Problems in Solid Mechanics A Symposium in Honor of H.D. Bui Symi, Greece, July 23-28, 2006

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA

M. HORI (Earthquake Research Institute, University of Tokyo)

Contents

- 1. Stress inversion method: find equilibrating stress using measured strain and partial information on stress-strain relation
- 2. Elasticity inversion method: find local elasticity using densely measured displacement

GPS NETWORK AND ITS DATA

NEED FOR LOCAL STRESS PREDICTION

Earthquake Prediction

IS STRESS INVERSION POSSIBLE?

2D State Possible?

STRESS INVERSION

EXTENSION TO OTHER DEFORMATION STATE

Dynamic State

$$\begin{cases} \sigma_{11,1} + \sigma_{12,2} = \rho \ddot{u}_{1} \\ \sigma_{12,1} + \sigma_{22,2} = \rho \ddot{u}_{2} \\ \sigma_{11} + \sigma_{22} = f(\epsilon) \end{cases}$$

Finite Deformation State:

$$\begin{cases} \sum_{j,k} (\partial X_k / \partial x_j) \sigma_{1j,k} = 0 \\ \sum_{j,k} (\partial X_k / \partial x_j) \sigma_{2j,k} = 0 \\ \sigma_{11} + \sigma_{22} = f(\epsilon) \end{cases} \quad (\sigma_{ij} = \sigma_{ij}(X), \ x_i = x_i(X)) \end{cases}$$

NUMERICAL SIMULATION

Conditions

- elasto-plastic material with unknown yield function
- prediction of stress and stress-strain relation

RESULTS OF INVERSION

MODEL EXPERIMENT

Experiment Apparatus

OVERALL STRESS-STRAIN RELATION

LOCAL STRESS-STRAIN RELATIONS

RESULTS OF INVERSION

max. shear stress (kPa)

common elasto-plastic relations?

APPLICATION TO GPS ARRYA DATA

verification of numerical analysis method

- check numerical stability of solving boundary value problem
- check dependency of parameters

application of stress inversion method

- geophysical interpretation of analysis results
- critical examination of assumption of plane state

development of crust deformation monitor

- automatic processing of GPS array data

CONVERGENCE

 Δ : resolution of strain distribution (degree)

EFFECT OF REFERENCE

d) v=0.4 (t)

COMPARISON OF STRESS WITH STRAIN

REGIONAL CONSTITUTIVE RELATIONS

regional stiffness $(\tau, \gamma: \max. \text{ shear stress and strain})$

regional anisotropy (φ, γ: principle stress and strain)

regional heterogeneity and anisotropy

1st invariant

2nd invariant

98/12/04

CHANGE IN REGIONAL STATE

REGIONAL STRESS AND STRAIN

GPS DATA DURING 1998-1999

GPS Data

- no spatial filtering to get rid of measurement noise
- linear interpolation between two GPS station

More Sophisticated Treatment of BVP

- FEM with triangle element
- weak form
- regionally averaged field quantities

APPLICATION TO GPS NETWORK DATA

GPS NETWORK AND ITS DATA

REGIONAL STRAIN RATE

REGIONAL STRESS RATE

COMPARISON WITH SEISMIC EVENTS?

REGIONAL CONSTITUTIVE RELATIONS

find $\kappa(\mathbf{x})$ s.t. $\dot{\tau}(\mathbf{x};\kappa) = \kappa(\mathbf{x})\dot{\gamma}(\mathbf{x})$

- $\dot{\tau},\dot{\gamma}$ maximum shear
- κ regional stiffness

 κ is originally used to relate σ & ϵ through $\sigma = \kappa \ \epsilon.$

not too far from known geological structure

DRAWBACKS OF STRESS INVERSION

Need to Know One Constitutive Relation

- bulk stress and bulk strain
- isotropy assumption
- Need to Know Boundary Traction/Resultant Force
 - assumption of uniform stress
 - fast decrease of non-uniform boundary traction

Difficulty in Understanding Plane-Stress-State Model

another analysis method needed?

DRAWBACKS OF ELASTICITY INVERSION

Sensitive to Displacement Error

- need to make fine discretization of target body
- need to have some strong modes of deformation

Why is it so?

- no mistakes in mathematics
- poor understanding of physics

PHYSICAL PROCESS AND MEASUREMENT

ESTIMATION AND INVERSION

BLOCK IN CONTINUUM

IDENTIFICATION OF DISPLACEMENT MODE

material sample test

apply several BC's, and measure displacement at nodes of a hexagonal block.

