いた方法(簡便法)による強震動予測を実施した。サブサブテーマ からは北海道全域の矩形断層モデルのパラメータ(図 28)が提供された。近接している複 数断層の連動を考慮した組み合わせは、サブサブテーマ 2.5 及び 3.1 と協議の上で設定し た。本年度は、北海道日本海沿岸周辺の断層について、計 17 ケース(図 28 の矩形モデル のうち、赤色で着色したもの)を設定し、強震動を試算した。陸域から遠く離れている海 域の断層及び断層長が短い断層については、陸域で大きな震度とならないことから、強震 動予測の対象には含めていない。また、OSO7(函館平野西縁断層帯、図 28 に青色で着色 したもの)については、平成 30 年度に詳細法(ハイブリッド法)による試算を実施済みで あるため、平成 30 年度成果報告書を参照してほしい。

まず、サブサブテーマ 2.5 から提供された断層モデルパラメータ(基準点座標、上端深 さ、走向、傾斜、すべり角、断層長さ、断層幅)から、断層面積を求めた。入倉・三宅(2001) の関係式¹⁸⁾を用い、断層面積から地震モーメントを得た。各ケースの断層パラメータを 表4にまとめた。モーメントマグニチュード(Mw)は、最も小さい IK04 が 6.6、最も大 きい RS01a+RS01b+RS01c が 7.7 となった。

次に、簡便法による強震動予測の手順を説明する。司・翠川(1999)の地震動予測式¹⁹⁾ log₁₀ PGV = -1.29 + 0.58M_w + 0.0038h - log₁₀(X + 0.0028 · 10^{0.5M_w}) - 0.002X

を用い、断層最短距離 X とモーメントマグニチュード M_W から工学的基盤での最大速度 (PGV)を求めた。ただし、上式中の h は震源深さである。次に、藤本・翠川(2006)に よる PGV 増幅率 R と AVS30 の関係の経験式 ²⁰⁾

$\log_{10} R = 2.367 - 0.852 \log_{10} AVS30$

を J-SHIS 表層地盤データ V3²¹⁻²³⁾の AVS30 に適用し、工学的基盤から地表までの PGV 増幅率を求めた(図 29)。得られた増幅率を用い、工学的基盤の PGV を地表の PGV に変 換した。最後に、藤本・翠川(2005)の PGV と計測震度 Iの関係の経験式²⁴⁾

 $I = 2.002 + 2.603 \log_{10} PGV - 0.213 (\log_{10} PGV)^2 \qquad (I \ge 4)$ を用いて、地表での計測震度を計算した。

各ケースの震度分布を図 30~46 に示す。震度は計測震度に対応する気象庁震度階に応じて色分けした。ただし、計測震度 4.0 未満の領域は着色していない。以下に試算結果の概要を述べる。

RS01a+RS01b+RS01c(図 30)は、サロベツ断層帯及びその海域部(礼文舟状海盆東縁の断層)に対応し、サロベツ原野付近から海馬島南方沖までの全長約 150 kmの東落ちの断層である。RS01c 断層がサロベツ原野の直下にあるため、サロベツ原野周辺の広い範囲で震度 6 強~7 の地震動が予測された。利尻島の沿岸部や礼文島北部(礼文町船泊村)の低地部の一部でも震度 6 強と予測された。このため、次節で報告する詳細法(統計的グリーン関数法)による強震動予測の対象ケースとして選定した。

RS03a+RS03b+RS03c(図 31)は、礼文島西側斜面基部(利尻舟状海盆の東縁)に沿って、利尻島西方沖から海馬島南方沖までの全長約 121 kmの東落ちの断層である。礼文島 北部(礼文町船泊村)の低地部の一部で震度7と予測されたほか、利尻島の沿岸部、礼文 島北部、サロベツ原野の一部で震度6強と予測された。

RS08(図 32)は、天売島西方沖に位置する西落ちの断層である。震源断層に近い天売 島及び焼尻島で震度6弱~6強と予測された。

ST06+ST07+OK01+OK02(図 33)は、積丹半島西方沖の後志舟状海盆西縁から奥尻島 北方にかけて分布する全長約 171 km 西落ちの断層である。震源断層に近い奥尻島北部及 び渡島半島の瀬棚平野などで震度 6 強と予測された。

ST08+ST09+OK01+OK02(図 34)も、積丹半島西方沖の奥尻海嶺東縁から奥尻島北方 にかけて分布する全長約 178 kmの西落ちの断層である。前ケースと同様、震源断層に近 い奥尻島北部及び渡島半島の瀬棚平野などで震度 6 強と予測された。

ST10(図 35)は、寿都沖の断層である。寿都湾周辺などで震度 6 弱~6 強と予測された。

OK03a+OK03b+OK05(図 36)は、奥尻島西方沖の全長約 108 km の西落ちの断層である。奥尻島全域で震度 6 弱~6 強と予測されたほか、瀬棚平野で震度 5 強~6 弱との予測 結果となった。

OK08(図 37)は、奥尻島南東沖の東落ちの断層である。奥尻島で震度 5 強~6 弱の予 測結果となった。

OK04+OK09(図38)は、奥尻島西方沖~南方沖の奥尻海嶺西縁に分布する全長約111 kmの東落ちの断層である。震源断層に近い奥尻島で震度5強~6強と予測された。また、 渡島半島西岸の川沿いの地盤増幅率の大きい領域で震度6弱~6強となっている。

OS01(図 39)は、黒松内低地断層帯のうち東落ちの断層である。朱太川河口付近で震度7との予測となったほか、黒松内低地、寿都湾周辺や尻別川流域などに震度6弱~6強が分布する。

