Boundary Condition Identification based on 3D photoelasticity

> Kenji OGUNI Lalith WIJERATHNE Muneo HORI

Earthquake Research Institute The University of Tokyo

Final Goal

Governing mechanism of unstable crack growth in a bulk body under compression

(For numerical simulation of earthquake fault behavior)

Current Target

Identification of state of stress in an elastically deformed body using 3D photoelasticity

Identification of residual stress

Difficulty in 3D Photoelasticity

Nonlinear Inverse Problem:

Nonlinearity Load incremental approach

Measurement ——

Equations with relative phase

Robustness -

Equilibrium conditions

Problem Setting

Governing Equation:

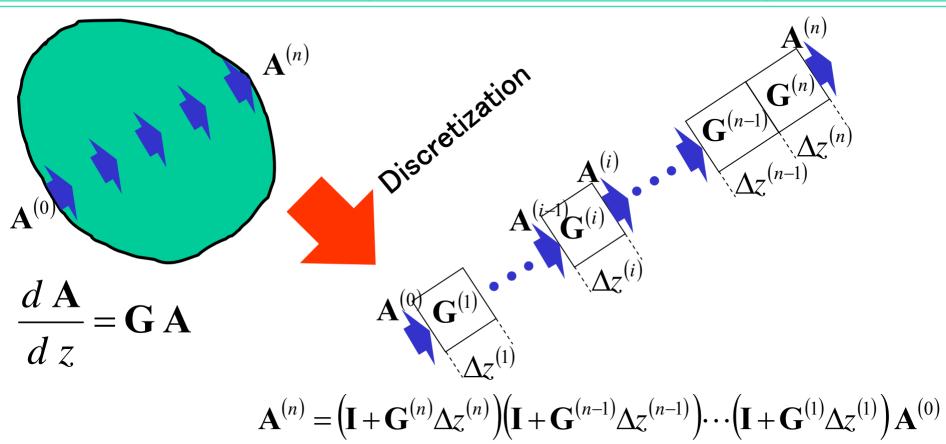
 $\frac{d \mathbf{A}}{d z} = \mathbf{G} \mathbf{A} \quad (\mathbf{A}: \text{Light vector traveling in z-direction})$

 $\mathbf{A} = \begin{pmatrix} k_x e^{i\delta_x} \\ k_y e^{i\delta_y} \end{pmatrix} \qquad \begin{array}{c} k_x \, , \, k_y \text{ :amplitudes of light vector} \\ \delta_x \, , \, \delta_y \text{ :phases of light vector} \end{array}$

 $\mathbf{G}(z) = iC_0 \begin{pmatrix} \sigma_{xx} - \sigma_{yy} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} - \sigma_{xx} \end{pmatrix}$

Problem: Identify the stress field σ using observed light vector A (where A contains the integrated effect of the stress field along the light ray)

Nonlinearity in 3D Photoelasticity



Output light is expressed as the non-commutable multiplicative form of the unknown matrices

Nonlinear Inverse Problem

What has been done to avoid nonlinearity?

$$\mathbf{A}^{(n)} = \left(\mathbf{I} + \mathbf{G}^{(n)} \Delta z^{(n)}\right) \left(\mathbf{I} + \mathbf{G}^{(n-1)} \Delta z^{(n-1)}\right) \cdots \left(\mathbf{I} + \mathbf{G}^{(1)} \Delta z^{(1)}\right) \mathbf{A}^{(0)}$$

Frozen Stress or Scattered Light Mechanical or Optical slice $A^{in} \frown G^{(i)} \bullet A^{out}$