- 1. identify displacement modes (a characteristic set of nodal displacement)
- 2. identify local elasticity

IDENTIFICATION OF DISPLACEMENT MODE

displacement mode elastic parameters 1 C1111 2 1 C1122 3 C1112 1 0.05 C2222 12 2 5 C2212 • block 2 constraint 6 C1212 6 2 0.00 11 g² 3 g^1 -0.15 -0.05 10 4 block 3 9 block 1 5 3 0.00 unconstraint R 6 7 0.15

4

ELASTICITY INVERSION METHOD

DETERMINATION OF DISPLACEMENT COEFFICIENT

1. Taylor Expansion: $\{a_{ip}\}$

$$u_{i}(\mathbf{x}) = \sum_{p=1}^{P} a_{ip} f_{p}(\mathbf{x}) \qquad \{a_{ip}\} = \{u_{i}, u_{i,1}, u_{i,2}, \frac{1}{2}u_{i,2}, u_{i,11}, \frac{1}{2}u_{i,12}, u_{i,22}, \cdots\}$$
$$\{f_{p}\} = \{1, x_{1}, x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, \cdots\}$$

2. Displacement Data: $\{\overline{u}_i^n\}$

$$\overline{u}_i^n = \sum_{p=1}^p f_{pn} a_{ip}$$

3. Solution of Matrix Equation $f_{pn} = f_p(\mathbf{x}^n)$

$$a_{ip} = \sum_{\alpha=1}^{A} \frac{1}{\lambda^{\alpha}} \left(\sum_{n} u_{i}^{n} \phi_{n}^{\alpha} \right) \psi_{p}^{\alpha} + \sum_{\beta=1}^{P-A} b_{i}^{\beta} \psi_{p}^{\beta}$$

fully determined undetermined

 $\left\{\lambda^{\alpha}, \phi_{n}^{\alpha}, \psi_{p}^{\alpha}\right\}$: SVD of f_{pn}

ESTIMATION OF POISSON RATIO V

- 1. Elasticity Tensor Expressed in Terms of Poisson Ratio $c_{ijkl} = c_{ijkl}^{0} + vc_{ijkl}^{1}$
- 2. Equation of Equilibrium and Its Taylor Expansion

$$\mathbf{b}_{i}(\mathbf{x}) = (\mathbf{c}_{ijkl}\mathbf{u}_{k,l}(\mathbf{x}))_{,j} = \sum_{p} \mathbf{b}_{ip}\mathbf{f}_{p}(\mathbf{x}) = 0$$

3. Coefficient of Expansion: $b_{ip}=0$ for 0th Order (p=1)

$$\begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = \left(\begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & 1 & 0 \\ 0 & 1 & \frac{1}{2} & 0 & 0 & 2 \end{bmatrix} + \nu \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} & -1 & 0 \\ 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} \right) \begin{bmatrix} a_{14} \\ a_{24} \\ \vdots \\ a_{26} \end{bmatrix}$$

linear equation of v is derived

NUMERICAL SIMULATION (1)

measurement200expansion of displacement3rd orderexpansion of equilibrium0th or 1st order

NUMERICAL SIMULATION (2)

1. Measurement Error: $\{e_i^n\}$

$$\overline{u}_i^n = \sum_{p=1}^P f_{pn} a_{ip} + e_i^n$$

2. Find ν such that

minimize $|e|^2 = \sum (e_i^n)^2$ subjected to $b_{ip}(v) = 0$

measurement200expansion of displacement3rd orderexpansion of equilibrium0th or 1st order

APPLICATION OF LOCAL GPS DATA

Velocity field pre-WTE Pre-Tottori Earthquake 25 34 5 3cm/vea Velocity field Post-Tottori Earthquake

2000 Western Tottori Earthquake (M_{JMA} =7.3) examine change in deformation and elasticity before and after this earthquake

- 53 GPS observation points
- 82 triangular elements
- GPS data obtained from 1997 to 2002
- annual and biannual sinusoidal variations excluded

STRAIN RATE

STRESS RATE

PRINICPLE AXIS

POISSON RATIO

CONCLUDING REMARKS

Two inverse analysis methods

- stress inversion find Airy's stress function by solving Poisson's equation
- elasticity inversion find elastic parameters by estimating displacement expansion coefficients
- Development of new inversion is needed for geophysics where experiments cannot be made.

Application

- small material samples used for bio-mechanics
- geomaterials
- new image analysis with higher spatial resolution