OS02(図 40)は、黒松内低地断層帯のうち西落ちの断層である。全ケースと同様、朱 太川河口付近で震度7との予測となったほか、黒松内低地、寿都湾周辺、尻別川流域や長 万部平野などに震度6弱~6強が分布する。

OS04(図 41)は、八雲断層帯を長万部断層付近まで延長した西落ちの断層である。長 万部平野から八雲平野にかけての内浦湾沿岸部で、震度6弱~7の揺れが予測された。

OS06(図 42)は、内浦湾沿岸の西落ちの断層である。八雲平野から森町周辺の内浦湾沿岸部で、震度6弱~6強の揺れが予測された。

OS03+OS05+OS08(図43)は、渡島半島西岸に分布する全長約139 kmの東落ちの断層である。瀬棚平野や上ノ国町周辺で震度7の地震動が予測された。また、渡島半島西岸のみならず、函館平野など檜山振興局と渡島振興局管内の広い範囲で震度6弱~6強と予測された。また、黒松内低地、長万部平野、青森県の津軽平野の一部でも震度5強~6弱の地震動が予測されている。このため、次節で報告する詳細法(統計的グリーン関数法)による強震動予測の対象ケースとして選定した。

IK04 (図 44) は、石狩平野直下の西落ちの断層である。震源断層に近い石狩平野では、 震度 6 弱~7 の揺れが予測された。

RM01 (図 45) は、鬼鹿沖の東落ちの断層である。震源断層に近い羽幌町から留萌市に かけての沿岸部で、震度 6 弱~7 との予測結果となった。

MK02(図46)は、当別断層に対応する西落ちの断層である。地震本部による評価(断

層長約 20 km)よりも断層長が長くなっているので、簡便法での試算対象とした。石狩平 野の断層直上で震度 7 となっているほか、石狩平野内で震度 6 弱~6 強との予測結果とな っている。地震規模が大きくなったため、地震本部による地震動評価結果(簡便法)より も震度の大きな領域が広がっている。

以上の試算結果を踏まえ、サロベツ断層帯及びその北方延長(RS01a+RS01b+RS01c) 及び渡島半島西岸の断層(OS03+OS05+OS08)の2ケースを、統計的グリーン関数法を 用いた詳細法による検討対象に選定した。

No	新田 夕	始点緯度	始点経度	上端深さ	走向	傾斜	長さ	幅	NAM	M ₀
NO.	的眉石	(北緯, 度)	(東経, 度)	(km, TP-)	(度)	(度)	(km)	(km)	IVIW	(Nm)
1		45.5883	141.4063	0.0	340	30	63.3	34.0		
	RS01a+RS01b+RS01c	45.3239	141.4582	0.0	353	30	30.2	34.0	7.74	5.102E+20
		44.8340	141.7615	0.0	338	30	56.6	34.0		
2	RS03a+RS03b+RS03c	45.8722	141.0247	1.0	6	30	27.6	28.0		
		45.5991	140.8384	1.0	23	30	35.2	28.0	7.62	3.387E+20
		45.0834	140.8871	1.0	355	30	58.2	28.0		
3	RS08	44.6318	141.3284	0.0	196	45	30.3	21.2	6.84	2.296E+19
		43.7036	139.6400	2.0	179	30	46.0	30.0		
		43.2833	139.5595	3.0	184	45	23.1	19.8	7.65	3.796E+20
4	S106+S107+OK01+OK02	43.0807	139.4299	3.0	174	45	58.8	19.8	7.65	
		42.5772	139.4046	2.0	151	45	43.1	18.4		
	ST08+ST09+OK01+OK02	43.7669	139.2522	3.0	167	45	37.4	19.8		3.414E+20
E		43.4392	139.3562	4.0	179	45	39.0	18.4	7 62	
5		43.0807	139.4299	3.0	174	45	58.8	19.8	7.02	
		42.5772	139.4046	2.0	151	45	43.1	18.4		
6	ST10	43.1422	140.0663	1.0	173	45	33.3	19.8	6.86	2.419E+19
	OK03a+OK03b+OK05	42.8315	139.2484	3.0	176	45	27.6	19.8	7.50	
7		42.5827	139.2735	3.0	210	45	20.4	19.8		2.214E+20
		42.4385	139.2762	2.0	171	45	59.6	21.2		
8	OK08	41.8778	139.5284	1.0	21	45	28.1	19.8	6.76	1.728E+19
٩	ОК04+ОК09	41.9701	139.2838	3.0	344	45	50.9	19.8	7 57	2 806F+20
5		41.5377	139.5239	2.0	346	30	60.0	30.0	7.57	2.8001120
10	OS01	42.6690	140.3123	0.0	357	45	25.8	21.2	6.75	1.670E+19
11	OS02	42.8394	140.2416	0.0	173	45	27.8	21.2	6.79	1.941E+19
12	OS04	42.5119	140.3753	0.0	203	45	36.1	21.2	6.94	3.256E+19
13	OS06	42.2669	140.3931	0.0	144	45	23.5	21.2	6.69	1.378E+19
14	OS03+OS05+OS08	42.2005	139.6874	0.0	10	45	55.4	21.2		
		41.8800	139.9628	1.0	328	45	33.2	19.8	7.57	2.830E+20
		41.3870	139.8480	1.0	9	45	50.4	19.8		
15	IK04	43.3769	141.4603	0.0	199	45	20.8	21.2	6.62	1.081E+19
16	RM01	44.0668	141.6297	0.0	358	30	28.8	34.0	7.08	5.317E+19
17	MK02	43.4836	141.5756	0.0	181	45	33.8	21.2	6.91	2.868E+19