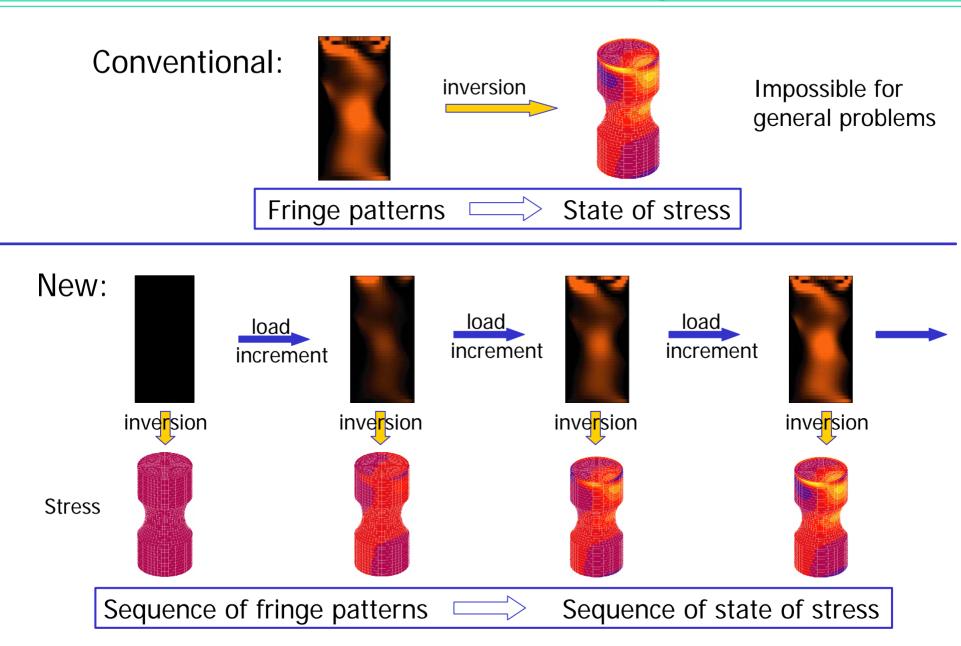
Integrated Photoelasticity

$$\mathbf{A}^{(n)} = \left[\mathbf{I} + \sum_{i=1}^{n} \mathbf{G}^{(i)} \Delta z^{(i)}\right] \mathbf{A}^{(0)}$$

Limitation in size, material, state of stress

Linearization of the Governing Equation $\mathbf{A}^{(n)} = \left(\mathbf{I} + \mathbf{G}^{(n)} \Delta z^{(n)}\right) \left(\mathbf{I} + \mathbf{G}^{(n-1)} \Delta z^{(n-1)}\right) \cdots \left(\mathbf{I} + \mathbf{G}^{(1)} \Delta z^{(1)}\right) \mathbf{A}^{(0)}$ Linearization w.r.t. infinitesimal stress increment $\dot{\mathbf{A}}^{(n)} = \left(\dot{\mathbf{G}}^{(n)} \Delta z^{(n)} \left(\mathbf{I} + \mathbf{G}^{(n-1)} \Delta z^{(n-1)} \right) \cdots \left(\mathbf{I} + \mathbf{G}^{(1)} \Delta z^{(1)} \right)$: Unknown + $(\mathbf{I} + \mathbf{G}^{(n)} \Delta z^{(n)}) \dot{\mathbf{G}}^{(n-1)} \Delta z^{(n)} \cdots (\mathbf{I} + \mathbf{G}^{(1)} \Delta z^{(1)})$ +:Known + $(\mathbf{I} + \mathbf{G}^{(n)} \Delta z^{(n)}) \cdots \dot{\mathbf{G}}^{(2)} \Delta z^{(2)} (\mathbf{I} + \mathbf{G}^{(1)} \Delta z^{(1)})$ + $(\mathbf{I} + \mathbf{G}^{(n)} \Delta z^{(n)}) \cdots (\mathbf{I} + \mathbf{G}^{(2)} \Delta z^{(2)}) \dot{\mathbf{G}}^{(1)} \Delta z^{(1)}] \dot{\mathbf{A}}^{(0)}$ $\dot{\mathbf{A}}^{(n)} = \mathbf{X}^{(n)} \dot{\mathbf{\sigma}}^{(n)} + \mathbf{X}^{(n-1)} \dot{\mathbf{\sigma}}^{(n-1)} + \dots + \mathbf{X}^{(2)} \dot{\mathbf{\sigma}}^{(2)} + \mathbf{X}^{(1)} \dot{\mathbf{\sigma}}^{(1)}$

Linearization of the Governing Equation



Equation with Relative Phase Difference

$$\frac{d \mathbf{A}}{d z} = \mathbf{G} \mathbf{A} \qquad \mathbf{A} = \begin{pmatrix} k_x e^{i\delta_x} \\ k_y e^{i\delta_y} \end{pmatrix}$$

