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CyberShake Goals

 Improve long-term seismic hazard analysis by replacing
empirical ground motion prediction equations (GMPEs)
with physics-based simulations

— Account properly for rupture directivity and basin effects

— Predict full time-histories of ground motion rather than
simple intensity measures

 Extend seismic hazard analysis to account for space-time
variations in earthquake probability

— Provide a computational platform for “operational
earthquake forecasting”



Long-Term Seismic Hazard Modeling

Participation Probabilities

SCEC-USGS-CGS Working
Group on California Earthquake
Probabilities (2007)

Uniform California
Earthquake Rupture
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Probabilistic Seismic Hazard Analysis



Hazard Curve

P(IM,) = Probability of
Exceedance in 50 years

P(M,)

IM, = PGA (%g) in downtown LA

IM, = PGA (g)

Intensity
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Probabilistic Seismic Hazard Analysis
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Hazard Map

PGA (%g) with 2% Probability of
Exceedance in 50 years

Earthquake Rupture Attenuation Intensity
Forecast Relationship Measure
P(Sn) P(IMk | Sn) P(IMk)

Probabilistic Seismic Hazard Analysis
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Probabilistic Seismic Hazard Analysis



SCEC Community
Velocity Model
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Phenomena poorly represented by empirical GMPEs:

. Source directivity

. Amplification of ground motions in sedimentary basins

. Small-scale variations caused by rupture-process complexity and 3D geologic structure
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Long-Term Seismic Hazard Modeling

Bakersfield

Santa Barbara

Oxnard

Velocity magnitude

|
0.1 1 2 mj/s

Earthquake Rupture
Forecast

M7.75 Elsinore Scenario

Barstow

Lancaster
0

Victorville

_ My house

i () San Bernardino
LostAngeles . .
5

Palm, Springs

Anaheim
&,
Y/
%,
‘e
Oceanside S

%

San Piego

Attenuation
Relationship

SimUIation by
Geoff Ely

Mexicali

Intensity
Measure

Phenomena poorly represented by empirical GMPEs:
. Source directivity
. Amplification of ground motions in sedimentary basins

. Small-scale variations caused by rupture-process complexity and 3D geologic structure



Physics-Based PSHA: CyberShake Platform

 Uses an extended earthquake rupture forecast
— Source area probabilities
— Hypocenter distributions (conditional)
— Slip variations (conditional)
o Calculates seismograms
— Psuedo-dynamic fault rupture
— 3D anelastic model of wave propagation
— Nonlinear site response (not yet implemented)

EFR
Earthquake Rupture Attenuation
Forecast Relationship

KFR = kinematic fault rupture model
AWP = anelastic wave propagation model
NSR = nonlinear site response
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Physics-Based PSHA: CyberShake Platform

 CyberShake 1.0 workflow ERF | —» f:;:;t B
- Extended earthquake rupture forecast (ERF)
« uniform hypocenter distribution Vlv \ ‘L j/
- Rupture generator - 3D SGT
« stochastic slip distribution Generator SRRl

- Strain Green tensor (STG) generator
» site-based, using reciprocity

- Ground motion simulation e sDsGT

- Hazard curve calculator
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Physics-Based PSHA: CyberShake Platform

o CyberShake 1.0 model: 225 sites in LA region, f < 0.5 Hz (low frequency)

440,000 simulations per site
50-day run on Ranger (5.3 million hrs, 4,400 cores)
189 million jobs

46 petabytes of total I/O

176 terabytes of total output data

2.1 terabytes of archived data
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M,,7.85 rupture on San Andreas fault
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Red circles are epicenters of the rupture variations. Sizes represents the 3s SA at
the station averaged over all 38 rupture variations for each epicenter.
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M,,7.85 rupture on San Andreas fault
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Red circles are epicenters of the rupture variations. Sizes represents the 3s SA at
the station averaged over all 38 rupture variations for each epicenter.



M,,7.85 rupture on San Andreas fault

Basin Site Hard Rock Site
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Conclusion: Rupture directivity couples into basin excitation.



M, 8.15 “wall-to-wall” rupture on San Andreas fault
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Conclusion: Rupture directivity couples into basin excitation.



Simulation by
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CyberShake Hazard Curves
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CyberShake Hazard Dissaggregation
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CyberShake Hazard Map Interpolation

Campbell & Borzognia (2008) CyberShake (2009) CyberShake (2009)
GMPE with CGS soil map differences map
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CyberShake (2009) Model
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NGA (2008) GMPEs

-119.25" -119" -118.75-118.5-118.25" -118" -117.75-117.5'-117.25" -117"
0 — L L |

-119.25" -119" -118.75-118.5-118.25" -118" -117.75-117.5'-117.25" -117"
0 — L L |

35"

3475 . 3475

3425 i ST RS & i 34.25°

CyberShake (2009) Model

-119.25" -119" -118.75'-118.5"-118.25" -118" -117.75-117.5'-117.25" -117"
£l

aa7s'd Campbell &
Bozorgnia
33.5°

33.25" M —— P— R 2 z 3 —

-119.25" -119" -118.75-118.5-118.25" 118" -117.75"-11
— L

3475

34.25°

0.6 0.8
3s SA (g)
33.75° 33.75
Boore & Abrahamson
Atkinson i
- wsl & Silva
33.25" N

PE = 2%/50 yr
0.0 0.2 0.4 0.6 08 1.0 12 i 0.0 0.2 0.4 0.6 08 1.0 12 1.4
3sec SA (G) 3sec SA (G)




Working Group on California Earthquake Probabilities (2007)
form California Earthquake Rupture Forecast (UCERF2)
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CALIFORNIA FAULTS
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CyberShake (2009) NSHMP Time-Independent Model
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CyberShake (2009) UCERF2 Time-Dependent Model
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CyberShake as a Platform for Short-Term Earthquake

Forecasting
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Example: Agnew-Jones model

 Apply probability gains to
CyberShake ruptures with
hypocenters near recent
events

Example: G =1000 for R =10 km

 Re-compute CyberShake

,\ ) ground motion probabilities

A [ for short interval following
* events

Bombay Beach (M4.8)
Mar 24, 2009

o \::‘\ Example: 1-day probabilities




1-day Probability of Exceedance
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CyberShake (2009) Model — NSHMP Background
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CyberShake (2009) Model — After 2009 Bombay Beach
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CyberShake (2009) Model — After 2004 Parkfield

* -119° -118.5 -118° -117.5 -117°

35° : -i

Parkfield (M6.0) -
Sept 28, 2004 B .
G =1000 TN i

e B z 2 4 3
- 7 75 R (277 i ol e ;.
34.5° Y .~ Nl e
: Vo A o= o
Rl — = % - e
; e
f o |
o = i
> TR e/
Rl <0
-, o .
s e 4 P g’
= % 2 oy s
L ci

34°

33.5°

105 104 103
1-day Probability of Exceeding SA=0.2gat3s




_C E N T E R

Current Research Objectives

 Reconcile magnitude-area relationships

— GMPEs are insensitive to changes in rupture area for same magnitude, but
long-period simulations scale directly with average slip

 Improve pseudo-dynamic rupture model
— Dynamic rupture simulations show less coherence than kinematic simulations

 Improve velocity models
— Near-surface velocities are too high in hard-rock regions

« Test CyberShake ground motion predictions with available data
— Ground motions recorded from small earthquakes
— Constraints from precarious rocks

 Extend CyberShake to higher frequencies and greater areas
— Two-year objective: 1-Hz model for all of California

 Develop a CyberShake model that can assimilate information
during earthquake cascades
— Operational earthquake forecasting
— Earthquake early warning
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