表 4 簡便法による強震動予測のための断層パラメータ

図28 強震動予測の検討対象とした北海道周辺の矩形断層モデル(赤:簡便法の検討対象とした断層、青:平成30年度に検討済の断層、黒:その他の断層、実線が断層上端を表す)

図 29 J-SHIS 表層地盤データ V3 に基づく地盤増幅率

図 30 簡便法による地表の震度分布 (RS01a+RS01b+RS01c 断層)

図 31 簡便法による地表の震度分布(RS03a+RS03b+RS03c 断層)

図 32 簡便法による地表の震度分布 (RS08 断層)

図 33 簡便法による地表の震度分布(ST06+ST07+OK01+OK02 断層)

図 34 簡便法による地表の震度分布 (ST08+ST09+OK01+OK02 断層)

図 35 簡便法による地表の震度分布 (ST10 断層)

図 36 簡便法による地表の震度分布 (OK03a+OK03b+OK05 断層)

図 37 簡便法による地表の震度分布 (OK08 断層)

図 38 簡便法による地表の震度分布(OK04+OK09 断層)

図 39 簡便法による地表の震度分布(OS01 断層)

図 40 簡便法による地表の震度分布(OS02 断層)

図 41 簡便法による地表の震度分布(OS04 断層)

図 42 簡便法による地表の震度分布 (OS06 断層)

図 43 簡便法による地表の震度分布 (OS03+OS05+OS08 断層)

図 44 簡便法による地表の震度分布(IK04 断層)

図 45 簡便法による地表の震度分布 (RM01 断層)

図 46 簡便法による地表の震度分布 (MK02 断層)

b) 詳細法による強震動予測のための震源モデルの設定

簡便法による強震動予測結果も踏まえ、サロベツ断層帯の RS01a+RS01b+RS01c 断層 及び渡島半島西岸付近の OS03+OS05+OS08 断層を対象に、統計的グリーン関数法を用い た詳細法による強震動予測を実施した。簡便法と同様に、矩形断層の位置、形状について は、サブサブテーマ 2.5 の成果(本プロジェクト平成 30 年度成果報告書)に従った。サブ サブテーマ 2.5 からは矩形断層モデルが提供されているため、これをもとに、地震調査研 究推進本部の「震源断層を特定した地震の強震動予測手法(レシピ)」²⁵⁾を参考にして、 強震動生成域(アスペリティ)及び背景領域のパラメータ設定を行った。両ケースとも、 地震モーメントが 10×10²⁰ Nm を超えているため、地震モーメントと断層面積の関係はス テージ3の式26)を使用している。それぞれの断層に対して、破壊様式の違いによる強震 動予測結果の違いを把握するため、破壊開始点の異なる 2 ケースのシナリオを想定した。 それらの震源断層破壊シナリオに基づいて統計的グリーン関数法による波形合成を行い、 地表面での最大速度及び震度分布を推定した。2 断層モデルに対して各 2 ケースの破壊シ ナリオを設定したため、詳細法の計算ケース数は4である。表5~6に各断層で設定した パラメータの一覧をまとめた。ここでの震源断層パラメータ設定は、強震動の試算を目的 としているため、サブサブテーマ 2.5 から提供された震源断層の矩形モデルのうち地震基 盤よりも上にある部分(図 47~48 の太実線より浅い部分)については、地震発生層の外 であるとして、特性化震源モデルの背景領域として含めていない。この点は、サブサブテ ーマ 3.1 で行われている津波予測のための震源モデルとは異なる設定となっている。

RS01a+RS01b+RS01c 断層に対しては、北から RS01a 断層に 3 つ、RS01b 断層に 2 つ、 RS01c 断層に 3 つの強震動生成域を配置した。RS01c 断層の最も南に位置する強震動生成 域の下端中央から破壊開始するケース (ケース 1) と、RS01c 断層の最も北に位置する強 震動生成域の下端中央から破壊開始するケース (ケース 2) の 2 つの破壊シナリオを想定 した。図 47 には強震動生成域の配置 (左図) 及び破壊時刻分布 (右図) を示している。

OS03+OS05+OS08 断層に対しては、北から OS03 断層に 3 つ、OS05 断層に 2 つ、OS08 断層に 3 つの強震動生成域を配置した。OS08 断層の最も南に位置する強震動生成域の下端中央から破壊開始するケース (ケース 1) と、OS03 断層の最も北に位置する強震動生成 域の下端中央から破壊開始するケース (ケース 2) の 2 つの破壊シナリオを想定した。図 48 には強震動生成域の配置 (左図) 及び破壊時刻分布 (右図) を示している。

c) 統計的グリーン関数法による予測地震動の計算

地震動計算手法には統計的グリーン関数法を用いた。ω² 則に従うスペクトルモデル (Boore, 1983)²⁷⁾を用いて統計的グリーン関数を作成し、これを要素地震として入倉 (1994)の手法²⁸⁾を用いて波形合成を行った。破壊伝播速度には、乱数による一定のば らつきを与えている。高周波数遮断フィルターの遮断周波数*f*_{max}は地域性を考慮して、 RS01a+RS01b+RS01c 断層では Maeda and Sasatani (2009)²⁹⁾による 5.5 Hz、 OS03+OS05+OS08 断層では鶴来・他 (2017)³⁰⁾による 9.4 Hz を用いた。フィルター形状 は表 5~6 に記載している。統計的グリーン関数法のサブ断層サイズは 1 km×1 km とし た。統計的グリーン関数法の計算出力地点は、J-SHIS の深部地盤モデル V2 のメッシュード毎 に各層境界の深さが与えられており、そのメッシュ間隔は約1km(緯度方向の間隔30秒、 経度方向の間隔45秒)である。計算地点毎に直下の深部地盤構造のパラメータ(P及びS 波速度、密度、Q値)をJ-SHIS深部地盤モデルV2から抽出することにより、水平成層 構造として与えた。地震基盤から深部地盤に入射した地震動の応答は、Haskell matrix法 ³¹⁾により評価し、工学的基盤(ここでは $V_8 = 600 \text{ m/s}$ 層の上面)での予測波形を得た。