Needs: measurement of absolute phase shift

$$\begin{bmatrix} k_x k_y \cos \delta \end{bmatrix}_{z_0}^{z_n} = C_0 \int_{z_0}^{z_n} (\sigma_{xx} - \sigma_{yy}) k_x k_y \sin \delta \, dz$$
$$\begin{bmatrix} k_y^2 - k_x^2 \end{bmatrix}_{z_0}^{z_n} = 4C_0 \int_{z_0}^{z_n} \sigma_{xy} \, k_x k_y \sin \delta \, dz$$

Complicated but free from measurement of absolute phase shift

Sensitivity to Measurement Noise

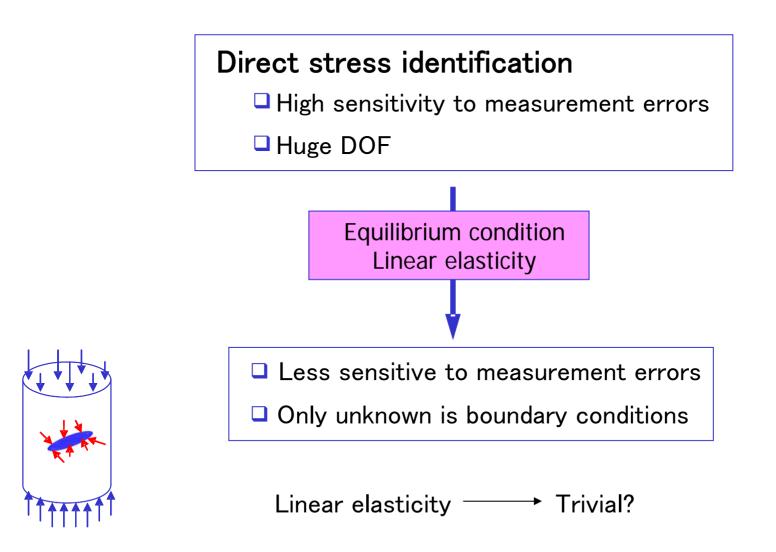
Error in measurements (%)	Global error (%)	Max. error in components (%)
0.1	0.002	21.3
0.5	0.058	106.7
1.0	0.247	233.3

$$\varepsilon_{\text{global}} = \frac{\sum \left(\sigma_{\text{predict}} - \sigma_{\text{correct}}\right)^{2}}{\sum \left(\sigma_{\text{correct}}\right)^{2}} \qquad \varepsilon_{\text{max}} = \frac{Max.\left(\sigma_{\text{predict}} - \sigma_{\text{correct}}\right)}{\sigma_{\text{correct}}}$$

Identification of stress distribution near the crack tip

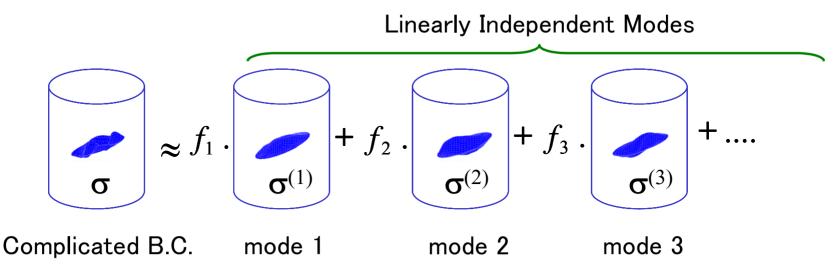
Need: robustness in local sense

Introduction of Equilibrium Condition



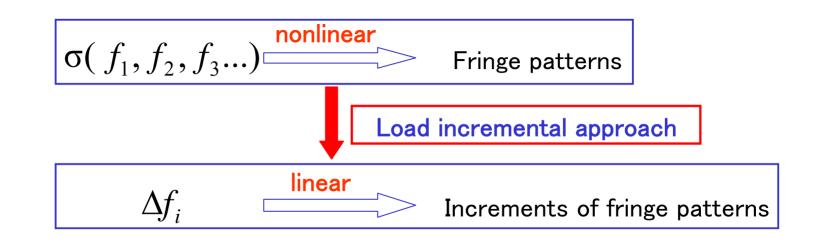
3D photoelasticity — Identification of Boundary Conditions