次に、J-SHIS 表層地盤データ V3 から求められる AVS30 を用いて、工学的基盤での PGVを藤本・翠川 (2006)による AVS30 と PGV 増幅率の経験式 ²⁰⁾を用いて換算し、地 表の PGV を求めた。最後に、藤本・翠川 (2005)の地表 PGV と計測震度の経験式 ²⁴⁾を 用いて、地表の計測震度 *I*JMAを得た。これらの経験式は、前述の簡便法で記載しているも のと同じである。このとき、J-SHIS 表層地盤データ V3 は世界測地系(日本測地系 2000) の4分の1地域メッシュコード(約 250 m 間隔)に対して与えられているため、以下の手 続きで計算した。まず、J-SHIS 表層地盤データ V3 の4分の1地域メッシュコードに対 応する緯度・経度を旧日本測地系に変換した後、旧日本測地系の4分の1地域メッシュコ ードに変換した。次に、この旧日本測地系4分の1地域メッシュコード左8桁と同じコー ドとなる J-SHIS 深部地盤モデル V2 の第3次メッシュコードに対応する工学的基盤での 予測波形に、表層地盤データによる増幅率を適用し、約 250 m 間隔での予測震度分布を得 た。地図などへの作図に際しては、再度測地系を世界測地系に戻す作業を行った。

RS01a+RS01b+RS01c 断層の地震を想定した強震動予測結果を図 49~52 に示す。各ケースについて、工学的基盤上での最大速度(ケース 1:図 49、ケース 2:図 51)、地表での震度(ケース 1:図 50、ケース 2:図 52)の分布を掲載する。同様に、OS03+0S05+~S08 断層の地震を想定した結果を図 53~56 に示す。

サロベツ断層帯の RS01a+RS01b+RS01c 断層の強震動予測結果では、ケース 1、2 とも にサロベツ原野周辺や幕別平野、稚内などで震度 7 の極めて強い地震動が試算された。逆 断層で、強震動生成域の下端から上方に向かって破壊が伝播するシナリオを想定したため、 厚い堆積層の分布するサロベツ原野では広い範囲に高震度の領域が見られる。

渡島半島西岸付近の OS03+OS05+OS08 断層の強震動予測結果では、ケース 1、2 とも に OS03 断層の直上に位置する瀬棚平野などで震度 7 の極めて強い地震動が試算された。 仮定した震源モデルの強震動生成域が直下にあることに加え、瀬棚平野で地盤増幅率が大 きいことによる。また、渡島半島西岸を中心に震度 6 弱~6 強となっている。函館平野で の地震動はケース 2 (北から南に向かって破壊が伝播するケース)の地震動が大きい結果 となった。

今回の試算では、地盤増幅率と地表 PGV の間に、地盤の非線形効果が経験的に含まれ てはいるものの、非線形応答を時刻歴で再現するような詳細な応答解析は実施していない。 地表で極めて大きな地震動が予測されている地点では、地盤の非線形応答のモデル化によ っても予測地震動が変わり得る。詳細な非線形応答解析には当該地域の詳細な浅部地盤構 造モデルや地盤材料の動的変形特性に関する詳細なパラメータが必要であり、今後の課題 である。なお、断層に近い領域の地震動レベルは、強震動生成域(アスペリティ)の深さ や位置など、仮定する震源断層モデルによっても違いが生じ得ることに留意する必要があ る。

424

(b) RS01a+RS01b+RS01c 断層 ケース 2

図 47 設定した震源モデルの模式図(RS01a+RS01b+RS01c 断層)