Identification of Boundary Conditions

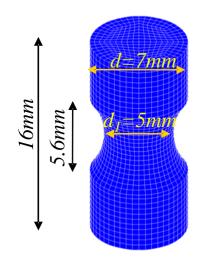


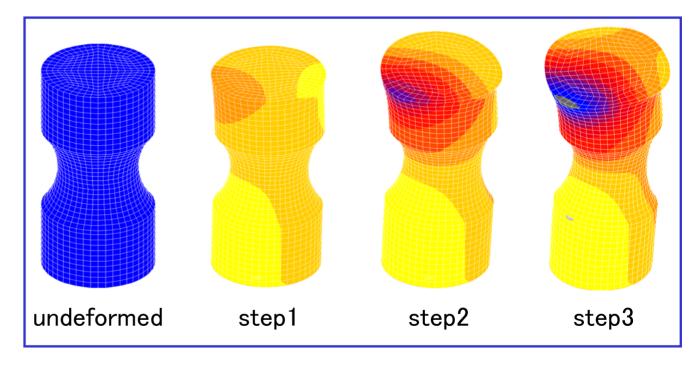
Material : linearly elastic

B.C. : linear combination of independent set of modes



Example Problem (problem setting)





Material : Plexiglas

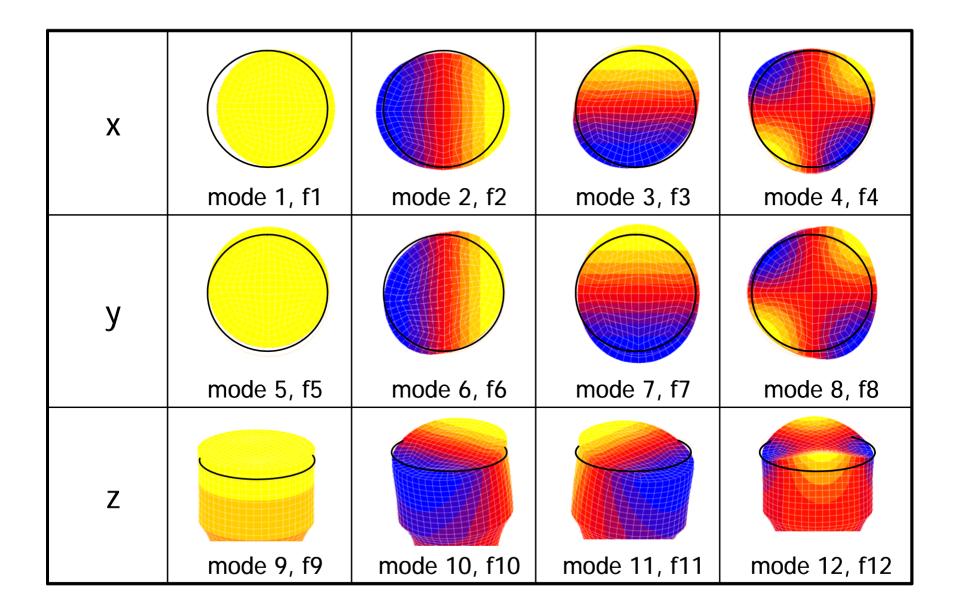
Boundary Conditions

Bottom face: fixed

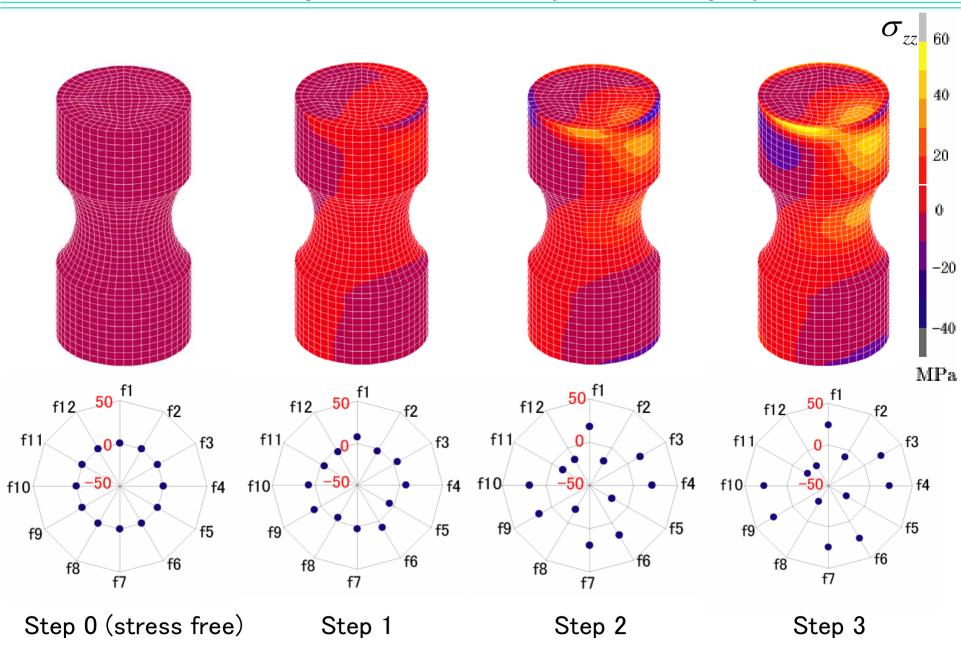
Top face: arbitrary combination of 4 modes in x, y and z directions (12unknowns)

Objective: identify boundary conditions based on output fringe patterns

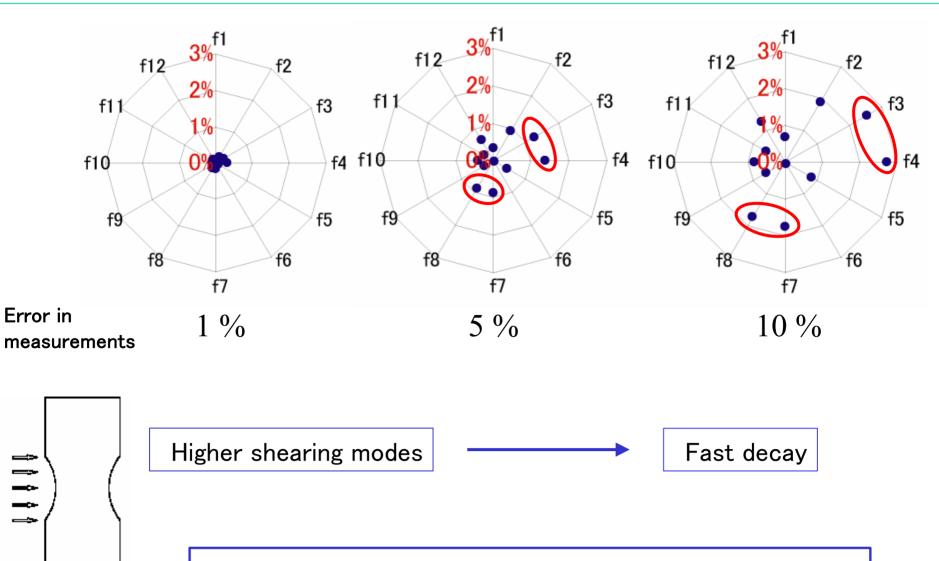
Displacement Modes



Example Problem (load steps)



Sensitivity to Measurement Noise (mode amplitudes)



Fast decaying modes are sensitive to measurement errors

Sensitivity to Measurement Noise

(stress components)

Error in measurements (%)	Global error (%)	Max. error in components (%)
1	0.0003	0.124
5	0.0059	1.003
10	0.0237	2.004

$$\varepsilon_{\text{global}} = \frac{\sum \left(\sigma_{\text{predict}} - \sigma_{\text{correct}}\right)^{2}}{\sum \left(\sigma_{\text{correct}}\right)^{2}} \qquad \varepsilon_{\text{max}} = \frac{Max.\left(\sigma_{\text{predict}} - \sigma_{\text{correct}}\right)}{\sigma_{\text{correct}}}$$

Equilibrium condition

Robustness in prediction of local stress component

Summary

Unstable crack growth in bulk body under compression

Identification of state of stress in an elastically deformed body using 3D photoelasticity

Incremental approach for 3D photoelasticity

fringe pattern <u>nonlinear</u> stress fringe pattern increment <u>linear</u> stress increment

Inverse analysis method applicable to experiment

Governing equation with relative phase difference

- Direct stress identification
 - Highly sensitive to noise in measurements (stress increments are free to change)
 - Large number of DOF involved
- Boundary condition identification
 - Less sensitive to error in measurements (equilibrium condition)
 - Less number of DOF (equilibrium condition + linear elasticity)