表 5 RS01a+RS01b+RS01c	ータ
-----------------------	----

and a star	arth.	投定確					int en	MAND-442 als			
1137-9	82.0	R\$01c		RS	01h	<u>.</u>	R\$01a			5X-8, 6050	
基準直緯度(世界測地系)		44.8577		45.3311			45.6102			半成20半進成業報告書を伝われ本業務で設定	
基準点経度(世界測地系)		141.8426		141.5458		141.4895			市	平成30年進成異報告書をもとに本業務で設定	
基準点保さ		4.0		- 4	0	4.0			km	・半成30年度成果報告書を与とに本業務で設定	
走向角		338		353			340		皮	平成10年度成装饰的普	
維約角		30		30			30		112	平成30年度成果難告書	
すべり角		40		6	5	55			度	平成30年度成果報告書	
断層長さ(走向方向)	L	57		30			63			平成四年度成累量許善	
(全体)断層長さ(走向方向)	L.					0	21122			km	$L = \Sigma L_{c}$
地震発生層上採捉さ	11.		4.0		4.0		4.0			km	平成30年度成果報告書をもとに本業務で設定
地震発生層下純深さ	H ₄	170		17	0	17.0		km	平成加年度成果報告書をもとに本業商で設定		
地震発生層の厚き	. T.		13.0		13.0		130		kin	$T_{i} = M_{i} - M_{i}$	
新建幅(積新方向)	W.		26		26		26			km	平成30年度成果報告書からとに本業務で設定
断限运输	5.		1482		360		1838		km	$S_{ij} = L_{ij} + W_{ij}$	
(全体))新潮市(市	5				2900					ker	8 - 18.
					945	0128773					$K \approx 10^{27}$
(全体)地震モーメント	M_{\pm}				3.90	E+20				Nu	(Minutani et al. 2015)
	1.5.2										(log.,Mr 9.1) / 1.5
(全体)モーメントマグニテュード	M_{w}				7	7					(Hariks and Kanamori, 1979)
(全体)新務全体の平均すべり量					3	8					$D = M_{\pm}/\mu S$
地震モーメント	M_{μ}		1.53E+20		5.85	E+19		1.78E+20		Nm	$M_{m} = i 5_{*}^{11} / \Sigma S_{*}^{12} M_{*}$
剖療全体の静約応力博下量	de		3.1		3	8		3.1		MPa	Figit and Maturbea (2000)
新樹全体の平均すべり量	D,		3.3		2	4		3.4			$D = M_{\phi}/\mu S$
小新層長さ(走向方向)	10				1	0				keri	本筆商文政定
小新磨幅(健鲜方肉)	JIF				. 1	6				km	本策務で設定
アスペリティ叙画語の等価半倍	R.		10.2	7	7	4		10.7		kens	$R_{1} = 4S_{1}/m^{1/2}$
アスペリティの絵画種	8.	326.0		171.6		360.4			km	5. = 0.225	
73499408883838	5	231.0		170.0		344.0			- kennel	A. 2017-210	
and the second state of th			1000							1712	D 200.
アスペリティの平均すべり量	- D.	0.5		4.7		0.0			=	(Somerville et al., 1999; 77/8+(t), 2001)	
アスペリティの影地雷モーメント	Mm		6,75E+19		2.58E+19		7.84E+19			Nm	$M_m = \mu D_s S_s$
アスペリティ 亜積/ 断層 亜積比	8.18		0.22		0.22		0.22				
アスペリティの実効応力	de.	141			14.1		14.1			MPa	20, ~ (5, (5.) 20 (Medicine 1979)
各アスペリティの書号		Asp.c~1	Aip.c-2	Aspend	Amb-1	Asph-2	Aut a-1	Augu-2	Auge-3		
各アスペリティ崇積の等価半径	18.	3.1	5.1	32	8.2	2.8	7.6	5.4	8.4	km	画稿注意100KR50153,1:1:2/R5014,212-F-5
各アスペリティの等価半径の比単	2.	0.50	0.50	0.71	0.85	0.52	0.71	0.50	0.50	-	$\tau_1 = R_{-1}/R_{-1}$
キアスペリティの医精	5.	81.5	81.5	163.0	524.8	40.8	180.2	90.1	90.1	1 mil	X
キアスペリティの連続(計算術)	8-	01.0	210	160.0	121.0	48.0	182.0	#1.0	BLD.	kin	17. × 107.
あてスペリティの平均すべり業	D.	5.4	5.4	7.6	5.3	3.2	6.0	5.7	5.7		D = 0 (25 hD
各アスペリティの地震モーメント	Mar	1.405+19	1.405+19	3.956+19	2.096+19	4.016+10	4.59E+19	1.62E+19	1.625+19	Nm	$M_{\mu\nu} = \mu D_{\mu} S_{\mu\nu}$
あてスペリティの実効広力	đ.,	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	MPa	Ar 1:101.5-1-10.87
あアスペリティの長さ(東京方向)(計算用)	11	0.0	8.0	13.0	110	20	14.0	9.0	9.0	Lon .	1.16 7.07
あアスペリティの(()(()(大力)())()()()()))))	117	80	8.0	13.0	110	20	130	8.0	20	here a	1.20-01
5775UF-0947541	Te	1.8	1.5	22	22	14	22	1.0	1.8		Te + 6 4 8 1 / F
容易領域の影響業モージント	11.		0.005+10		3.29	E+79		9.995+19		No	Mar Mar Mar
常意味の世帯語	5.		1154.0		80	1.4	1273.6			13	S S. S.
10 40 40 10 40 40 40 40 40 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	192	11010				1.00	1264.0			sm.	
		22			17		1294.0			310	D = W / S
特別領域の中にすべり重	20%	21		10		3.5			ND.	DA - Marines	
料发油堆积 2美X56-77	. 41	1991 - C		1.9		2.2			100.9	PL-10-10 - 0 - 0	
各背景信域のライズタイム	r音量値域のライズタイム Ir。 5.3			53		5.3				(Duy, 1982)	
5波速度	1	3.4		3.4		3.4			kmiy	J-SHIS 使回地盤モデルV2	
密度	1	2.75		2.75		2.75			giens?	J-SHIS 従品地型モデルV2	
期性率	A.	31.8		31.8		31.8			GPa	$\mu = c \delta^2$	
1010-00-00-00	21								Include	$k_{\pm}^{*} = 0.72 \beta$	
培销运行 建设。	12.6		2.4		2.4		2.4			sui e	(Gellar, 1976)
破壊様式		與心門破壊			問心れ	間心円破壊 間心円破壊					本業務で設定
高度波数道新フィルター	.J.m.		100000000		5	5				He	Manda and Sasatani (2009)
フィルター形状	1	1./(1+0/5.5) ⁽³) ^{1/2}									Manila and Sasatari (2009)

図 48 設定した震源モデルの模式図(OS03+OS05+OS08 断層)

(b) OS03+OS05+OS08 断層 ケース 2

(a) OS03+OS05+OS08 断層 ケース 1

表 6 OS03+OS05+OS08 断層の震源断層パラメータ

104-2	10145	設定連						101.41	10-12 st at		
	149.17	0508		05	805		0503			43, 41, 70, 70	
基準点經度(世界測地系)	1	41.3854		41.8870			42.1987			平成30年度成果相容者至1,2江本案相で設立	
基準直経度(世界測地系)		129.0648		139.9770			139.7043		15	平成30年代成果用古書主伝とに本業務で設定	
ち駅直準基		2.4		2	4			1.4		平成30年度成果報告書寺信とに本業務で設定	
走用背				32	8		10		Π.	至成20世代成果服作者	
14.81.79		45		45		45		10	平线30年度成果服务者		
すべり角	114		12	13	110			15	平成30年度這常醫告書		
断層長さ(走向方向)	- L+	50		33		35		kmi	平成30年度成果報告書		
(全体)断層長さ(走向方向)	1			138		3.7			km	1 - 21	
地震発生層上端深さ	H_{*}		2.4		2.4		14			km	平成30年度成果用否靠针。它に本面直て設定
地震発生層下端深さ	$-H_{4}$	151		15	.1.		14.9		kim .	平成10年度近東報告書きもとに本面預で設定	
地震発生層の厚き	1,	12.7		12.7		13.9		km	$T_{+} = H_{+} - H_{+}$		
新贈幅(精料方向)			18		10			19		km	主要的心理就能推荐某些行行生来和优立政定
新層重積	5,		900		594 1045			km	$S_j = L_j = W_j$		
(全体)断层面精	5				25	39				km'	$S = \Sigma S_{\rho}$
(全体)地震モーメント	M_{\pm}		2.54E+20							Nat	S=10 ¹⁷ (Marotani et al., 2015)
(全体)モーメントマグニチュード	М.,				ý.	5					$(\log_{10}M_{\pm} - 9.1) / 1.5$
(全体)新歴全体の平均すべり量					3.1						$D = M_{\pi^{-}} \mu S$
地震モーメント	Ma		3.11E+19		4.88	E+15		1.14E+20		Nitt	$M_{\infty} = (S_1^{-11} + \Sigma S_1^{-12})M_{\infty}$
断層全体の静的応力降下量	1.30		21		3	1		3.1		MPa	Fugs and Matsu'ura (2000)
新羅全体の平均すべり量	D_{i}		3.2		2	6		3.4		-	$D \simeq M_{\oplus}/\rho S$
小断層長さ(走向方向)	dl.				1	0				km	本業務で設定
小断磨幅(螺斜方向)	10				1.	0				km	本業核で自定
アスペリティ経営権の等価半様	Rec		7.8		6	4		8.6		km	$R_{n} = (N_{n}/\pi)^{1/2}$
アスペリティの総面積	5.	198.0		130.7		229.9			km ²	$S_{\pm} = 0.22S_{\pm}$	
アスペリティの転当稿(計算用)	51	198.0		136.0		233.0			km ²	半果務で設定	
アスペリティの平均すべり量 D。 8.4			5	2	8.9				D ₄ =2.0D ₁ (Semerville et al., 1999, 后用•他, 2001)		
アスペリティの影地賞モーメント	Min		4.01E+18		2,15E+19		5.01E+19			Nu	$M_m = \mu D_s N_s$
アスペリティ医精/新層面積比	5,15		0.22		0.22		0.22				
アスペリティの実効応力	$\Delta \sigma_{e}$		94.1		14.1		14.1			MPs.	$\Delta \sigma_n \simeq (3, -3, -2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3$
各アスペリティの番号	-	Austri	Alp.8-2	Asp.8-3	Alp.5-1	Ate 5-2	Asp.3-1	Aug.2-2	Asp.3-3		
各アスペリティ素積の等価半種	R_{w}	4.0	4.0	5.6	3.4	5.5	6.0	43	43	-km	画稿比を16.6005865,1:1:200580,05060とする
各アスペリティの等価半径の比率	20	0.50	0.50	0.71	0.52	0.85	0.71	0.50	0.50	110.00	$T_{1} = H_{W} + H_{0}$
春アスペリティの困機	Se.	49.5	49.5	99.0	35.6	\$5.0	115.0	57.5	57.5	km	$S_{ss} = sR_{ss}^{-1}$
各アスペリティの当時(計算用)	84	40.0	49.0	100.0	36.0	100.0	121.0	58.0	56.0	km ²	$L_A^* \circ W_A$
各アスペリティの平均すべり量	D _a	53	5.3	7.5	3.5	5.8	#0	\$.7	5.7	10	$D_{\pi} = (\gamma_i / \Sigma \gamma_i) D_{\pi}$
各アスペリティの地震モーメント	Mag	8.30E+18	8.30E+18	2.35E+19	4.01E+18	1.75E+18	2.94E+19	1.04E+19	1.04E+19	Nm	$M_{0w} = \mu D_w X_w$
各アスペリティの実効応力	0.	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	MPa	、Ampに挙したと転進
各アスペリティの長さ(北向方向)(計算用)	16.	3.0	10.0	100	8.0	10.0	13.0	8.0	8.0	in)	本業務で設定
各アスペリティの幅(橋斜方南)(計算用)	187.	7.0	7.0	189	8.0	10.0	11.0	7.0	7.0	kiri	本影響で設立
各アスペリティのライズタイム	Tr.	1.4	1.4	2.0	12	2.0	2.2	1.4	1.4	1.1	Tr0.5W ./ V.
背意領域の総地震モーメント	Mai		5.10E+19		2.74	E+19		0.38E+10		Nit	$M_{th} = M_{th} = M_{th}$
背景領域の秘密積	5.		702.0		45	3.3		835.1		km	$N_{0} = N - N_{0}$
「青葉植城の絵画橋(計算用)	:54	102.0		458.0		\$12.0			km'	本面积空就定	
育業領域の平均すべり量 D		23			1.9		2.5			-	$D_b = M_{ch} / \mu S_b$
背景価値の実効応力	4.		2.4		2.4		2.4			MPii	$\sigma_{\lambda} = (D_{\lambda} / W) + (\pi^{++} / D_{\lambda}) + \sigma = \Sigma y^{+} = \sigma_{\lambda}$
各背景領域のライズタイム			2.7		3.7		3.9				(Day, 1982)
S波達度	1		3.4		- 3	4	3.4			km/s	3-8105 深部地盤モデル42
密度	10	2.75		2.75		2.75			p'ent'	J-SHIS 洋卸地増モデルV2	
用性学	. P	31.8		31.0		31.8			GPs.	$\mu = \mu d^2$	
秘璃伝播速度	V_1		2.4		2.4		2.4			km's	$F_{-}^{*} = 0.723$
被爆模式			展心内破壊			周心円破壊 回心円破壊					本業務で設定
高能波数温新フィルター	1					94				10	第4年-第1(2017)
フィルター形状					1/(1+0/1	1/(1+0/0.4)(10)(1)					請未+他 (2017)

図49 統計的グリーン関数法による工学的基盤上でのPGV分布 (RS01a+RS01b+RS01c断層ケース1、★:破壊開始点)

図50 統計的グリーン関数法による地表での震度分布 (RS01a+RS01b+RS01c断層ケース1、★:破壊開始点)

 図 51 統計的グリーン関数法による工学的基盤上での PGV 分布 (RS01a+RS01b+RS01c 断層ケース 2、★:破壊開始点)

図52 統計的グリーン関数法による地表での震度分布 (RS01a+RS01b+RS01c断層ケース2、★:破壊開始点)

図53 統計的グリーン関数法による工学的基盤上でのPGV分布 (OS03+OS05+OS08断層ケース1、★:破壊開始点)

図54 統計的グリーン関数法による地表での震度分布 (OS03+OS05+OS08断層ケース1、★:破壊開始点)

図55 統計的グリーン関数法による工学的基盤上でのPGV分布 (OS03+OS05+OS08断層ケース2、★:破壊開始点)

図56 統計的グリーン関数法による地表での震度分布 (OS03+OS05+OS08断層ケース2、★:破壊開始点)
(c) 結論ならびに今後の課題

平成 30 年度に引き続き、東北地方日本海沿岸の堆積平野のうち、地震基盤までの堆積 層のS波速度構造情報が不足している津軽平野を現地調査対象領域として設定し、新規の 微動アレイ調査を2地点で実施した。微動アレイ観測により得られた上下動微動波形記録 に SPAC 法を適用して位相速度を求め、Rayleigh 波基本モードの分散曲線をフィッティ ングすることによりS波速度構造を推定した。また、堆積平野の基盤形状の空間変化に関 する情報を取得するため、津軽平野全域の計 60 地点で単点微動観測を実施した。これに より、深部地盤モデル更新に必要となる情報を取得することができた。また、津軽平野を 含む青森県の震度情報ネットワークシステムの地震波形記録を収集した。サブサブテーマ 2.3 が渡島半島で実施した反射法地震探査の結果を取り込み、函館平野の深部地盤構造モ デルを改良し、理論重力異常及び地震動シミュレーションによる検証を行った。最終年度 である次年度は、これまでの本プロジェクトの調査結果をもとに日本海沿岸の主要な堆積 平野の深部地盤構造モデルの改良を進め、成果を取りまとめる必要がある。

サブサブテーマ 2.5 で作成された北海道日本海沿岸の震源断層の矩形モデルに基づいて、 特性化震源モデルを作成し、簡便法及び詳細法による強震動予測を実施し、当該断層が活 動した場合の予測震度分布の情報を得た。次年度も、サブサブテーマ 2.5 で新たに構築・ 改良される震源断層モデルに基づいて、特性化震源モデルによる強震動の試算を継続し、 試算結果をプロジェクトに還元する。

- (d) 引用文献
- (1) 箕浦幸治,小菅正裕,柴 正敏,根本直樹,山口義伸:青森県の地質,青森県商工観光 労働部鉱政保安課,207p.,1998.
- 2) 地震調査研究推進本部地震調査委員会:津軽山地西縁断層帯の長期評価について,18p., 2004.
- 3)藤原広行,河合伸一,青井 真,森川信之,先名重樹,東 宏樹,大井昌弘,はお憲生, 長谷川信介,前田宜浩,岩城麻子,若松加寿江,井元政二郎,奥村俊彦,松山尚典,成 田 章:東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防災科学技 術研究所研究資料, No.379, 2012.
- Aki, K.: Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., Univ. Tokyo, Vol.35, No.3, pp.415-456, 1957.
- Yamanaka, H. and H. Ishida: Application of genetic algorithms to an inversion of surface-wave dispersion data, Bull. Seismol. Soc. Am., Vol.86, No.2, pp.436-444, 1996.
- 6) 独立行政法人産業技術総合研究所地質調査総合センター・編:日本重力データベース DVD 版,数値地質図 P-2, 2013.
- 7) 石油公団:昭和55年度 国内石油・天然ガス基礎調査 基礎物理探査「渡島半島地域」 調査報告書, 10p., 1981.
- 8) 文部科学省研究開発局・国立大学法人東京大学地震研究所:日本海地震・津波調査プロジェクト平成 30 年度成果報告書, 2019.

- 9) 文部科学省研究開発局・国立大学法人東京大学地震研究所:日本海地震・津波調査プロジェクト平成 29 年度成果報告書, 2018.
- 10) Wessel, P. and W.H.F. Smith: New, improved version of generic mapping tools released, Eos, Transactions American Geophysical Union, 79, 47, pp.579–579, 1998.
- 11) 国立研究開発法人産業技術総合研究所地質調査総合センター:20万分の1日本シーム レス地質図 V2,,2018.
- 12) Plouf, D.: Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections, Geophysics, Vol. 41, pp.727-741, 1976.
- 13) 駒澤正夫,太田陽一,渋谷昭栄,熊井基,村上 稔:大阪湾の海底重力調査とその構造, 物理探査, Vol.49, No.6, pp.459–473, 1996.
- 14) Asano, K., H. Sekiguchi, T. Iwata, M. Yoshimi, T. Hayashida, H. Saomoto, and H. Horikawa: Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake, Geophys. J. Int., Vol.204, No.3, pp.1678-1694, 2016.
- Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seismol. Soc. Am., Vol.86, No.4, pp.1091– 1106, 1996.
- 16) Meza-Fajardo, K.C., and A.S. Papageorgiou: A nonconvolutional, splitfield, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis, Bull. Seismol. Soc. Am., Vol.98, No.4, pp.1811–1836, 2008.
- 17) Zeng, C., J. Zia, R.D. Miller, and G.P. Tsoflias: Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves, Geophysics, Vol.76, No.3, pp.T43-T52, 2011.
- 18)入倉孝次郎, 三宅弘恵:シナリオ地震の強震動予測, 地学雑誌, Vol.110, No.6, pp.849-875, 2001.
- 19) 司 宏俊, 翠川三郎:断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会構造系論文集, No.523, pp.63-70, 1999.
- 20) 藤本一雄, 翠川三郎: 近接観測点ペアの強震記録に基づく地盤増幅度と地盤の平均 S 波速度の関係, 日本地震工学会論文集, Vol.6, No.1, pp.11-22, 2006.
- 21) 若松加寿江, 松岡昌志: 全国統一基準による地形・地盤分類 250 m メッシュマップの 構築とその利用, 日本地震工学会誌, No.18, pp.35-38, 2013.
- 22) Wakamatsu, K. and M. Matsuoka: Nationwide 7.5-Arc-Second Japan Engineering Geomorphologic Classification Map and Vs30 Zoning, J. Disas. Res., Vol.8, No.5, pp.904-911, 2013.
- 23) 松岡昌志, 若松加寿江: 地形・地盤分類 250 m メッシュマップ全国版に基づく地盤の ゆれやすさデータ, 独立行政法人産業技術総合研究所, 知的財産管理番号 H20PRO-936, 2008.
- 24) 藤本一雄, 翠川三郎:近年の強震記録に基づく地震動強さ指標による計測震度推定法, 地域安全学会論文集, No.7, pp.241-246, 2005.
- 25) 地震調査研究推進本部地震調査委員会:震源断層を特定した地震の強震動予測手法

(「レシピ」),全国地震動予測地図 2016 年版報告書別冊,46p.,2016.

- 26) Murotani, S., S. Matsushima, T. Azuma, K. Irikura, and S. Kitagawa: Scaling relations of source parameters of earthquakes occurring on inland crustal megafault systems, Pure Appl. Geophys., Vol.172, No.5, pp.1371-1381, 2015.
- 27) Boore, D.M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am., Vol.73, No.6A, pp.1865-1894, 1983.
- 28) 入倉孝次郎:震源のモデル化と強震動予測, 地震第 2 輯, Vol.46, No.4, pp.495-512, 1994.
- 29) Maeda, T. and Sasatani, T.: Strong ground motions from an M_j 6.1 inland crustal earthquake in Hokkaido, Japan: the 2004 Rumoi earthquake, Earth Planets Space, Vol. 61, No.6, pp.689–701, 2009.
- 30) 鶴来雅人,田中礼司,香川敬生,入倉孝次郎:強震動予測のための高域遮断フィルター に関する研究(その3) —国内で発生した地殻内地震の観測記録に基づく検討—,日本 地震工学会論文集, Vol.17, No.5, pp.109–132, 2017.
- Haskell, N.A.: The dispersion of surface waves on multilayered media, Bull. Seismol. Soc. Am., Vol.43, No.1, pp.17-34, 1953.

(e) 成果の論文発表・口頭発表等

著者	題名	発表先	発表年月日
浅野公之,	微動及び地震動記録を用いた	日本地震学会 2019 年秋季	令和元年9
岩田知孝,	津軽平野の堆積平野速度構造	大会(京都市)	月 17 日
吉田邦一,	の推定(口頭発表)		
宮腰 研,			
大堀道広			

(f) 特許出願、ソフトウエア開発、仕様・標準等の策定

1) 特許出願

なし

2) ソフトウエア開発

なし

3) 仕様・標準等の策定

なし

(3) 令和2年度業務計画案

令和元年度までの調査成果に基づき、日本海沿岸域の主要な平野での強震動予測のための地下速度構造モデルを改訂する。サブテーマ 2.5 で構築された海域及び陸域の震源断層

モデルに基づいて、特性化震源モデル等の作成及び強震動予測を行い、地震動分布の特徴等をとりまとめる。